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Electroencephalography (EEG) has long been used to index brain states, from early studies describing activity
in the presence and absence of visual stimulation to modern work employing complex perceptual tasks.
These studies have shed light on brain-wide signals but often lack explanatory power at the single neuron
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Significance Statement

Decades of research has used electroencephalography (EEG) to investigate how voltage fluctuations on the
scalp are related to cognition. These studies are useful for measuring brain-wide signals in a noninvasive man-
ner, but they lack the ability to detect small-scale changes at the level of single neurons. In this study, we bridged
this gap by recording EEG and spiking responses in the brain while macaques performed a perceptual decision-
making task. We found that a commonly used metric of arousal in human EEG studies, prestimulus « power, is
associated with slow drifts in the activity of cortical neurons. Together, these recordings made noninvasively on
\the scalp and directly in the brain were predictive of changes in arousal levels over time. /

level. Similarly, single neuron recordings can suffer from an inability to measure brain-wide signals accessible using
EEG. Here, we combined these techniques while monkeys performed a change detection task and discovered a
novel link between spontaneous EEG activity and a neural signal embedded in the spiking responses of neuronal
populations. This “slow drift” was associated with fluctuations in the subjects’ arousal levels over time: decreases in
prestimulus « power were accompanied by increases in pupil size and decreases in microsaccade rate. These re-
sults show that brain-wide EEG signals can be used to index modes of activity present in single neuron recordings,

that in turn reflect global changes in brain state that influence perception and behavior.

Key words: «; electroencephalography; microsaccade; pupil; slow drift

Introduction

For decades, researchers have investigated how the
spiking responses of single cortical neurons relate to per-
formance on decision-making (Britten et al., 1996), atten-
tion (Moran and Desimone, 1985) and working memory
(Fuster and Alexander, 1971) tasks. Interactions between
pairs of neurons have also been studied extensively since
technological advances in neural recording systems (e.g.,
microelectrode arrays and two-photon imaging) made it
possible to monitor the activity of neural populations si-
multaneously (Zohary et al., 1994; Cohen and Maunsell,
2009; Leavitt et al., 2017). At the same time, it is becoming
increasingly apparent that major insight about the neuro-
biological basis of cognition can be gained from the study
of populations of neurons (Cohen and Maunsell, 2011;
Harvey et al., 2012; Mante et al., 2013; Driscoll et al.,
2017; Murray et al., 2017; Ni et al., 2018; Remington et al.,
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2018; Khanna et al., 2019; Oby et al., 2019; Valente et al.,
2021). Furthermore, it has been shown that low-dimen-
sional neural activity patterns can be used to index
global brain states, which influence performance on
cognitive tasks. For example, Stringer et al. (2019) ap-
plied principal component analysis (PCA) to data re-
corded from >10,000 neurons in the mouse and found
that fluctuations in the first principal component were
associated with a host of arousal-related variables in-
cluding whisking, pupil size, and running speed. Musall
et al. (2019) found that uninstructed movements, which
themselves may occur at varying frequency based on
arousal, were related to brain-wide activity in the mouse. In
our own work in rhesus macaques, we have reported a per-
vasive “slow drift” of neural activity (Cowley et al., 2020),
which is correlated with a distinctive pattern of eye metrics
that is strongly indicative of changes in arousal (Johnston et
al., 2021). However, it is unknown whether slow drift is asso-
ciated with other arousal-related variables that can be
measured in a rapid, accurate and noninvasive manner.
Spontaneous (i.e., prestimulus) oscillations in the «
frequency band (~8-12 Hz) are associated with lateral-
ized changes in spatial attention and global changes in
arousal. For example, studies investigating the effects of
spatial attention on electroencephalography (EEG) activ-
ity have found that prestimulus « power is decreased in
the visual cortex contralateral to the attended location
(Worden et al., 2000; Sauseng et al., 2005; Kelly et al.,
2006; Thut et al., 2006). In contrast, studies exploring the
processes underlying perceptual decision-making have
uncovered an association between task performance
and brain-wide changes in prestimulus « power. To be
more precise, the likelihood of detecting a near threshold
visual stimulus increases when prestimulus oscillations
in the @ band decrease (Ergenoglu et al., 2004; Babiloni
et al., 2006; Hanslmayr et al., 2007; van Dijk et al., 2008;
Busch et al., 2009; Mathewson et al., 2009; Romei et al.,
2010). Recent work suggests that these global effects
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(that occur across a range of frontal, midline, and occipi-
tal sites) arise because of changes in arousal. According
to signal detection theory (Green and Swets, 1966), dif-
ferences in performance on perceptual decision-making
tasks can either reflect shifts in sensitivity or response criteri-
on. Several studies have sought to dissociate these compo-
nents in macaque monkeys (Luo and Maunsell, 2015, 2018;
Crapse et al., 2018; Jun et al., 2021), and similar work has
been conducted in human subjects using EEG. For example,
it has been shown that brain-wide decreases in prestimulus «
power are associated with increased hit rate and false alarm
rate on perceptual decision-making tasks (Limbach and
Corballis, 2016; lemi et al., 2017). These results point to a link
between prestimulus « power and response criterion, a vari-
able that is modulated, at least in part, by subcortical regions
that control arousal levels (de Gee et al., 2017).

One structure that has been implicated in the control of
arousal is the locus coeruleus (LC; Aston-Jones and
Cohen, 2005; Sara, 2009; Chandler, 2016). This small re-
gion in the pons represents the primary source of norepi-
nephrine to the central nervous system and drives
fluctuations in raw and evoked (baseline-corrected) pupil
size: noninvasive markers that have been used exten-
sively in the neurosciences to index changes in arousal
(Varazzani et al., 2015; Joshi et al., 2016; Reimer et al.,
2016; Breton-Provencher and Sur, 2019). Given that the
LC is involved in modulating response criterion (de Gee et
al., 2017) and pupil size (Joshi and Gold, 2020), one might
also expect it to exert an influence on prestimulus «
power. To test this hypothesis noninvasively, one could
determine whether there is a significant association be-
tween prestimulus « power and pupil size. Several studies
have used a combination of EEG and pupillometry to ex-
plore whether this is the case in humans (Hong et al,
2014; Van Kempen et al., 2019; Podvalny et al., 2021). For
example, Compton et al. (2021) had subjects perform a
classic Stroop task and found that « power during inter-
trial periods was inversely related to raw pupil size. That
is, trials with greater pupil size were associated with re-
duced power in the a band and vice versa. These results
suggest that spontaneous EEG signals can be used to
index global brain state and raise the possibility that they
might be associated with other arousal-related metrics
such as microsaccade rate.

Microsaccades are small eye movements that occur at
a rate of 1-2 Hz through the activity of neurons in the
superior colliculus (SC; Rolfs, 2009). As with larger sac-
cades (Burr et al., 1994; Diamond et al., 2000; Knoll et al.,
2011), research has shown that visual perception is al-
tered in the hundreds of milliseconds following a micro-
saccade (Hafed and Krauzlis, 2010; Hafed, 2013; Chen et
al.,, 2015; Chen and Hafed, 2017; Scholes et al., 2018).
Interestingly, Bellet et al. (2017) found that these short
timescale modulations occur in a rhythmic manner at a
frequency of 8-20 Hz. However, it is unclear whether a re-
lationship exists between « oscillations and fixational eye
movements at longer timescales, which are more likely to
be associated with changes in a subject’s internal state
(Cowley et al., 2020). Recent work in our laboratory found
that slow fluctuations in raw pupil size over the course of
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a recording session were negatively correlated with mi-
crosaccade rate (Johnston et al., 2021). That is, microsac-
cade rate decreased under conditions of heightened
arousal (as indexed by greater pupil size) and vice versa.
As described above, the relationship between prestimulus
a power and microsaccade rate has not yet been ex-
plored at long timescales. However, based on our previ-
ous results, one might expect there to be a positive
correlation between these two variables over time.

The primary aim of this study was to determine whether
EEG signals recorded on the scalp can be used to index a
neural measure of brain state acquired directly from the
spiking activity of neural populations termed “slow drift.”
In addition, we investigated whether prestimulus oscilla-
tions in the a band are associated with two noninvasive
metrics that have previously been used to index global
shifts in arousal and that we have found to be related to
“slow drift” (Johnston et al., 2021): raw pupil size and mi-
crosaccade rate. EEG from the scalp and spiking activity
from populations of neurons in V4 was simultaneously re-
corded from two monkeys while they performed an orien-
tation-change detection task (Fig. 1A). Results showed
that fluctuations in prestimulus « power over the course
of a recording session were companied by changes in
raw pupil size and microsaccade rate. As expected, pres-
timulus power in the a band was negatively correlated
with raw pupil size and positively correlated with micro-
saccade rate. Interestingly, we also found a significant
correlation between prestimulus « power and neural slow
drift. This finding is of particular importance as it suggests
that spontaneous components of the EEG signal recorded
noninvasively on the scalp index low-dimensional pat-
terns of neural activity acquired from microelectrode array
recordings in the brain. These results support previous re-
search showing that slow drift is associated with changes
in arousal over time (Cowley et al., 2020; Johnston et al.,
2021), and provide a strong link between global measure-
ments made across recording modalities and species.

Materials and Methods

Subjects

Two adult male rhesus macaque monkeys (Macaca
mulatta) were used in this study. A previous report (Snyder
et al., 2018b) presented analysis of different aspects of the
same experiments described here. This study reports the re-
sults from a subset of the data from Snyder et al. (2018b) in
which EEG was recorded. Surgical procedures to chroni-
cally implant a titanium head post (to immobilize the sub-
jects’ heads during experiments) and microelectrode arrays
were conducted in aseptic conditions under isoflurane anes-
thesia, as described in detail by Smith and Sommer (2013).
Opiate analgesics were used to minimize pain and discom-
fort during the perioperative period. Neural activity was
recorded using 100-channel “Utah” arrays (Blackrock
Microsystems) in V4 (Monkey Pe = right hemisphere;
Monkey Wa = left hemisphere). The arrays comprised a
10 x 10 grid of silicon microelectrodes (1 mm in length)
spaced 400 um apart. Experimental procedures were ap-
proved by the Institutional Animal Care and Use Committee
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Figure 1. Experimental methods. A, Orientation-change detection
task. After an initial fixation period, a sequence of stimuli (orientated
Gabor pairs separated by brief prestimulus periods spanning 300-
500 ms) was presented. The subject’s task was to detect an orien-
tation change in one of the stimuli and make a saccade to the
changed stimulus. B, Electrophysiological recordings. We simulta-
neously recorded: (1) spiking responses of populations of neurons
in V4 using 100-channel microelectrode (“Utah”) arrays; and (2)
EEG from eight electrodes positioned on the scalp. Spiking re-
sponses of populations of neurons in V4 were recorded during 400-
ms stimulus periods, whereas EEG was recorded during the first
300 ms of prestimulus periods. RT, reaction time.

of the University of Pittsburgh and were performed in ac-
cordance with the United States National Research
Council’s Guide for the Care and Use of Laboratory Animals.

Microelectrode array recordings

Signals from each microelectrode in the array were ampli-
fied and bandpass filtered (0.3-7500Hz) by a Grapevine
system (Ripple). Waveform segments crossing a threshold
(set as a multiple of the root mean square noise on each

May/June 2022, 9(3) ENEURO.0012-22.2022

Research Article: New Research 4 of 16
channel) were digitized (30 kHz) and stored for offline anal-
ysis and sorting. First, waveforms were automatically
sorted using a competitive mixture decomposition method
(Shoham et al., 2003). They were then manually refined
using custom time amplitude window discrimination soft-
ware (code available at https://github.com/smithlabvision/
spikesort), which takes into account metrics including (but
not limited to) waveform shape and the distribution of inter-
spike intervals (Kelly et al., 2007). A mixture of single and
multiunit activity was recorded, but we refer here to all
units as “neurons.” The mean number of V4 neurons
across sessions was 41 (SD=10) for Monkey Pe and 21
(SD=10) for Monkey Wa.

EEG recordings

We recorded EEG from eight Ag/AgCl electrodes
(Grass Technologies) adhered to the scalp with electri-
cally conductive paste. The electrodes were positioned
roughly at the following locations: Fz, Iz, CP3, CP4, F5,
F6, PO7, and PO8 (Fig. 1B). Signals for each electrode
were referenced online to a steel screw on the titanium
head post, digitized at 1 kHz and amplified by a Grapevine
system (Ripple) and low-pass filtered online at 250 Hz.
They were then rereferenced to the average activity
across all electrodes for the entire session. One of the
challenges associated with simultaneously recording EEG
and the spiking responses of neural populations is the in-
troduction of craniotomies and microelectrode recording
arrays. Importantly, previous work in our lab has shown
that this does not significantly alter the way current flows
to the scalp (Snyder et al., 2018a). We found that FFTs
computed before and after craniotomies (performed to
implant microelectrode arrays) are highly correlated sug-
gesting that our results are generalizable to EEG recorded
from human subjects with an intact skull. Segments of
EEG data were recorded for each electrode during the
first 300 ms of prestimulus periods on the change detec-
tion task (Fig. 1A). A constant duration was needed to re-
move aperiodic activity that has a 1/f-like distribution
(Donoghue et al., 2020). We did not include the first presti-
mulus period because of an increase in eye position vari-
ability resulting from fixation having been established a
short time earlier. Such variability was not present in the
following prestimulus periods (see Johnston et al., 2021,
their Fig. 1). Several outlier rejection steps were then
taken. First, segments of EEG data were considered ex-
cessively noisy and removed if any of the electrodes had
a SD that was 10 times greater than the mean of the entire
session, or if any of the electrodes exhibited a flat signal
defined as a SD <300 nanovolts (Snyder et al., 2018a).
Segments of EEG data were also removed if there was evi-
dence of excessive variability in the eye trace. For each
session, we computed 1D eye velocity during each presti-
mulus period. EEG segments were removed if the SD of
the eye velocity was two times greater than the mean eye
velocity across all prestimulus periods. This final step was
necessary to ensure that changes in prestimulus a power
did not arise because of eye movement artifacts.
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Visual stimuli

Visual stimuli were generated using a combination of
custom software written in MATLAB (The MathWorks)
and Psychophysics Toolbox extensions (Brainard, 1997;
Pelli, 1997). They were displayed on a CRT monitor
(resolution=1024 x 768 pixels; refresh rate=100 Hz),
which was viewed at a distance of 36 cm and y-corrected
to linearize the relationship between input voltage and
output luminance using a photometer and look-up-tables.

Behavioral task

Subjects fixated a central point (diameter =0.6°) on the
monitor to initiate a trial (Fig. 1A). Each trial comprised a
sequence of stimulus periods (400 ms) separated by brief
prestimulus (fixation) periods. The duration of each presti-
mulus period was drawn at random from a uniform distri-
bution spanning 300-500 ms, but EEG data were only
analyzed during the first 300 ms (see above). The 400-ms
stimulus periods comprised pairs of drifting full-contrast
Gabor stimuli. One stimulus was presented in the aggregate
receptive field (RF) of the recorded V4 neurons, whereas the
other stimulus was presented in the mirror-symmetric loca-
tion in the opposite hemifield. Although the spatial (Monkey
Pe =0.85 cycles/°; Monkey Wa=0.85 cycles/°) and tempo-
ral frequencies (Monkey Pe=8 cycles/s; Monkey Wa=7
cycles/s) of the stimuli were not optimized for each individu-
al V4 neuron they did evoke a strong response from the
population. The orientation of the stimulus in the aggregate
RF was chosen at random to be 45° or 135°, and the stimu-
lus in the opposite hemifield was assigned the other orienta-
tion. There was a fixed probability (Monkey Pe=30%;
Monkey Wa=40%) that one of the Gabors would change
orientation by =1°, =3°, £6°, or £15° on each stimulus pre-
sentation. The sequence continued until the subject: (1)
made a saccade to the changed stimulus within 400 ms
(“hit”); (2) made a saccade to an unchanged stimulus (“false
alarm”); or (3) remained fixating for >400 ms after a change
occurred (“miss”). If the subject correctly detected an orien-
tation change, they received a liquid reward. In contrast, a
time-out occurred if the subject made a saccade to an un-
changed stimulus delaying the beginning of the next trial by
1 s. ltis important to note that the effects of spatial attention
were also investigated (although not analyzed in this study)
by cueing blocks of trials such that the orientation change
was 90% more likely to occur in one hemifield relative to the
other hemifield.

Eye tracking

Eye position and pupil diameter were recorded monoc-
ularly at a rate of 1000 Hz using an infrared eye tracker
(EyeLink 1000, SR Research).

Microsaccade detection

Microsaccades were defined as eye movements that
exceeded a velocity threshold of 6 times the SD of the
median velocity for at least 6 ms (Engbert and Kliegl,
2003). They were required to be separated in time by at
least 100 ms. In addition, we removed microsaccades
with an amplitude >1° and a velocity >100°/s. To assess
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the validity of our microsaccade detection method, the cor-
relation (Pearson product-moment correlation coefficient)
between the amplitude and peak velocity of detected mi-
crosaccades (i.e., the main sequence) was computed for
each session. The mean correlation between these two
metrics across sessions was 0.84 (SD=0.06) indicating
that our detection algorithm was robust as microsaccades
fell on the main sequence (Zuber et al., 1965).

Prestimulus power

For each electrode, FFTs were computed using
Hanning-windowed segments of EEG data spanning the
first 300 ms of the prestimulus period (Fig. 1A). Note that
we did not include the first prestimulus period because of
an increase in eye position variability resulting from fixa-
tion having been established a short time earlier (see
above). The data for each electrode were then binned
using a 30-min sliding window (step size =6 min), which
yielded eight FFTs per time bin (one for each electrode).
We wanted to rule out the possibility that slow drift was
associated with gradual changes in 1/f noise (Donoghue
et al., 2021). Therefore, the aperiodic component of the
signal was estimated by fitting an exponential to the
binned FFTs for each electrode (Donoghue et al., 2020).
Residual power was then computed by subtracting off the
aperiodic portion of the signal. Previous research has
shown that prestimulus « power is associated with per-
formance on visual detection tasks across a range of fron-
tal, midline, and posterior electrodes (Ergenoglu et al.,
2004; Busch et al., 2009; lemi et al., 2017). Hence, the
aperiodic adjusted (residual) FFTs from all eight electro-
des were averaged together for each time bin. Finally, we
computed the mean residual power in different frequency
bands. For each time bin, residual power was computed
in the 6 (4-8 Hz), « (8-12Hz), B (12-30Hz), and y (30-
50 Hz) bands.

Eye metrics

Mean pupil diameter was measured during stimulus pe-
riods, whereas microsaccade rate was measured during
prestimulus periods (Johnston et al., 2021). We did not in-
clude the initial fixation period when measuring microsac-
cade rate. As described above, there was an increase in
eye position variability during this period resulting from
fixation having been established a short time earlier (300-
500 ms). Such variability was not present in following
prestimulus periods (see Johnston et al., 2021, their Fig. 1).
Reaction time and saccade velocity were measured on trials
in which the subjects were rewarded for correctly detected
an orientation change. Reaction time was defined as the
time from when the change occurred to the time at which
the saccade exceeded a velocity threshold of 150°s.
Saccade velocity was the peak velocity of the saccade to
the changed stimulus. To isolate slow changes in the eye
metrics over time, the data for each session was binned
using a 30-min sliding window stepped every 6 min. The
width of the window, and the step size, were chosen to iso-
late slow changes over time based on previous research.
They were the same as those used by Cowley et al. (2020)
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and Johnston et al. (2021), which meant direct comparisons
could be made across studies.

Calculating slow drift

The spiking responses of populations of neurons in V4
were measured during a 400-ms period that began 50 ms
after stimulus presentation (Fig. 1A). Research has shown
that neurons in V4 are tuned for stimulus orientation
(Desimone and Schein, 1987). To prevent the PCA identi-
fying components related to stimulus tuning, residual
spike counts were computed by subtracting the mean re-
sponse for a given orientation (45° or 135°) across the en-
tire session from individual responses to that orientation.
To isolate slow changes in neural activity over time, resid-
ual spike counts for each V4 neuron were binned using a
30-min sliding window stepped every 6 min. PCA was
then performed to reduce the high-dimensional residual
data to a smaller number of latent variables (Cunningham
and Yu, 2014). Slow drift in V4 was estimated by projec-
ting the binned residual spike counts for each neuron
along the first principal component.

Aligning slow drift across sessions

As described above, slow drift was calculated by
projecting binned residual spike counts along the first
principal component. The weights in a PCA can be
positive or negative (Jolliffe and Cadima, 2016), which
meant the sign of the correlation between slow drift
and a given metric was arbitrary. Preserving the sign of
the correlations was particularly important in this study
because we were interested in whether slow drift
was associated with a pattern that is indicative of
changes in the subjects’ arousal levels over time, i.e.,
decreased prestimulus a power, increased pupil size
and decreased microsaccade rate. For simplicity, we
adopted an identical approach to that used in our pre-
vious study (Johnston et al., 2021). That is, the sign of
the slow drift was flipped if the majority of neurons had
negative weights. Forcing the majority of neurons to
have positive weights established a common reference
frame in which an increase in the value of slow drift
was associated with higher firing rates among the ma-
jority of neurons.

Estimating the timescale of slow drift and prestimulus
o power

To determine the timescale at which each variable
fluctuated over the course of a session Gaussian
smoothing was performed (Cowley et al., 2020). The
first thing to note is that slow drift was computed in a
slightly different manner. To improve temporal resolu-
tion, the 30-min sliding window (used to bin residual
spike counts) was stepped every 1 min instead of every
6 min. The same approach was taken when computing
prestimulus « power. Gaussian smoothing was then
performed in a cross-validated manner using SDs (i.e.,
timescales) ranging from 1 to 90 min (step size =1 min).
To determine the timescale of the fluctuation, a R% was
computed for each SD by leaving out randomly chosen
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time points for each fold (10 in total) and then predict-
ing the value of each held-out point by calculating a
Gaussian weighted average of its neighbors. We found
the SD with the maximum R? and the SD at which the
R? dropped to 75% of the maximum R?. The latter was
taken to be the timescale of the fluctuation.

Choice of analysis time windows

We chose to analyze spiking responses during stimulus
periods for consistency across studies. This was the ap-
proach taken in our original paper that discovered a slow
drift of neural activity in macaque visual and prefrontal
cortex (Cowley et al., 2020) and in a follow-up study that
included other eye-related metrics such as microsaccade
rate and evoked pupil size (Johnston et al., 2021). The rea-
son we chose to analyze microsaccade rate during presti-
mulus periods was to avoid bi-phasic changes that occur
during visual stimulus presentation. More specifically,
microsaccade rate decreases shortly after a visual
stimulus has been presented and then increases later
(Engbert and Kliegl, 2003; Rolfs et al., 2008; Hafed
and Ignashchenkova, 2013). With regards to seg-
ments of EEG data, decades of research has shown
that decreased a power during prestimulus periods is
associated with improved performance on change de-
tection tasks (Ergenoglu et al., 2004; Babiloni et al.,
2006; Hanslmayr et al., 2007; van Dijk et al., 2008;
Busch et al., 2009; Mathewson et al., 2009; Romei et
al., 2010). Therefore, we adopted the same approach
and analyzed segments of EEG data during prestimu-
lus periods.

Data availability
All data and code for this manuscript are available at
the following link: https://doi.org/10.1184/R1/19248827.

Results

To determine whether spontaneous components of
the EEG signal can provide insight into the internal
brain state associated with slow drift, we trained two
macaque monkeys to perform an orientation-change
detection task in which pairs of stimuli were repeatedly
presented (Fig. 1A). Spiking responses of populations
of neurons in visual cortex (V4) were recorded using
100-channel “Utah” arrays as well as EEG on the scalp
(Fig. 1B). For each electrode, FFTs were computed
using segments of EEG data recorded during presti-
mulus periods. The data were then binned using a 30-
min sliding window stepped every 6min (Fig. 2A).
Before averaging across electrodes, aperiodic activity
that was 1/f-like in nature was estimated and sub-
tracted off (see Materials and Methods). Finally, mean
residual power was computed in distinct frequency
bands. Our primary focus was on prestimulus a oscil-
lations, but we also computed prestimulus power in
the 6, B, and y bands. In addition, raw pupil size and
microsaccade rate were recorded during stimulus and
prestimulus periods, respectively.
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Figure 2. Correlation between prestimulus a power and raw pupil size. A, Isolating slow fluctuations in prestimulus « power.
A mean FFT was computed for each large 30-min bin (represented by gray lines) by averaging across electrodes. Note that
the aperiodic portion of the signal was removed before averaging across electrodes (see Materials and Methods), which ex-
plains why residual power, as opposed to raw power, is shown on the y-axis. B, Four example sessions in which there was a
moderate to strong correlation between prestimulus « power and raw pupil size. The top row contains two sessions for
Monkey Pe, whereas the bottom row contains two sessions for Monkey Wa. Note that the data were z-scored for visualiza-
tion purposes only (i.e., so that variables with different units could be shown on the same plot). C, A histogram showing the
distribution of correlation values across sessions between prestimulus « power and raw pupil size. We used a Wilcoxon
signed-rank test to test the null hypothesis that the median correlation across sessions was equal to zero (Monkey Pe: me-
dian r = —0.41, p=0.008; Monkey Wa: median r = —0.31, p=0.301). D, A scatter plot showing how the magnitude of fluctua-
tions in prestimulus o power (as measured by computing within-session variance) relate to the magnitude of fluctuations in
raw pupil size. Note that the data were z-scored separately for each Monkey to control for potential differences in variance
between subjects. Failing to control for this might have led to an artifactual correlation if the variance for one subject was
greater than the other or vice versa. Individual correlations for each monkey have been reported in the figure legend along
with the number of sessions included in the analysis; *p <0.05, **p <0.01, ***p < 0.001.

Correlation between prestimulus « power and raw
pupil size

First, we explored the relationship between prestimulus
a power and raw pupil size. As described above, several
studies in humans have established a link between these
two variables using a combination of EEG and pupillome-
try (Hong et al., 2014; Van Kempen et al., 2019; Podvalny
et al., 2021). Most recently, Compton et al. (2021) found
that « power during intertrial periods on a Stroop task
was inversely related to raw pupil size. That is, trials with
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greater pupil size were associated with reduced power in
the a band and vice versa. To investigate whether a simi-
lar relationship was found in our data, raw pupil size
measurements were binned using the same 30-min slid-
ing window that was used to bin the EEG data. Note that
the width of the window, and the step size, were chosen
to isolate slow changes over time based on previous stud-
ies we performed (Cowley et al., 2020; Johnston et al.,
2021). Example sessions for Monkey Pe and Monkey
Wa are shown in Figure 2B, top and bottom rows,
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Figure 3. Correlation between prestimulus « power and microsaccade rate. A, Four example sessions in which there was a
moderate to strong correlation between prestimulus a« power and microsaccade rate. The top row contains two sessions for
Monkey Pe, whereas the bottom row contains two sessions for Monkey Wa. Note that the data were z-scored for visualiza-
tion purposes only (i.e., so that variables with different units could be shown on the same plot). B, A histogram showing the
distribution of correlation values across sessions between prestimulus a« power and microsaccade rate. A Wilcoxon signed-
rank test was used to test the null hypothesis that the median correlation across sessions was equal to zero (Monkey Pe: me-
dian r=0.23, p =0.008; Monkey Wa: median r = —0.21, p =0.44). C, A scatter plot showing how the magnitude of fluctuations
in prestimulus « power (as measured by computing within-session variance) relate to the magnitude of fluctuations in micro-
saccade rate. Note that the data were z-scored separately for each Monkey to control for potential differences in variance
that might have resulted in an artifactual correlation. Individual correlations for each monkey have been reported in the figure
legend along with the number of sessions included in the analysis; *p <0.05, **p <0.01, ***p < 0.001.

respectively. In support of previous research, prestimulus  found that prestimulus « power was significantly and neg-
power in the o band was negatively associated with raw  atively correlated with raw pupil size (Fig. 2C, median
pupil size in each example session for both subjects. r = —0.35, p=0.012). Next, we investigated whether the
The example sessions in Figure 2B exhibit moderate to  magnitude of changes in EEG « power was correlated
strong trends. However, it is difficult to determine whether ~ with the magnitude of changes in raw pupil size. Within
two variables that fluctuate slowly over time are correlated ~ each session, we computed the variance of prestimulus «
over the course of a single session. Standard correlation ~ power and raw pupil size. The data were then z-scored for
analyses assume that all samples are independent, but ~ each monkey separately to control for potential differences
smoothed variables can violate this assumption leadingto  in variance that might have led to an artifactual correlation
“nonsense correlations” between variables that are unre-  when the data were pooled across subjects. Finally, a cor-
lated (Harris, 2020). An easy way to overcome this prob-  relation (Pearson product-moment correlation coefficient)
lem is to record data from multiple sessions. Two Wwas performed to investigate whether within-session var-
approaches can then be adopted: (1) one can compute a  iance in prestimulus « power was significantly associated
correlation for each session, and then perform a statistical ~ With within-session variance in raw pupil size. Results
test to investigate whether the distribution of coefficients ~ showed that the magnitude of changes in prestimulus «
across sessions is centered on zero; or (2) one can explore ~ Power was significantly correlated with the magnitude of
whether the magnitude of fluctuations in one of the varia-  changes in raw pupil size (Fig. 2D, r=0.38, p=0.035).
bles is associated with the magnitude of fluctuations in the ~ These findings support previous work in humans as they
other variable. Both approaches were adopted in the pres- show that fluctuations in prestimulus « power were accom-
ent study to investigate whether there was a relationship ~ Panied by global changes in the subjects’ arousal levels
between prestimulus a power and pupil size across ses-  (Hong et al., 2014; Van Kempen et al., 2019; Compton et
sions (Monkey Pe=15 sessions; Monkey Wa=16 ses- al» 2021; Podvalny et al., 2021). This motivated us to ask
sions). First, we investigated whether prestimulus power in ~ Whether prestimulus « power is associated with other
the « band and raw pupil size were correlated over time. arousal-related metrics such as microsaccade rate.
Within each session, we computed a correlation (Pearson

product-moment correlation coefficient) between presti-  Correlation between prestimulus « power and
mulus « power and raw pupil size. As in our previous study  microsaccade rate
(Johnston et al., 2021), we found that null distributions Recently, we found that microsaccade rate fluctu-

(generated by computing correlations between sessions  ates over the course of a recording session in a manner
recorded on different days) were centered on zero. that is consistent with slow changes in arousal over
Therefore, a Wilcoxon signed-rank test was then used  time (Johnston et al., 2021). More specifically, de-
to test the null hypothesis that the median correlation  creases in raw pupil size on a change detection task
across sessions was equal to zero. Consistent with the pat-  were accompanied by increases in microsaccade rate
tern of results observed in the four example sessions, we  and vice versa. Hence, we were interested in whether
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prestimulus « power is correlated with microsaccade
rate. Based on our previous research, we hypothesized
that microsaccade rate would be positively correlated
with prestimulus a power. To test this prediction, mi-
crosaccade rate measurements were binned using the
same 30-min sliding window stepped every 6min.
Example sessions for Monkey Pe and Monkey Wa are
shown in Figure 3A, top and bottom rows, respectively.
In support of our hypothesis, prestimulus « power was
positively associated with microsaccade rate in each
example session for both subjects.

Next, we explored whether a similar pattern was present
across all sessions (Monkey Pe=15 sessions; Monkey
Wa =16 sessions). As before, we first investigated whether
changes in prestimulus « power and microsaccade rate
were correlated over time. Within each session, we
computed the correlation (Pearson product-moment
correlation coefficient) between prestimulus power in
the « band and microsaccade rate. A Wilcoxon signed-
rank test was then used to test the null hypothesis that
the median correlation across sessions was equal to
zero. Despite the compelling trends on some example
sessions (Fig. 3A), there was no statistically significant
correlation between prestimulus « power and micro-
saccade rate (Fig. 3B, median r=0.15, p=0.210). Next,
we investigated whether the magnitude of changes in
prestimulus a« power was correlated with the magnitude
of changes in microsaccade rate. Within each session,
we computed the variance of prestimulus « power and
microsaccade rate. A correlation (Pearson product-mo-
ment correlation coefficient) was then performed on z-
scored data to investigate the relationship between
within-session variance in prestimulus « power and
within-session variance in microsaccade rate. Results
showed that the magnitude of changes in prestimulus «
power was significantly correlated with the magnitude
of changes in microsaccade rate (Fig. 3C, r=0.39,
p=0.029). Although we note that the median within-
session correlation between slow drift and microsac-
cade rate was not significantly different from zero (Fig.
3B), the compelling match in the time course of individ-
ual sessions (Fig. 3A) and the significant session-by-
session correlation in variance (Fig. 3C) are important
for at least two reasons. First, they establish a novel link
between prestimulus « power and fixational eye move-
ments at long timescales. Second, they provide further
evidence to suggest that fluctuations in prestimulus «
power are associated with changes in arousal. If this is
the case, one might expect « oscillations to be corre-
lated with behavioral performance and other eye met-
rics that have been used to index changes in brain state
such as saccadic reaction time and saccade velocity
(Castellote et al., 2007; Di Stasi et al., 2013; DiGirolamo
etal., 2016).

Correlation between prestimulus « power and other
arousal-related metrics

Previously, we found that performance on a change
detection task, as measured by computing hit rate and
false alarm rate, fluctuates slowly over the course of a
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Figure 4. Correlation between slow drift and other arousal-
related metrics. A scatter plot showing the median within-
session correlation between prestimulus « power and a host
of behavioral and eye metrics analyzed in our previous work
(Cowley et al., 2020; Johnston et al., 2021). Note that pupil
size and microsaccade rate have also been included so that
comparisons can be made across the different behavioral
and eye metrics. These data are the same as that reported
in Figures 2C and 3B, respectively. For Monkey Pe, the me-
dian correlation between « power and false alarm rate was
—0.28 (p=0.083), whereas the median correlation between
a power and pupil size was —0.41 (p=0.008). For Monkey
Wa, the median correlation between « power and false
alarm rate was —0.24 (p =0.326), whereas the median corre-
lation between a power and pupil size was —0.31 (p =0.301).
Error bars represent bootstrapped 95% confidence inter-
vals; *p <0.05.

recording session (Cowley et al., 2020). The same is
also true of other eye metrics including saccadic reac-
tion time and saccade velocity (Johnston et al., 2021).
To explore whether prestimulus a power is associated
with these additional arousal-related metrics, correlations
(Pearson product-moment correlation coefficient)
were computed within each session. Wilcoxon signed-
rank tests were then used to test the null hypothesis
that the median correlation across sessions was equal
to zero. Results showed that prestimulus « power was
negatively correlated with false alarm rate (Fig. 4, me-
dian r = —0.28, p =0.046). However, it was not signifi-
cantly correlated with hit rate (Fig. 4, median r =0.03,
p =0.906), reaction time (median r=0.12, p=0.176) or
saccade velocity (Fig. 4, median r = —0.12, p =0.389).
Note that pupil size and microsaccade rate have also
been included in Figure 4 so that comparisons can be
made across the different behavioral and eye metrics.
These data are the same as that reported in Figures 2C,
3B, respectively. These findings are interesting because
they demonstrate that prestimulus a power is associated
with slow fluctuations in behavior over time. Previous re-
search in humans has shown that prestimulus oscilla-
tions in the a band are associated with hit rate and false
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Figure 5. Computing slow drift. A, Three example neurons recorded during the top left-hand session in B. Each point represents
the mean residual spike count during a 400-ms stimulus period. The data were then binned using a 30-min sliding window stepped
every 6 min (solid line). PCA was used to reduce the dimensionality of the data and slow drift was computed by projecting binned re-
sidual spike counts along the first principal component. B, Four example sessions in which there was a moderate to strong correla-
tion between prestimulus « power and slow drift. The top row contains two sessions for Monkey Pe, whereas the bottom row
contains two sessions for Monkey Wa. Note that the data were z-scored for visualization purposes only (i.e., so that variables with
different units could be shown on the same plot). PCA, principal component analysis.

alarm rate (lemi et al., 2017). However, it is difficult to make
comparisons across studies because of task differences. In
our paradigm, subjects had to make a saccade to the
changed stimulus, whereas in lemi et al. (2017), they had to
make a yes/no decision about whether a near-threshold
stimulus was presented. Either way, our results point to a
link between « oscillations and global changes in arousal.
Next, we asked whether prestimulus « power, a noninva-
sive signal recorded on the scalp, can be used to index a
neural measure of brain state acquired directly from the
spiking activity of neural populations.

Correlation between prestimulus « power and slow
drift

As described above, we recently observed a pervasive
signal in visual and prefrontal cortex termed “slow drift”
(Cowley et al., 2020). Interestingly, this neural signature
was related to a subject’s tendency to make impulsive de-
cisions on a change detection task and a constellation of
eye metrics that are indicative of slow changes in arousal
over time (Johnston et al., 2021). For example, we found
that slow drift was positively correlated with raw pupil
size and negatively correlated with microsaccade rate.
This motivated us to ask whether noninvasive EEG sig-
nals recorded on the scalp are associated with slow drift.
Based on our previous work, we hypothesized that pres-
timulus « power would be negatively correlated with
slow drift.

To calculate slow drift, residual spike counts were
computed by subtracting the mean response for a given
orientation across the entire session from individual re-
sponses. This was an important first step as it ensured
that signals related to stimulus tuning were not present
in the slow drift. Residual spike counts were then binned
using the same 30-min sliding window that had been
used to bin the EEG, pupil and microsaccade rate data
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(Fig. 5A; see Materials and Methods). We then applied
PCA to the neural data and estimated slow drift by pro-
jecting the binned residual spike counts along the first
principal component (i.e., the loading vector that ex-
plained the most variance in the data). The sign of the
weights in PCA is arbitrary meaning that the correlation
between slow drift and prestimulus « power in any ses-
sion was equally likely to be positive or negative (Jolliffe
and Cadima, 2016). To overcome this issue, we flipped
the sign of the slow drift such that the majority of
neurons had positive weights (Hennig et al., 2021). This
established a common reference frame in which an in-
crease in the value of the drift was associated with higher
firing rates among the majority of neurons (see Materials
and Methods).

We computed the slow drift of the neuronal population
in each session using the above-mentioned method, and
then compared it to prestimulus a power. Example ses-
sions for Monkey Pe and Monkey Wa are shown in Figure
5B, top and bottom rows, respectively. In support of our
hypothesis, prestimulus o power was negatively corre-
lated with slow drift in each example session for both
subjects.

Next, we explored whether a similar pattern was pres-
ent across sessions (Monkey Pe =15 sessions; Monkey
Wa =16 sessions). Within each session, a correlation
(Pearson product-moment correlation coefficient) was
computed between prestimulus « power and slow drift.
Note that correlations were also performed to investi-
gate the relationship between slow drift and prestimulus
power in the 6, B, and y bands. Wilcoxon signed-rank
tests were then used to test the null hypothesis that the
median correlation across sessions was equal to zero.
Consistent with the pattern observed in the example
sessions, prestimulus power in the a« band was nega-
tively correlated with slow drift (Fig. 6B, median r =
—0.34, p=0.017). No significant correlation was found
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Figure 6. Correlation between slow drift and prestimulus power in distinct frequency bands. A-D, Histograms showing distributions
of correlation values across sessions. Wilcoxon signed-rank tests were used to test the null hypothesis that the median correlation
across sessions was equal to zero. The median correlation between slow drift and a power for Monkey Pe was —0.47 (p =0.041).
For Monkey Wa, the median correlation between slow drift and « power was —0.24 (p =0.215); *p < 0.05, **p < 0.01, **p < 0.001.

between slow drift and prestimulus power in the 6 (Fig.
6A, median r = —0.03, p=0.318), B (Fig. 6C, median
r=0.05, p=0.570), and y (Fig. 6D, median r=0.11,
p=0.531) bands. These findings suggest that sponta-
neous components of the EEG signal, namely prestimu-
lus a power, recorded noninvasively on the scalp can
be used to index low-dimensional patterns of neural ac-
tivity acquired directly in the brain.

The frequency bands in the analysis described above (Fig.
6) were chosen based on previous research that has ex-
plored the relationship between EEG on the scalp and spik-
ing responses recorded directly in the brain (Musall et al.,
2014; Snyder et al., 2015). However, there are disadvantages
to assessing power in predefined regions of the power
spectrum such as variability in the peak central fre-
quency that is known to be associated with different task
demands and/or cognitive states (Mierau et al., 2017).
Given our interest in the link between prestimulus oscilla-
tions and arousal, we performed an additional analysis
to investigate whether slow drift was associated with
power across a wide range of frequencies. To do this, we
computed the median within-session correlation be-
tween slow drift and prestimulus « power using a 4-Hz
sliding window stepped every 2Hz. In support of the
analysis described above (Fig. 6), which was performed
using predefined frequency bands, we found that slow
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drift was only significantly correlated with prestimulus
power at 8-12 Hz, the canonical « frequency band (Fig.
7, medianr=—-0.34,p=0.017).

Correlation between the timescale of slow drift and
prestimulus « power

Finally, we investigated whether the timescale of slow
drift is correlated with the timescale of fluctuations in
prestimulus « power. Note that these two variables are
unlikely to have the same timescale because oscilla-
tions in the 8- to 12-Hz frequency band are influenced
by cognitive processes such as attention that operate
at a timescale of hundreds of milliseconds to seconds
(Worden et al., 2000; Sauseng et al., 2005; Kelly et al.,
2006; Snyder and Foxe, 2010). However, they may be
modulated by a joint and continuously graded process
(perhaps arising because of fluctuating levels of neuro-
modulators) that operates at a brain-wide level. If this is
the case, one would expect a positive correlation be-
tween the timescale of slow drift and the timescale of
fluctuations in prestimulus « power. To determine the
optimal timescale at which a variable fluctuated over
the course of a session, we used a cross-validated ker-
nel regression method that applied Gaussian smooth-
ing (with SDs ranging from 1 to 90min) to the data
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Figure 7. Correlation between slow drift and prestimulus power
across frequencies. The median within-session correlation was
computed using a 4-Hz sliding window stepped every 2 Hz.
Values on the x-axis represent the left edge of the window. The
only significant correlation was between slow drift and presti-
mulus power at 8-12 Hz, i.e., the « frequency band (p=0.017).
Note that the p-value for the correlation between slow drift and
prestimulus power at 10-14 Hz was 0.06; *p < 0.05.

and returned the time scale for smoothing that best fit
held-out data (see Materials and Methods). We found that
the timescale of slow drift (Fig. 8A, M=32.27, SD =14.43)
was significantly longer than the timescale of fluctuations
in prestimulus « power (Fig. 8B, M=9.32, SD=5.89;
tes=8.28, p <0.001). However, there was a significant
correlation between the timescale of slow drift and presti-
mulus a power (r=0.40, p=0.0255) from session to ses-
sion. This suggests that slow drift and prestimulus « power
arise from distinct mechanisms on a moment-by-moment
basis but may be linked to, or modulated by, a joint process
that drives global changes in arousal over time.
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Discussion

In this study, we investigated whether prestimulus oscil-
lations in the « band could be used as an external signa-
ture of an internal brain state, a recently discovered neural
activity pattern called “slow drift” (Cowley et al., 2020).
We know from previous work that slow drift in macaque
visual and prefrontal cortex is correlated with a host of
eye metrics across tasks with differing cognitive demands
(Johnston et al., 2021), suggesting that slow drift can be
used to index brain-wide changes in arousal. Since presti-
mulus « power is also related to arousal, we wondered
whether a link could be established between a neural
measure of an internal brain state acquired directly from
the spiking activity of populations of neurons (i.e., slow
drift) and indirect signals recorded noninvasively from the
scalp using EEG. Results showed that slow drift was sig-
nificantly associated with a pattern that is indicative of
changes in the subjects’ arousal levels over time: de-
creases in prestimulus « power were accompanied by in-
creases in raw pupil size and decreases in microsaccade
rate.

Several studies in humans have found a relationship be-
tween prestimulus « power and pupil size (Hong et al.,
2014; Van Kempen et al., 2019; Podvalny et al., 2021). For
example, on classic Stroop tasks, trials with greater raw
pupil size are associated with reduced a power and vice
versa (Compton et al., 2021). Our results support this find-
ing as slow changes in prestimulus « power were nega-
tively correlated with raw pupil size. Furthermore, there
was an association between the magnitude of fluctuations
in prestimulus « power (as measured by computing with-
in-session variance) and the magnitude of fluctuations in
raw pupil size. These findings suggest that prestimulus «
power is associated with global changes in brain state
that occur naturally over time, perhaps because of fluctu-
ating levels of neuromodulators in the brain. Testing this
hypothesis would require the simultaneous recording of
EEG from the scalp and spiking activity in subcortical re-
gions associated with arousal such as the LC (Aston-
Jones and Cohen, 2005; Sara, 2009; Chandler, 2016).
Such studies have been conducted in monkeys (Foote et
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Figure 8. Correlation between the timescale of slow drift and prestimulus « power. A, A histogram showing the distribution of time-
scales computed for slow drift across sessions. B, Same as A but for prestimulus « power. C, A scatter plot showing how the time-
scale of slow drift relates to the timescale of fluctuations in prestimulus « power. Note that the data were z-scored separately for
each monkey to control for potential timescale differences between subjects. Failing to control for this might have led to an artifac-
tual correlation if timescales for one subject were greater than those for the other or vice versa; *p < 0.05, **p <0.01, **p < 0.001.
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al., 1980; Swick et al., 1994) but the relationship between
prestimulus « power and pupil size has not been eluci-
dated in awake behaving animals performing cognitively
demanding tasks. Hence, an important question for future
research would be to determine how the spiking activity
of subcortical regions associated with arousal relates to
prestimulus « power recorded on the scalp.

Another noninvasive metric that has been linked to os-
cillations in the a band is microsaccade rate. We know
from previous research that visual perception is altered
up to 700 ms after a microsaccade has occurred, at a fre-
quency of ~8-20 Hz (Bellet et al., 2017). The results of the
present study show that a relationship also exists be-
tween « oscillations and microsaccade rate at longer
timescales. Recently, we found that slow fluctuations in
raw pupil size were negatively correlated with microsac-
cade rate (Johnston et al., 2021). That is, microsaccade
rate decreased under conditions of heightened arousal
(as indexed by greater pupil size and increased saccade
velocity) and vice versa. Given this result, we hypothe-
sized that there would be a positive correlation between
prestimulus « power and microsaccade rate at longer
timescales, which are more likely to reflect changes in a
subject’s internal cognitive state (Cowley et al., 2020).
This is exactly what was found in several example ses-
sions for both monkeys. Furthermore, the magnitude of
fluctuations in prestimulus « power was significantly cor-
related with the magnitude of fluctuations in microsac-
cade rate across sessions. A key goal for future research
is to bridge the gap between microsaccade-related EEG
signals and neural activity in brain regions that have been
implicated in eye movement control such as the SC
(Martinez-Conde et al., 2013). Research combining EEG
and eye tracking has shown that microsaccades are ac-
companied by: (1) a large potential over occipital electro-
des ~100 ms after movement onset; and (2) changes in
a/6 power (Dimigen et al., 2009). However, it is unclear
how these signals recorded on the scalp, at relatively
short timescales, relate to the activity of SC neurons.
Similarly, we do not know how long timescale changes in
prestimulus « power, which we found to be correlated
with microsaccade rate, link to firing rates in the SC.
Future research combining eye tracking, EEG and single
unit/population recordings in the SC is needed to deter-
mine the neural underpinnings of noninvasive scalp sig-
nals that are associated with fixational eye movements.

Taken together, the results of the pupil size and micro-
saccade rate analysis suggest that fluctuations in presti-
mulus a power are associated with global changes in
arousal. This motivated us to ask whether noninvasive
signals recorded on the scalp can be used to index a re-
cently discovered signature of an internal brain state
called “slow drift” (Cowley et al., 2020). We know from
previous research that slow drift is positively correlated
with raw pupil size and negatively correlated with micro-
saccade rate across tasks with differing cognitive de-
mands (Johnston et al., 2021). Therefore, we predicted
that there would be an inverse relationship between
changes in prestimulus « power and slow drift over time.
In support of this hypothesis, we found that slow drift in
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visual cortex was negatively correlated with prestimulus «
power in several example sessions for both monkeys.
Furthermore, they were significantly and negatively corre-
lated when the data were pooled across sessions. It is im-
portant to note that this finding cannot be attributed to
changes in 1/f noise that are characteristic of several
brain disorders (Peterson et al., 2017; Robertson et al.,
2019) and healthy aging (Voytek et al., 2015). First, aperi-
odic components of the FFT were estimated and sub-
tracted off before averaging across electrodes (Donoghue
et al., 2020). Second, no significant correlation was found
between slow drift and prestimulus power in the 4, 8, and
v bands. One might have expected this to be the case if
slow drift was associated with uniform shifts in power
across frequencies. Nonetheless, 1/f noise and other
aperiodic fluctuations, might be related to global brain
modulations in ways that are not well captured by the
slow drift we observe. A further interesting question is
whether slow drift is associated with other EEG signals
such as the P1 component of the visually evoked poten-
tial (VEP). There are at least two reasons why this might
be the case. First, evidence suggests that early VEP
components are negatively correlated with prestimulus «
power (Roberts et al., 2014; lemi et al., 2019). Second,
decades of research has shown that P1 amplitude is as-
sociated with global changes in brain state (Luck et al.,
2000). For example, it is significantly larger on trials in
which a weak visual stimulus is detected (Ergenoglu et
al., 2004; Pourtois et al., 2006; Del Cul et al., 2007;
Mathewson et al., 2009) and negatively correlated with
reaction time on spatial attention tasks (Mangun and
Hillyard, 1991).

Another key finding from the present study is related to
the timescale of slow drift and fluctuations in prestimulus
a power. We found that the timescale of these two varia-
bles was significantly different: prestimulus « power had a
shorter timescale than slow drift. This result is unsurpris-
ing given that oscillations in the 8- to 12-Hz frequency
band are influenced by processes such as attention that
operate at a timescale of hundreds of milliseconds to sec-
onds (Worden et al., 2000; Sauseng et al., 2005; Kelly et
al., 2006; Snyder and Foxe, 2010). However, we did find
that the timescale of slow drift and the timescale of fluc-
tuations in prestimulus « power was significantly corre-
lated across sessions. This observation is important
because it suggests that these two variables are modu-
lated by a common process such as arousal that oper-
ates at a brain-wide level. In the present study, there was
no experimental manipulation of the subjects’ arousal
levels meaning that the timescale of slow drift and presti-
mulus « power varied naturally from session to session.
Evidence suggests that LC is a major source of fluctua-
tions in arousal (Aston-Jones and Cohen, 2005; Sara,
2009; Chandler, 2016). Therefore, activating neurons in
this region directly via electrical microstimulation, or indi-
rectly via pharmacological manipulations, should lead to
correlated changes in the timescale of slow drift and
prestimulus « power.

In summary, we found that a commonly used metric
of cognitive state in human EEG studies, prestimulus «
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power, is associated with gradual shifts in the underly-
ing population structure of neural activity throughout
the brain. Together, these measures at the scalp, and
in the cortex, were predictive of changes in the mon-
keys’ arousal levels over time. These findings show
that indirect measures of neural activity can be used to
index a global signature of arousal. By linking a vast
EEG literature in humans with simultaneous scalp/mi-
croelectrode array recordings in macaques our results
bridge the gap between large-scale field potentials
and the spiking responses of populations of cortical
neurons.
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