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Abstract

Glioblastoma multiforme (GBM) is the most common form of brain cancer, with an average

life expectancy of fewer than two years post-diagnosis. We have previously reported that

cancer cell originated exosomes, including GBM, have NANOG and NANOGP8 DNA asso-

ciated with them. The exosomal NANOG DNA has certain differences as compared to its

normal counterpart that are of immense importance as a potential cancer biomarker.

NANOG has been demonstrated to play an essential role in the maintenance of embryonic

stem cells, and its pseudogene, NANOGP8, is suggested to promote the cancer stem cell

phenotype. Similarly, SOX2 is another stemness gene highly expressed in cancer stem cells

with an intimate involvement in GBM progression and metastasis as well as promotion of

tumorigenicity in Neuroblastoma (NB). Since exosomes are critical in intercellular communi-

cation with a role in dissipating hallmark biomolecules responsible for cancer, we conducted

a detailed analysis of the association of the SOX2 gene with exosomes whose sequence

modulations with further research and appropriate sample size can help to identify diagnostic

markers for cancer. We have detected SOX2 DNA associated with exosomes and have

identified some of the SNPs and nucleotide variations in the sequences from a GBM and

SH-SY5Y sample. Although a further systematic investigation of exosomal DNA from GBM

and NB patient’s blood is needed, finding of SOX2 DNA in exosomes in the current study

may have value in clinical research. SOX2 is known to be misregulated in cancer cells by

changes in miRNA function, such as SNPs in the binding sites. Our finding of cancer-specific

SNPs in exosomal SOX2 DNA sequence may reflect those changes in the cancer stem cells

as well as cancer cells. A series of our study on embryonic stem cell gene analysis in exoso-

mal DNA may lead to a minimally invasive exosome-based diagnosis, and give us a key in

understanding the mechanisms of cancer formation, progression, and metastasis.

Introduction

Exosomes, the extracellular microvesicles (30–100 nm) of endocytic origin released by almost

all types of cells, play an essential role in intercellular communication and cellular homeostasis
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[1, 2]. The exosomal cargo being a blueprint of the parent-cell contents carries nucleic acids,

proteins, lipids etc. In the context of cancer, some of these macromolecules can be clinically

relevant aberrations useful as biomarkers due to their specificity to a cell type. The cargo of

cancer-cell-originated exosomes can transform normal cells and stem cells to a cancerous state

by inducing a genotypic and a phenotypic transformation of the recipient cell. The result is a

cell in a reprogrammed state, actively contributing toward angiogenesis, thrombosis, metasta-

sis, and immunosuppression, some of the hallmark features of a cancer [3]. Exosomal nucleic

acids, specifically the quantities of double-stranded DNA, are reported to play a role in onco-

genic transformation of the recipient cell by a horizontal transfer of cancer-specific genome

that promotes cancer pathogenesis [4, 5]. Additionally, genetic mutations are detected in the

DNA of exosomes originating from cancer cells [6]. In our previously published study, we

have reported that differential sequences found in pseudo/retro-oncogene NANOGP8 can be

used as potential diagnostic biomarker for Glioblastoma multiforme (GBM). GBM is the most

lethal form of brain cancer with a very poor prognosis and less than average 2 years of life

expectancy after the diagnosis. NANOGP8, a member of embryonic stemness gene family

NANOG, exhibited specific differential sequences at higher frequency in exosomes originated

from GBM cancer cells and prominin-1 containing (CD133+) cancer stem cells (CSCs) as

compared to the normal neural stem cells (NSC). CD133, a penta-span, tri-membrane glyco-

protein encoded by Prominin-1 was originally found to be expressed in human hematopoietic

stem and progenitor cells. It is also reported to be highly expressed in several cancers, includ-

ing GBM and NB, making the CD133+ CSC more metastatic and resistant to radiotherapy as

well as chemotherapy [7, 8, 9]. CD133+ CSC possess the same functional properties such as the

ability to differentiate and self-renew as their normal counterpart, thus contributing toward

tumor initiation and proliferation. Since the exosomes are able to pass through the blood-

brain barrier (BBB), these differential sequences are detectable in the exosomes released by

GBM and neuroblastoma (NB), the extra-cranial pediatric solid tumor cells in the peripheral

blood making them a potential diagnostic biomarker. In the previous study, to confirm the

identity of exosomes, we have applied immuno-affinity capture techniques using CD63, an

exosome-specific biomarker. Additionally, we have recruited an X-Pack exosome targeting

system to pack RFP in the exosomes. In this system, SBI-identified XPack™ Exosome Protein

Engineering Technology’s special peptide sequence targets the protein to the interior exosomal

membrane and allows the reporter protein to be loaded to the exosomes. Therefore, in our

experiments, the producer cell line HEK293, upon transfection with XPack MSCV-XP-

RFP-EF1 α-Puro Lenti-vector, produced the exosomes containing RFP. The RFP packed exo-

somes were further treated with a florescent lipophilic tracer DiO. Therefore, the confocal

images confirm the presence of exosomes in the sample.[10]. In the current study, we are

extending our investigation to another exosome associated embryonic stemness gene, SOX2

(Sex-determining region Y (SRY)-box 2 (SOX2) [Gene ID: 6657, updated on 4-Aug-2019].).

SOX2, a single exon containing, intron-lacking, embryonic stemness gene is one of the

master pluripotency factors. It is used as a marker for undifferentiated, proliferating cells.

Laura Annovazzi et al. reported that SOX2 protein expression level was upregulated in ana-

plastic areas of GBM and oligodendromas, while it was undetectable in the normal adult brain

except Purkinje cells. They have also found a positive correlation between SOX2 expression

levels and malignancy grade of a glioma indicating that protein expression of SOX2 contrib-

uted toward sustenance of stemness of CSCs and its tumorigenicity. Interestingly, there is an

indication that the existence of multiple copies of SOX2 in the genome of GBM neurospheres

may have contributed to its increased expression [11, 12]. In GBM cell population, SOX2,

along with POUF3F2, SALL2 and OLIG2, forms a group of core transcription factors that trig-

gers an epigenetic effect in cancer cells leading to a formation of tumor propagating cancer

SNPs of exosomal SOX2 DNA in glioblastoma and neuroblastoma
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stem-like cells, making SOX2 a good candidate for cancer stem cell marker [13, 14]. Yang et.al

have described the role of SOX2 as a promoter of tumorigenicity in NB (NB-ref-3). SOX2,

along with Oct4 are found to be overexpressed in human NB [15]. SOX2 may also contribute

toward the initiation of CSCs in cancers and it is found to be the most upregulated transcrip-

tion factor in squamous cell carcinoma [16]. The tumor initiation, maintenance and prolifera-

tion properties conferred by SOX2 may also introduce drug-resistance to CD133 (prominin-1)

positive CSCs in GBM, making SOX2 a therapeutic target to treat the lethal brain cancer [17].

Metastatic cancer stem cells in SH-SY5Y cell line also have increased levels of SOX2 as com-

pared to their parent cells [18]. BBI608, a gene transcription- inhibitor molecule, has been

shown to decrease SOX2 expression along with other stemness factors, making CSCs more

susceptible to chemo-radio therapeutics by reducing their stemness [19]. Similarly, expression

of micro RNAs that target SOX2 mRNA and interfere with its translation is found to have

implications in the prognostic and diagnostic role in the clinical analysis of GBM patients. e.g.

miR126-3P suppresses SOX2 expressions in GBM patients sensitizing tumor cells to temozolo-

mide (TMZ) treatment [20]. In NB, induced and upregulated expression of miR-340 inhibits

SOX2 expressions implicating its role in countering therapy resistance [21]. All these facts

indicate a critical role of SOX2 in initiation, progression, and sustenance of cancer, signifying

the importance of exosomal SOX2 DNA analysis.

Methods and materials

Cell culture

Human glioblastoma tumor masses were removed from a patient undergoing craniotomy for

primary resection of newly diagnosed tumor identified by magnetic resonance imaging. The

patient provided Institutional Review Board-approved informed consent for the study prior to

the surgery. The patient had undergone no prior cancer treatment for GBM. Primary GBM

cells were collected by dissociation of one human brain tumor patient specimen in accordance

with a human subject protection protocol approved by Florida Hospital Institutional Review

Board (Florida Hospital now renamed as “AdventHealth”). HIPPA regulations were strictly

followed. Following the manufacturer’s protocol, the CSCs (henceforth mentioned as CD133+

GBM) were separated from the GBM primary cells using CD133 antibody conjugated with

magnetic beads (Miltenyi Biotec, CD133 microbeads, human, Mat. No. 120-000-312). Human

neural stem cells (NSCs, Lonza, # PT2599), GBM and CD133+ GBM were grown in suspension

cultures for proliferation. The cells were cultured in NSC media containing Heparin (0.5 U/

mL), EGF 20 ng/mL, bFGF 20 ng /mL and 2% B27 in DMEM/F12. Non-adherent culture

flasks were used to culture the cells in suspension. To avoid nutrient and oxygen depletion to

the cells in the core of the neurospheres, the neurospheres of approximately 1 mm diameter

were mechanically chopped and transferred to a new flask with fresh culture media. The cul-

ture media was changed every 3–4 days and the spent media was collected for exosome precip-

itation. Human neuroblastoma cell line SH-SY5Y was procured from ATCC (#CRL-2266) and

the cells were cultured in tissue culture treated adherent flasks using NT2 (NTERA-2 human

embryonal carcinoma cell line) media containing DMEM-F12 supplemented with 10% exo-

some-depleted FBS.

Exosome isolation and purification

The spent media was centrifuged at 10,000xg for 30 minutes to remove cell debris. Exosomes

were isolated from conditioned culture media using a modified PEG-NaCl precipitation

method [22]. The culture media was centrifuged at 10,000x g for 30 minutes at 4˚C to remove

the cell debris. 10 mL of supernatant was used to precipitate exosomes through the addition of
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5 mL of 20% PEG and 200 μL of 7.5 M NaCl and subsequent overnight incubation at 4˚C. The

following day, the supernatant was centrifuged at 10,000x g for 60 minutes, and the exosome

pellet was re-suspended in PBS (pH 7.4). To confirm the identity of exosomes, we referred to

the available research-literature regarding their immuno-affinity capture using exosome-spe-

cific biomarkers. The endosome specific tetraspanin CD63 is significantly enriched in exo-

somes and used as an established, classical biomarker for their immuno-affinity capture.

Immuno-affinity capture is reported to yield high-quality exosomes [23, 24, 25]. Therefore,

exosomes were further purified following the manufacturer’s protocol using the CD63 anti-

body conjugated with magnetic beads (Invitrogen by Thermo Fisher Scientific Exosome-

Human CD63 Isolation/Detection, Invitrogen #- 10606D).

PCR and electrophoresis

The exosomes were directly used as a template without DNA extraction. Using High-Perfor-

mance GoTaq1 G2 DNA Polymerase (Promega), the PCR reactions were set up as follows:

Pre-denaturing at 94˚C for 5 minutes, 30 cycles of denaturation at 94˚C for 30 seconds,

annealing at 48˚C for 30 seconds, extension at 72˚C for 2 minutes, then post- extension at

72˚C for 10 minutes. The PCR products were run on 1.5% Agarose gel in Tris-acetate-EDTA

(TAE) buffer. Following the manufacturer’s protocol, each DNA band of PCR product was

eluted using QIAquick Gel Extraction Kit (Qiagen # 28704) and cloned into the pCR4TO-

PO-TA vector (TOPO™ TA Cloning™ Kit for Sequencing, Invitrogen # 450030). If the signal of

the PCR product was low, the eluted DNA fragment of the PCR product was re-amplified with

the same primer pair under the same PCR condition to have enough DNA for cloning. The

sequences of the SOX2 primers used for the PCR amplification are listed in Table 1. The typical

images of the gels are in supplementary material S1 and S2 Figs If the exosomal DNA did not

yield a PCR product, the primers were used on a cytoplasmic/genomic DNA to confirm their

functionality. To collect non-genomic/cytoplasmic DNA from the cells, the cells were collected

from suspension cultures, centrifuged at 5000 rpm for 5 minutes, and the cell pellet was

washed with PBS (pH 7.4. Cytoplasmic DNA was isolated according to the manufacture’s pro-

tocol sing Qiaprep Miniprep bacterial plasmid extraction kit (Qiagen # 27104). The manufac-

ture’s protocol was extended to the human NSC, GBM and CD133+ GBM cells. To collect

genomic DNA from the cells, the cells were collected from suspension cultures, centrifuged at

5000 rpm for 5 minutes, and the cell pellet was washed with 1XPBS (pH 7.4, without Calcium

and Magnesium). Genomic DNA was extracted from the cells using the QIAamp DNA mini

kit (Qiagen # 51304) according to the manufacture’s protocol.

Cloning and sequencing of the gel purified PCR products in pCR4TOPO-TA vector.

Following the manufacturer’s protocol, the PCR products were ligated into the vector

(pCR4TOPO-TA vector -TOPO™ TA Cloning™ Kit for Sequencing, Invitrogen # 450030),

transformed into lab-made chemically competent E. coli (Stbl3) cells that were obtained using

Calcium Chloride method, and incubated overnight on LB agar plate with ampicillin (100 μg/

mL) at 37˚ for colony selection. The colonies were picked and grown in LB with ampicillin

(100 μg/mL). The plasmid was extracted using QIAprep Spin Miniprep Kit 500 ng of DNA

samples were sent to GENEWIZ for SANGER sequencing. (115 Corporate Boulevard, South

Plainfield, NJ 07080.).

Making chemically competent E. Coli cells using Calcium Chloride method. On day 1,

under sterile conditions, E. coli strain Stbl3 was scrapped off from a frozen glycerol stock and

streaked on LB agar plate without antibiotics. The plate was incubated overnight at 37˚C. On

day 2, a single colony was inoculated in 10 mL LB without antibiotics to prepare the starter cul-

ture and grown overnight at 37˚C in a shaker with 180 rpm. On day 3, 1 L of LB media was

SNPs of exosomal SOX2 DNA in glioblastoma and neuroblastoma
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Table 1. Details of primer pairs. “As is” primer pairs (A to S) and “Mix and match” primer pairs (a to f) along with their location on the SOX2 gene as well as the result-

ing PCR product sizes. The reference numbers in the last column cite the peer-reviewed articles from which the primer-sequences were taken. The list of primer-pair refer-

ences is included in S1-Table. (SOX2 SRY-box 2 [Homo sapiens (human)] Gene ID: 6657, updated on 7-Jan-2018. NC_000003.12:181711924–181714436 Homo sapiens

chromosome 3, GRCh38.p7 Primary Assembly.).

Primer- F Forward Primer Sequence Primer- R Reverse Primer Sequence position PCR

product

size

Reference

number

A SOX2-F1 50-TTGCTGCCTCTTTAAGACTAGGA-30 SOX2-R1 50-CTGGGGCTCAAACTTCTCTC-30 86–160 /5’ UTR 74 nt 54

B SOX2-F2 5'-ACCATGTACAACATGATGGAG-3' SOX2-R2 5'-GAATTCCTCACATGTGTGAGA-3' 437–1393 /

complete exon

956 nt 55

C SOX2-F3 5'-AACAGCCCGGACCGCGTCAA-3' SOX2-R3 5'-TCGCAGCCGCTTAGCCTCGT-3' 543–731 /exon 188 nt 56

D SOX2-F4 5’ GCCGAGTGGAAACTTTTGTCG 3’ SOX2-R4 5’ GCAGCGTGTACTTATCCTTCTT 3’ 666–819 / exon 153 nt 57

E SOX2-F5 5’-TGCGAGCGCTGCACAT-3’ SOX2-R5 5’-TCATGAGCGTCTTGGTTTTCC-3’ 727–798 / exon 71 nt 58

F SOX2-F6 5’-CATGAAGGAGCACCCGGATT-3’ SOX2-R6 5’-TAACTGTCCATGCGCTGGTT-3’ 740–916 / exon 176 nt 59

G SOX2-F7 5’-ATGCACCGCTACGACGTGA 3’ SOX2-R7 5’-CTTTTGCACCCCTCCCATTT 3’ 1026–1462 /

exon

436 nt 60

H SOX2-F8 5’-CAGCATGTCCTACTCGCAGCAG 3’ SOX2-R8 5’-TGGAGTGGGAGGAAGAGGTAACC
3’

1106–1221 /

exon

115 nt 61

I SOX2-F9 5'-GGTTACCTCTTCCTCCCACTCCAG-
3'

SOX2-R9 5'-TCACATGTGCGACAGGGGCAG-3' 1199–1392 /

exon

193 nt 62

J SOX2-F10 5'-GAGGGCTGGACTGCGAACT-3’ SOX2-R10 5’-TTTGCACCCCTCCCAATTC 3’ 1389–1460

/exon-3’UTR

71 nt 63

K SOX2-F11 5’-
GGGAAATGGGAGGGGTGCAAAAGAGG

3’

SOX2-R11 5’-
TTGCGTGAGTGTGGATGGGATTGGTG

3’

1440–1590

/3’UTR

150 nt 64

L SOX2-F12 5'-TAGAGCTAGACTCCGGGCGATGA-
3'

SOX2-R12 5'-TTGCCTTAAACAAGACCACGAAA-
3'

1811–2108 /

3’UTR

297 nt 65

M SOX2-F13 5'-CGAGATAAACATGGCAATCAAAAT
3’

SOX2-R13 5'-AATTCAGCAAGAAGCCTCTCCTT
3’

1878–1963 /

3’UTR

85 nt 66

N SOX2-F14 5’-TGGCGAACCATCTCTGTGGT 3’ SOX2-R14 5’-GGAAAGTTGGGATCGAACAAAAGC
3’

2080–2226 /

3’UTR

146 nt 61

O SOX2-F15 5'-AAAAAAAAATGCCCATGCAG 3' SOX2-R15 5'-TACGGAAAATAAAAGGGGGG 3’ 1936–2345

/3’UTR

190 nt 67

P SOX2-F16 5’-GCTCATGAAGAAGGATAAGT 3’ SOX2-R16 5’-GCTGGTCATGGAGTTGTA 3’ 791-1073/ exon 282 nt 68

Q SOX2-F17 5’-CGCTGATTGGTCGCTAGAA 3’ SOX2-R17 5’-CTTCAGCTCCGTCTCCATCAT 3’ (-51)upstream of

5’UTR-467/exon

518 nt 68

R SOX2-F18 5’-AACATGGCAATCAAAATGTCC 3’ SOX2-R18 5’-ATTCTCGGCAGACTGATTCAA 3’ 1885-2398/

3’UTR

513 nt 68

S SOX2-F19 5’-CCCCCTTTATTTTCCGTAGTT 3' SOX2-R19 5’-ATCATCCAGCCGTTTCTTTTT 3' 2328-2686/

3’UTR

358 nt 68

a SOX2-F1 50-TTGCTGCCTCTTTAAGACTAGGA-30 SOX2-R3 5'-TCGCAGCCGCTTAGCCTCGT-3' 86–731 645 nt

b SOX2-F2 5'-ACCATGTACAACATGATGGAG-3' SOX2-R6 5’-TAACTGTCCATGCGCTGGTT-3’ 437–916 479 nt

c SOX2-F6 5’-CATGAAGGAGCACCCGGATT-3’ SOX2-R8 5’-TGGAGTGGGAGGAAGAGGTAACC-
3’

740–1221 481 nt

d SOX2-F9 5'-GGTTACCTCTTCCTCCCACTCCAG-
3'

SOX2-R11 5’-
TTGCGTGAGTGTGGATGGGATTGGTG-

3’

1199–1590 391 nt

e SOX2-F11 5'-
GGGAAATGGGAGGGGTGCAAAAGAGG-

3’

SOX2-R13 5'-AATTCAGCAAGAAGCCTCTCCTT-
3’

1440–1963 523 nt

f SOX2 F12 5'-TAGAGCTAGACTCCGGGCGATGA-
3'

SOX2-R15 5'-TACGGAAAATAAAAGGGGGG -3’ 1811–2345 534 nt

https://doi.org/10.1371/journal.pone.0229309.t001
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inoculated with a 10 mL starter culture and grown in 37˚C shaker keeping the rotation speed

at 180 rpm. OD600 was measured every hour and then every 20 minutes as it approached 0.2.

At OD600- 0.4, the bacterial culture was chilled on ice for 30 minutes with intermittent swirling

to ensure uniform cooling. The 50 mL capacity sterile conical tubes were chilled on ice as well.

The ice-cold cell culture was divided equally into the chilled tubes and cells were harvested by

centrifugation at 4000 rpm for 15 minutes at 4˚C. (Eppendorf centrifuge-5804). The cell pellet

in each tube was re-suspended in 100 mL of ice cold MgCl2 and the cell suspension from all

the tubes was combined. Cells were pelleted by centrifugation at 3000 rpm for 15 minutes at

4˚C. The cell pallet was re-suspended in 200 mL of ice-cold CaCl2 and chilled on ice for 20

minutes. In the third spin, the cells were harvested by centrifugation just as in the previous

step. The pellet was re-suspended in 50 mL of ice-cold 85 mM CaCl2 with 15% glycerol. After

the fourth spin under the same conditions, the bacterial cell pellet was re-suspended in 2 mL of

ice-cold 85 mM CaCl2, 15% glycerol. 50 uL of cell suspension was aliquoted in sterile 1.5 mL

microcentrifuge tubes that were previously chilled by storing in -80˚C freezer. The bacteria

were flash-frozen by dipping the microcentrifuge tubes in liquid nitrogen and stored in -80˚C

freezer.

Results

To detect SOX2 DNA, exosomes precipitated from the spent media of NSCs, GBM cancer

cells, CD133+ GBM and neuroblastoma cancer cells SH-SY5Y were used. We have reported

that GBM tissue contains GBM cancer cells (CD133-), GBM CSCs (CD133+), NSCs and nor-

mal neural cells. Embryonic stem cell genes such as Nanog, OCT4, and SOX2 distinguish

CSCs from normal NSCs, both of which are CD133+ [26]. Thus, we hypothesized that these

embryonic stem cell gene expressions made CSCs more resistant to conventional chemo and

radiation therapies. Recently, Wen-Shin Song et al confirmed that SOX2 expressions directly

correlate to the expression levels of CD133 in CSCs that are known to develop drug resistance

in GBM [17]. Additionally, NB CSCs overexpressing CD133 and SOX2 are reported to be ther-

apy resistant. A histone deacetylase drug Vorinostat achieves improvement in chemo-sensitiv-

ity of NB, inhibition of NB CSC’s tumor-formation ability and reduction in invasive capacity

[27]. Therefore, exosomal SOX2 sequences derived from SH-SY5Y and CD133+ GBM were

analyzed against NSC derived exosomal SOX2 sequences as control, using the Basic Local

Alignment Tool (BLAST). DiO staining of RFP packed exosomes (Confocal microscopy of

HEK 293 exosome clusters) has already established the presence of intact exosomes in the sam-

ple preparation in our previous study. We transfected HEK293 cells with SBI’s XPack MSCV-

XP-RFP-EF1α-Puro Expression Lentivector (catalog # XPAK731PA-1) that uses an optimized

XPack exosome targeting tag to package RFP into exosomes. The RFP containing exosoms

were stained with green fluorescent, lipophilic carbocyanine DiO dye and the stained exo-

somes were imaged using the Zeiss 710 with the Zeiss AxioObserver microscope [10].

The exosomes were further purified with magnetic beads conjugated with the antibody for

exosome cell surface marker CD63 and directly used as templates without further extraction of

DNA [28]. The standard PCR amplification of SOX2 was carried out with primer sets success-

fully used in previous publications. The nucleotide sequences of the primer sets, size of the

PCR products, and their references are listed in Table 1. The primer positions on the SOX2

gene and locations of the PCR products are described in Fig 1. It is known that the exosomal

DNA is present on the outer membrane of an exosome, as well as packed within [29, 30, 31].

However, since the association of SOX2 DNA to the exosomes is equally important irrespec-

tive of the location, we analyzed both locations of DNA. Some primer pairs yielded no PCR

product with repeated attempts in certain types of exosomes indicating the absence of that

SNPs of exosomal SOX2 DNA in glioblastoma and neuroblastoma
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particular segment of SOX2 within the exosomes fraction. In such cases, the cellular/cyto-

plasmic DNA and genomic DNA were used as templets to verify that the primer pairs amplify

the target sequences.

Upon BLAST analysis of the sequences of over 234 clones of PCR products from exosomal

DNA of NSCs, GBMs, CD133+ GBMs, and SH-SY5Y exosome associated SOX2 gene pieces

belonging to almost 75% of the gene were detected.

SOX2 5’UTR region and upstream (1–437): Primers at positions 86–160 yielded a PCR

product that showed SOX2 5’ UTR sequence 100% identical among NSC, GBM and CD133+

GBM derived exosome samples. The sequences of their PCR products matched with the

sequence of the SOX2 gene as well (Gene ID: 6657). The primer-pair (-51)-467, that amplifies

the entire 5’ UTR of SOX2, 51 bp upstream and 30 bp of the exon, did not give the expected

518 nucleotide PCR product. However, since the primer pair did not yield a PCR product with

cytoplasmic or genomic DNA template either, we do not have a confirmation that this part of

the SOX2 gene is missing in the exosomes.

Fig 1. Position of SOX2 primers on the gene (Gene ID: 6657). Upper case letters indicate the primer pairs selected from various publications and

each pair used as described or “as is”. The lower case letters denote the primer pairs that are “mixed and matched” to cover the entire gene, i.e. 5’

UTR, exon and the 3’ UTR. (SOX2 SRY-box 2 [Homo sapiens (human)] Gene ID: 6657, updated on 7-Jan-2018, NC_000003.12:181711924–

181714436 Homo sapiens chromosome 3, GRCh38.p7 Primary Assembly.).

https://doi.org/10.1371/journal.pone.0229309.g001
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SOX2 Exon (438–1398): SOX2 exon of all the three types of exosomes showed amplification

of the regions from nucleotide position 543 to 819 and 1025 to 1392. The in-between parts

could not be amplified with repeated attempts. With primer pair 740–916, cytoplasmic DNA

yielded a PCR product of expected size with 100% identity to the SOX2 gene (Gene ID: 6657).

SOX2 3’UTR and downstream region (1399–2686): With all the overlapping primer pairs

used in covering the entire 3’ UTR region, sequence BLAST analysis of the PCR product

shows that region from 1390 to 2686 of SOX 2 gene (Gene ID: 6657) is successfully amplified

for NSC, GBM as well as CD133+ GBM derived exosomes. These parts of the exosomal SOX2

are described in Fig 2.

Single Nucleotide Polymorphism (SNP) in exosomal SOX2: The PCR product sequences of

SH-SY5Y, GBM and CD133+ GBM derived exosomes when compared to that of NSC derived

exosomes or the NCBI reported SOX2 gene sequence did not reveal obvious differences such

as insertions/deletions of multiple nucleotide or DNA fragments as found in NANOG and

NANOGP8 [10]. However, SNP was observed in the exosomal PCR products, cancer as well as

control, in varying degrees. In some specific regions of 3’ UTR of the exosomal SOX2, the NSC

clones showed a 100% identity to the reported SOX2 gene (Gene ID: 6657), but SH-SY5Y,

GBM and CD133+ GBM derived exosomes displayed SNP and single nucleotide insertions. To

elaborate further, in the 3’ UTR region from 1885 to 2398, exosomal NSC PCR product had

100% identity to SOX2 (Gene ID: 6657), but SH-SY5Y, GBM and CD133+ GBM derived exo-

somal PCR products had 1, 1 and 4 SNPs respectively. Exosomal product from GBM had an

insertion of one nucleotide between 181713831 and 181713832 in addition to the SNP at

181713919: A > G. In CD133+ GBM derived exosomal PCR product, the SNP was seen at

181713870: A > G, 181713875: T > C, 181713985: A> G and 181714249: T > C. SNP at

chr3:181714249 (T>C) / rs1297749385 reported in the NCBI dsSNP database was found only

in the CD133+ GBM exosomes. SNP found at 181713970: A>G was unique to SH-SY5Y (Fig

3). Similarly, in NSC and SH-SY5Y derived exosomal PCR product, 3’ UTR region from 2328

to 2686 showed 100% identity with the SOX2 gene (ID: 6657), whereas GBM and CD133+

GBM PCR products showed 1 (181714405: T > C) and 2 (181714583: T > C, 181714564:

A> GSNPs) respectively. (Fig 4). On the other hand, BLAST analysis of SOX2 exon region

from 543 to 731 for exosomal PCR products revealed that NSC derived exosomes had 3 single

nucleotide insertions at 181712483, 181712512 and 181712573 each; GBM derived PCR prod-

uct had a deletion at 181712512: (C > -), and CD133+ GBM derived exosomal product had

Fig 2. Parts of SOX2 gene found associated with exosomes originated from stem cells NSCs, cancer cells GBMs, cancer stem cells CD133+ GBMs and

SH-SY5Y. The parts of exosomal SOX2 confirmed with BLAST analysis are highlighted in gray. Binding sites for some of the miRNAs are shown in red and green

triangles in 3’UTR. (Details of the clones in supplementary material: S3 Fig).

https://doi.org/10.1371/journal.pone.0229309.g002

SNPs of exosomal SOX2 DNA in glioblastoma and neuroblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0229309 February 24, 2020 8 / 19

https://doi.org/10.1371/journal.pone.0229309.g002
https://doi.org/10.1371/journal.pone.0229309


100% identity to SOX2 (supplementary material S4 Fig). A SOX2 SNP, rs11915160, at

chr3:181713783 (A>C), has been evaluated for susceptibility to breast cancer by Tulsyan

et al. In their studies, the rs11915160 polymorphism was found to be associated with a risk of

breast cancer in premenopausal women. According to the bioinformatics analysis, this

Fig 3. Comparison of SNP in NSC, GBM and SH-SY5Y PCR products. The original nucleotide FASTA sequences of

the clones obtained from exosomal DNA amplified with hSOX2- F-18/R-18 (1885–2398). PCR product cloned into the

pCR4-TOPO-TA vector. In the BLAST analysis, NSC clone shows a 100% identity to the SOX2 gene. Clones from

GBM exosomal DNA, CD133+ GBM’s exosomal DNA (denoted in the figure as “GBMCS” for GBM cancer stem cells)

and SH-SY5Y exosomal DNA show multiple SNPs. The SNPs are presented in bold letters. An NCBI reported SNP

present in exosomal clones is underlined. The SNP rs1297749385 (3:181714249 T>C) reported in the NCBI database is

found only in the exosomal DNA of CD133+ GBM clones. Some of the SNPs identified are reported in the NCBI

database. (A detailed version of this figure is provided in supplementary figure: S5 Fig).

https://doi.org/10.1371/journal.pone.0229309.g003

SNPs of exosomal SOX2 DNA in glioblastoma and neuroblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0229309 February 24, 2020 9 / 19

https://doi.org/10.1371/journal.pone.0229309.g003
https://doi.org/10.1371/journal.pone.0229309


polymorphism affects transcriptional regulation [32]. Yadav et al have also studied this SNP in

connection with the gallbladder cancer susceptibility and prognosis in the evaluation of gene-

to-gene interaction model of cancer stem cell molecular markers to predict response to neoad-

juvant chemotherapy [33]. In our analysis, we have found this SNP in PCR product of region

1440–1963 in GBM, CD133+ GBM, SH-SY5Y as well as NSC exosomal DNA. The BLAST

analysis of their corresponding cellular and genomic PCR products revealed the presence of

the same SNP (Fig 5). Finding this SNP in PCR products of control cell line, i.e. fetus-derived

NSC suggests that the fetus could have been susceptible to cancers.

Fig 4. Comparison of SNP in nucleotide sequences of NSC, GBM and SH-SY5Y PCR products. The original nucleotide FASTA sequences of

the clones obtained from exosomal DNA amplified with hSOX2- F-19/R-19 (2328–2686). PCR product cloned into the pCR4-TOPO-TA vector.

In the BLAST analysis, NSC and SH-SY5Y clones showed no SNP, whereas clone from GBM exosomal DNA and CD133+ GBM exosomal DNA

(denoted in the figure as “GBMCS” for GBM cancer stem cells) show 1 and 2 SNP respectively. The SNPs are presented in bold letters. (A

detailed version of this figure is provided in the supplementary figure: S6 Fig).

https://doi.org/10.1371/journal.pone.0229309.g004
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Discussion

Our current study shows that SOX2 DNA pieces are associated with exosomes derived from

normal NSCs, SH-SY5Y as well as GBM and GBM CSCs with minor sequence variations in

Fig 5. A SOX2 SNP, rs11915160, at chr3:181713783 (A>C) evaluated for susceptibility to breast cancer. The

comparison of original nucleotide FASTA sequences of the clones obtained from exosomal DNA amplified with

hSOX2- F-11/R-13 (1440–1963). PCR product cloned into the pCR4-TOPO-TA vector. In the BLAST analysis, NSC,

GBM, CD133+GBM and SH-SY5Y exosomal DNA clones (denoted in the figure as “GBMCS” for GBM cancer stem

cells) show this particular SNP. The SNP is presented in bold letters. Information about the SNP is available in the

NCBI database. (A detailed version of this figure is provided in the supplementary figure: S7 Fig).

https://doi.org/10.1371/journal.pone.0229309.g005
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the form of SNPs. It is noteworthy that the cells within surgically removed GBM tissue consist

of normal NSC, neoplastic differentiated cells, and CD133+ CSCs. Since the stem cell marker

CD133 does not distinguish between cancer and normal stem cells, the exosomal population

considered as CD133+ GBM-originated is possibly a mix of non-cancer and cancer NSC. We

have found the entire 3’ UTR, partial 5’ UTR and partial exon of SOX2 DNA in all the four cell

types tested.

The parts of SOX2 DNA that we did not find associated with exosomes might be an actual-

ity that not entire cytoplasmic DNA gene-fragment pool was transported to exosomes. How-

ever, there is also a possibility that parts of exosomal SOX2 that could not be amplified with

the primers we have used may still exist in association with the exosomes. For example, an

absence of PCR product from exosomal SOX2 DNA could probably be due to the deletion of a

particular region or possible mutations or polymorphisms in the primer binding sites. The

exosomal PCR products of the SOX2 gene that we have analyzed represent the N-terminal

domain, DNA binding High Mobility Group (HMG) domain and C-terminal domain of

SOX2. The HMG domain as well as the Serine-rich transactivation domain found associated

with all the three types of exosomes have SNP variations in the sequences [34, 35, 36]. Even

though the role of these domains is well established in the transcription and translation of

SOX2, the functionality of this particular exosomal cargo remains to be explored. It is note-

worthy that CD133+ GBM’s exosomal SOX2 PCR product had additional SNPs besides the

ones reported in connection to cancers mentioned in the result section. We do not know the

significance of these findings, but the occurrence of a cancer susceptibility related SOX2-SNP

in genomic, cytoplasmic as well as exosomal DNA of SH-SY5Y, GBM, CD133+ GBM and NSC

might be valuable as a general cancer susceptibility marker that is not specifically limited to

cancers of breast or gallbladder. The fact that the exosomal DNA reflected the genomic SNP is

significant. In such cases, the exosomal DNA analysis can be immensely useful and lucrative

due to the ease of access to exosomes from various body fluids. To establish a trend and attri-

bute the exosomal SOX2 SNPs to cancer biomarkers, detailed analysis, and significant sample

size are needed. The additional SNPs found with varying degrees in the sequences representing

the rest of the SOX2 gene, in control as well as cancer exosomes, warrant a detailed analysis

that can predict the effects of amino acid substitutions on translation and the protein func-

tions. Their differences can potentially play a significant role as diagnostic biomarkers for diffi-

cult to access brain tumors such as GBM [37, 38] and NB.

SNPs found in 3’ UTR of exosomal SOX2 have additional significance due to their role in

post transcription regulation via microRNA binding. 20–24 nucleotide-long, non-coding

RNAs, known as microRNAs, affect the translation of mRNAs by annealing to the 3’UTR

regions and disrupting their stability, thus playing a significant role in post-transcriptional reg-

ulation of gene expression. The miRNA mediated silencing of SOX2 in GBM and NB tumor-

initiating cells has been shown to stop their proliferation, leading to loss of tumorigenicity.

The presence of SNP within 3’ UTR is impactful, especially in cancer susceptibility genes, due

to their interference with the subsequent mRNA stability and translation. In particular, the

SNP in miRNA sites may affect mRNA-miRNA interactions along with other functions such

as polyadenylation, DNA-pre mRNA conformation, and regulatory protein-mRNA interac-

tion [39, 40, 41]. Fang et al have found that SOX2 regulates the expression of 105 precursor

miRNAs corresponding to 95 mature miRNAs, whose expression changes with a SOX2 knock-

down in GBM. This is a clear example of an expression control loop between the SOX2 and

miRNAs [42]. The SNPs in exosomal SOX2 DNA need to be evaluated in this light.

miR-126 and miR-522: According to Luo et al, miR 126-3p sensitizes glioblastoma cells to

TMZ via targeting SOX2 [20]. Studying one such mRNA-miRNA interaction, Otsubo et al

have evaluated the role of microRNA 126 (miR-126) along with miR-522 in gastric
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carcinogenesis where miR-126 targeting SOX2 mRNA downregulated SOX2 expressions.

High expression of miR-126 was found inversely correlated to SOX2 expressions (Fig 2) [43].

However, in Glioblastoma, miR-126 is downregulated and has a prognostic value. Severely

reduced expressions of miR-126 in primary Glioblastoma is attributed to poorer postsurgical

survival in comparison with the patients exhibiting less reduction in miR-126 expression [44].

These findings are significant since in our exosomal DNA analysis, we have found that NSC,

SH-SY5y, GBM, and CD133+ GBM cell-derived exosomal SOX2 has miR-126 binding sites,

both, site-A (1479–1500) and site-B (1744–1764) along with miR-522 binding site (1635–

1657) as reported by Otsubo et al. The cellular SOX2 DNA for GBM and CD133+ GBM have

all the 3 miRNA binding sites, but CD133+ GBM has an SNP in binding site-A (G > A) at

position 1495 (Chromosomal position 181713418). This SNP in miRNA binding site could

have a significant impact on mechanism related to GBM susceptibility the way micro RNA

binding site modification via SNP is associated with polygenetic disorder such as breast cancer

[41]. (Fig 2 and Supplementary material- S3 Fig). Though this particular SNP was not found in

exosomal clones that we analyzed, analysis of a statistically significant number of exosomal

clones may reveal substantial clones positive for the SNP, potentially making it a noteworthy

biomarker.

Binding site for miR-145: SOX2 and miR-145 are reported to form a double negative feed-

back loop in GBM cells. MiR-145 is upregulated because of SOX2 knockdown, whereas miR-

145 targets SOX2 in GBM decreasing its expression [39]. In our exosome derived SOX2 clones

obtained with primer pair F-10/R-10 (PCR product 71 nucleotides), BLAST analysis reveals 2

SNPs in the binding site (1393–1412) in all types of exosomes, at 1396 (C>T) and 1401

(A>T). The part of SOX2 containing miR-145 annealing sequence is also obtained with

primer pair F-7/R-7, but amplifies a larger fragment (436 nucleotides). Interestingly, the same

SNPs were absent in this PCR product. It is possible that the primer pair F-10/R-10, whose

PCR product has identity with Fer-1 like protein, may have amplified its exosomal DNA

instead of SOX2. The SNPs found in the 71 nucleotides long PCR product may have been the

due to the fact that it is the normal DNA sequence of Fer-1 like protein gene.

Binding sites for miR-140 miR-9 and miR-132: By targeting the 3’ UTR of mRNA and

annealing at nucleotide position 2078–2100, miR-140 is implicated in downregulating SOX2

expressions in breast cancer [45]. The annealing site for miR-140 matched 100% to the original

and showed no SNPs. Just like miR-140, miR-9 is reported to bind to the 3’UTR of SOX2 at

2201–2208. No SNPs could be seen in the binding site of miR-9 in the exosomal SOX2 DNA

sequence. After analyzing the PCR product sequences of primer pair F-18/R-18 (1885–2398),

exosome derived PCR-product clones showed no SNP in the binding regions of either

miRNA. However, the cellular clone of GBM had an SNP at position 2153 (T>G) within the

annealing site of miR-132 (2149–2154).

Along with SNPs, another factor known as DNA copy number variations (CNV) affects a

significant fraction of the genome with a greater impact. Among CNV, gene amplification is a

known oncogene activation mechanism. SOX2 is shown to be an amplified lineage survival

oncogene in lung and esophageal squamous cell carcinomas [46]. In aggressive human lung

squamous cell carcinomas, Hussenet et. al. report SOX2 as an oncogene that is activated by

repetitive amplification of the region 3q26.3 within which the gene itself resides [47]. Toschi

et al have investigated an increased SOX2 gene copy number in non-small cell lung cancer

with a prognostic value. The SOX2 gene gain, along with some other genes, has implications

that can be significant for developing therapeutic strategies [48]. Fisher et al have proved that

DNA of a gene, upon its extracellular vesicle-mediated transfer to a cell, can stably integrate

into the genome of the recipient and pass onto the daughter cells [29, 36, 49]. Considering

these underlining research inferences, there is a high probability that SOX2 DNA delivered via

SNPs of exosomal SOX2 DNA in glioblastoma and neuroblastoma
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exosomes stably integrates into the genome of a recipient cell adding to its genomic copy num-

ber. The integration phenomenon and its subsequent effects on the cell fate are worth the

investigation since some studies have proved that in GBM, SOX2 gene amplification contrib-

utes toward upregulation of promotor hypo-methylation, invasive migration of glioma and

self-regulation of cancer stem cells [50]. In light of these findings, the research into the exo-

some-mediated delivery of SOX2 gene becomes highly significant. Since copy-number-varia-

tion is known to change the gene expression in humans, under normal circumstances,

undesirable SOX2 gene gain resulting in an elevated copy number may become reduced by

transportation to the cytoplasm to be eventually removed via exosomes to maintain cellular

homeostasis [2]. Additionally, Cheng et al have reported a transcription of cytoplasmic DNA

via plasma membrane-associated transcription system [51]. With this knowledge, the exo-

some-mediated delivery of SOX2 DNA, its subsequent internalization, and processing by the

recipient cell need to be investigated, especially for the normal cells receiving cancer-derived

exosomes.

Conclusion and future perspectives

The ability of SOX2 to act as an indispensable player in cancer progression and malignancy

grade determination elevates its prognostic and therapeutic value in patient survival. Its role as

a biomarker, prognostic marker, metastasis indicator and a potential therapeutic target in vari-

ous cancers, including GBM and NB, is well researched [36, 52]. Micro RNA induced modula-

tions of SOX2 expression levels have a critical correlation to various types of cancers. A single

SNP in the micro RNA binding site of a gene can create, destroy or modify the site leading to

cancer susceptibility. Therefore, the analysis of exosomal SOX2 DNA sequences reflecting

aberrant modification of DNA sequence associated with cancer is of significant value [41].

Another aspect of SNP in a gene is its direct effect on the protein function. The SNPs found in

SOX2 sequences of NSC GBM, and SH-SY5Y-derived exosomes warrant further analysis that

can predict their effects on amino acid substitutions, subsequent protein structure, and func-

tion in cancer cells. Although we did not detect obvious SOX2 differential sequences of exoso-

mal DNA, finding cancer biomarkers in exosomes may potentially play a significant role in

diagnosis and prognosis of GBM as a powerful cancer biomarker due to the ability of exosomes

to cross a blood-brain barrier. They can be accessed through blood plasma with minimally

invasive procedures [37, 38, 53]. In conclusion, the finding of SOX2 DNA in exosomes in the

current study may have immense value in clinical research. Further systematic investigation of

the exosomal DNA from GBM patient’s blood with an adequate sample size that will give

enough statistical power is warranted.

Supporting information

S1 Fig. Typical gel images of cellular DNA fragments amplified with SOX2 primers. SOX2

PCR products of cellular DNA of NSC, GBM and CD133+ GBM with (A) “mix and match”

primer sets described in Table 1 under ‘a’ to ‘h’ (B) “as is” primer pair described in Table 1

under ‘A’ to ‘Q’. Details of primers and PCR product sizes in primer pair Table 1. The red

square indicates the absence of a PCR product with primer pair F-6/R-6 only in NSC cellular

DNA. Instead, it showed a PCR product of ~ 1600 nucleotides, denoted by the red arrow.

(DOCX)

S2 Fig. Typical gel images of exosomal DNA fragments amplified with SOX2 primers.

SOX2 PCR products of exosomal DNA of NSC, GBM, CD133+ GBM and SH-SY5Y. (A, B)

NSC and GBM PCR products amplified with “mix and match” primer sets described in
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Table 1 under ‘a’ to ‘f’. (C) Re-amplification of the PCR products of NSC that have a very weak

signal and not enough DNA to clone in the sequencing vector. Letters U and L in red denote

the upper and lower band respectively. SOX2 PCR products of exosomal DNA of CD133+

GBM (D, E, F) and SH-SY5Y (G, H, I) amplified with “as is” primer pairs described in Table 1

under ‘A’ to ‘S’. Reference for primers and PCR product sizes are also included in primer pair

Table 1. Red arrow in I denotes PCR product obtained with primer pair SOX2 F-15/R-15

(1936–2345) found only in SY5Y. (J) Human BLAST analysis of the SY5Y exosomal SOX2

clone containing the PCR product denoted by the red arrow in panel-I reveals 97% identity to

the nucleotide sequence of F-box-like/WD repeat-containing protein TBL1XR1 isoform 1 and

not SOX2. BLAST analysis is followed by the original sequence of the clone sent by Genewiz

sequencing services. The yellow highlight denote the primer sequences.

(DOCX)

S3 Fig. NSC, GBM, CD133+ GBM and SH-SY5Y exosomal SOX2 clones affirming the pres-

ence of miR binding sites. In the exosomal DNA amplified with hSOX2- F-11/R-13 (1440–

1963), PCR product cloned into pCR4-TOPO-TA vector shows miR-126 binding sites, both

site A (1479–1500) and site B (1744–1764)—highlighted in green; along with miR-522 binding

site (1635–1657), highlighted in purple. NCBI BLAST analysis of (A) NSC, (B) GBM, (C)

CD133+GBM, and (D) SH-SY5Y exosomal SOX2 DNA clones. Under each BLAST analysis

window, the original FASTA sequence of the clone obtained from the Genewiz sequencing ser-

vices is given. The Yellow highlights represent the primer sequences.

(DOCX)

S4 Fig. Comparison of SNP in nucleotide sequences of NSC, GBM and CD133+ GBM PCR

products. Clone from exosomal DNA amplified with hSOX2- F-3/R-3 (543–731). For A and

C, the PCR product cloned into pCR4-TOPO-TA vector. In the human BLAST analysis,

(A) NSC clone shows insertion of 3 nucleotides. (B) GBM exosomal DNA shows 1 SNP (dele-

tion of nucleotide “C”. The flanking nucleotides of the deleted “C” are highlighted in blue),

and (C) Clone from CD133+ GBM exosomal DNA shows 100% identity to the reported SOX2

sequence. Under each BLAST analysis window, the original FASTA sequence of the clone

obtained from the Genewiz sequencing services is given. The Yellow highlights represent the

primer sequences and the red letters SNPs.

(DOCX)

S5 Fig. Comparison of SNP in NSC, GBM, CD133+ GBM and SH-SY5Y PCR products.

Clone from exosomal DNA amplified with hSOX2- F-18/R-18 (1885–2398). PCR product

cloned into pCR4-TOPO-TA vector. In the BLAST analysis, (A) NSC clone shows 100% iden-

tity to the SOX2 gene. (B) Clone from GBM exosomal DNA and (C) Clone from CD133+

GBM exosomal DNA show multiple SNPs. (D) Clone from SH-SY5Y exosomal DNA shows

one SNP. (E) An example of a NCBI reported SNP present in exosomal clones. The SNP

rs1297749385 (3:181714249 T>C) reported in NCBI database is found only in exosomal DNA

clones of CD133+ GBM exosomes. (Some of the SNPs identified are in the NCBI database.

Each BLAST analysis in the figure is followed by the original sequence of the clone sent by

Genewiz sequencing services. The yellow highlights denote the primer sequences whereas the

red highlights SNP.

(DOCX)

S6 Fig. A comparison of SNP in nucleotide sequences in NSC, GBM and SH-SY5Y exoso-

mal SOX2 PCR products. Clone from exosomal DNA amplified with hSOX2- F-19/R-19

(2328–2686). PCR product cloned into pCR4-TOPO-TA vector. In the BLAST analysis,

(A) NSC clone showed no SNP, (B) Clone from GBM exosomal DNA and (C) Clone from
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CD133+ GBM exosomal DNA show 1 and 2 SNPs respectively. (D) SH-SY5Y clone showed no

SNP. In the figure, each BLAST analysis is followed by the original sequence of the clone sent

by Genewiz sequencing services. The yellow highlight denote the primer sequences whereas

the red highlights show SNP.

(DOCX)

S7 Fig. A SOX2 SNP, rs11915160, at chr3:181713783 (A>C) evaluated for susceptibility to

breast cancer. Clones from exosomal DNA amplified with hSOX2- F-11/R-13 (1440–1963).

PCR product cloned into pCR4-TOPO-TA vector. In the BLAST analysis, (A) NSC (B) GBM

(C) CD133+GBM (D) SH-SY5Y exosomal DNA clones show this SNP. (E) Information about

the SNP from NCBI database. Each BLAST analysis is followed by the original sequence of the

clone sent by Genewiz sequencing services. The yellow highlights denote the primer sequences

whereas the red highlights show SNP.

(DOCX)

S1 Table. The list of SOX2 primers used in the standard PCR amplification of exosomal

SOX2 DNA. The reference list below the table corresponds to the reference numbers for the

primer pairs given in the last column of the table (54–68).

(DOCX)
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31. Buzás EI, Tóth EÁ, Sódar BW, Szabó-Taylor KÉ. Molecular interactions at the surface of extracellular

vesicles. In Seminars in immunopathology 2018 Sep 1 ( Vol. 40, No. 5, pp. 453–464). Springer Berlin

Heidelberg.

32. Tulsyan S, Agarwal G, Lal P, Mittal B. Significant association of combination of OCT4, NANOG, and

SOX2 gene polymorphisms in susceptibility and response to treatment in North Indian breast cancer

patients. Cancer chemotherapy and pharmacology. 2014 Nov 1; 74(5):1065–78. https://doi.org/10.

1007/s00280-014-2588-4 PMID: 25223935

33. Yadav A, Gupta A, Rastogi N, Agrawal S, Kumar A, Kumar V, et al. Association of cancer stem cell

markers genetic variants with gallbladder cancer susceptibility, prognosis, and survival. Tumor Biology.

2016 Feb 1; 37(2):1835–44. https://doi.org/10.1007/s13277-015-3929-6 PMID: 26318430

34. Nowling TK, Johnson LR, Wiebe MS, Rizzino A. Identification of the transactivation domain of the tran-

scription factor Sox-2 and an associated co-activator. Journal of Biological Chemistry. 2000 Feb 11;

275(6):3810–8. https://doi.org/10.1074/jbc.275.6.3810 PMID: 10660531

35. Cox JL, Mallanna SK, Luo X, Rizzino A. Sox2 uses multiple domains to associate with proteins present

in Sox2-protein complexes. PloS one. 2010; 5(11).

36. Weina K, Utikal J. SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med.

2014 Jul 4; 3:19. https://doi.org/10.1186/2001-1326-3-19 PMID: 25114775

37. Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu. Rev.

Genomics Hum. Genet.. 2006 Sep 22; 7:61–80. https://doi.org/10.1146/annurev.genom.7.080505.

115630 PMID: 16824020

38. Chyr J, Guo D, Zhou X. LSCC SNP variant regulates SOX2 modulation of VDAC3. Oncotarget. 2018

Apr 27; 9(32):22340. https://doi.org/10.18632/oncotarget.24918 PMID: 29854282

39. Skeeles LE, Fleming JL, Mahler KL, Toland AE. The impact of 30 UTR variants on differential expression

of candidate cancer susceptibility genes. PLoS One. 2013; 8(3).

40. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, et al. SOX2 silencing in glio-

blastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem cells. 2009

Jan; 27(1):40–8. https://doi.org/10.1634/stemcells.2008-0493 PMID: 18948646

41. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. Single-nucleotide polymor-

phisms inside microRNA target sites influence tumor susceptibility. Cancer research. 2010 Apr 1; 70

(7):2789–98. https://doi.org/10.1158/0008-5472.CAN-09-3541 PMID: 20332227

42. Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D et al. The SOX2 response program in glioblastoma multi-

forme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC genomics. 2011

Dec; 12(1):11.

43. Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y. MicroRNA-126 inhibits SOX2

expression and contributes to gastric carcinogenesis. PloS one. 2011; 6(1).

44. Han IB, Kim M, Lee SH, Kim JK, Kim SH, Chang JH, et al. Down-regulation of microRNA-126 in glio-

blastoma and its correlation with patient prognosis: a pilot study. Anticancer research. 2016 Dec 1; 36

(12):6691–7. https://doi.org/10.21873/anticanres.11280 PMID: 27920004

45. Zhang Y, Eades G, Yao Y, Li Q, Zhou Q. Estrogen receptor α signaling regulates breast tumor-initiating

cells by down-regulating miR-140 which targets the transcription factor SOX2. Journal of Biological

Chemistry. 2012 Nov 30; 287(49):41514–22. https://doi.org/10.1074/jbc.M112.404871 PMID:

23060440

SNPs of exosomal SOX2 DNA in glioblastoma and neuroblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0229309 February 24, 2020 18 / 19

https://doi.org/10.1097/MPA.0000000000000847
https://doi.org/10.1097/MPA.0000000000000847
http://www.ncbi.nlm.nih.gov/pubmed/28609367
http://www.ncbi.nlm.nih.gov/pubmed/21280509
https://doi.org/10.1111/cas.13222
https://doi.org/10.1111/cas.13222
http://www.ncbi.nlm.nih.gov/pubmed/28256033
https://doi.org/10.1007/s00280-014-2588-4
https://doi.org/10.1007/s00280-014-2588-4
http://www.ncbi.nlm.nih.gov/pubmed/25223935
https://doi.org/10.1007/s13277-015-3929-6
http://www.ncbi.nlm.nih.gov/pubmed/26318430
https://doi.org/10.1074/jbc.275.6.3810
http://www.ncbi.nlm.nih.gov/pubmed/10660531
https://doi.org/10.1186/2001-1326-3-19
http://www.ncbi.nlm.nih.gov/pubmed/25114775
https://doi.org/10.1146/annurev.genom.7.080505.115630
https://doi.org/10.1146/annurev.genom.7.080505.115630
http://www.ncbi.nlm.nih.gov/pubmed/16824020
https://doi.org/10.18632/oncotarget.24918
http://www.ncbi.nlm.nih.gov/pubmed/29854282
https://doi.org/10.1634/stemcells.2008-0493
http://www.ncbi.nlm.nih.gov/pubmed/18948646
https://doi.org/10.1158/0008-5472.CAN-09-3541
http://www.ncbi.nlm.nih.gov/pubmed/20332227
https://doi.org/10.21873/anticanres.11280
http://www.ncbi.nlm.nih.gov/pubmed/27920004
https://doi.org/10.1074/jbc.M112.404871
http://www.ncbi.nlm.nih.gov/pubmed/23060440
https://doi.org/10.1371/journal.pone.0229309


46. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-

survival oncogene in lung and esophageal squamous cell carcinomas. Nature genetics. 2009 Nov;

41(11):1238–42. https://doi.org/10.1038/ng.465 PMID: 19801978

47. Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembelé D, et al. SOX2 is an oncogene activated by
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