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Enzalutamide, a second-generation antiandrogen, is
commonly prescribed for the therapy of advanced prostate
cancer, but enzalutamide-resistant, lethal, or incurable disease
invariably develops. To understand the molecular mecha-
nism(s) behind enzalutamide resistance, here, we comprehen-
sively analyzed a range of prostate tumors and clinically
relevant models by gene expression array, immunohistochem-
istry, and Western blot, which revealed that enzalutamide-
resistant prostate cancer cells and tumors overexpress the
pseudokinase, Tribbles 2 (TRIB2). Inhibition of TRIB2 de-
creases the viability of enzalutamide-resistant prostate cancer
cells, suggesting a critical role of TRIB2 in these cells. More-
over, the overexpression of TRIB2 confers resistance in pros-
tate cancer cells to clinically relevant doses of enzalutamide,
and this resistance is lost upon inhibition of TRIB2. Interest-
ingly, we found that TRIB2 downregulates the luminal markers
androgen receptor and cytokeratin 8 in prostate cancer cells
but upregulates the neuronal transcription factor BRN2 (Brain-
2) and the stemness factor SOX2 (SRY-box 2) to induce
neuroendocrine characteristics. Finally, we show that inhibi-
tion of either TRIB2 or its downstream targets, BRN2 or SOX2,
resensitizes resistant prostate cancer cells to enzalutamide.
Thus, TRIB2 emerges as a potential new regulator of trans-
differentiation that confers enzalutamide resistance in prostate
cancer cells via a mechanism involving increased cellular
plasticity and lineage switching.

Enzalutamide, an inhibitor of androgen receptor (AR)
function, is a popular drug commonly prescribed to treat
advanced prostate cancer, but resistant prostate cancer even-
tually develops which grow aggressively, leading to widespread
metastatic disease and ends up with a lethal outcome (1–3).
Based on present assessment, the enzalutamide resistant type
of aggressive prostate cancer is responsible for most of the
morbidity and mortality associated with prostate cancer and
�30,000 lives of American men are lost every year (4).
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Nevertheless, the lack of proper understanding about critical
molecular targets in hormone refractory, enzalutamide-
resistant prostate cancer cells, largely contributes to majority
of the prostate cancer fatalities. Clinical manifestation of drug
resistance is the result of selective growth of cell clones that
are either intrinsically capable of or have acquired the power to
resist drug’s effects on critical survival mechanisms. However,
knowledge about signaling mechanisms that play active roles
in the progression phase of prostate cancer to enzalutamide
resistance is still limited, which is a delaying progress toward
the development of a long-term, effective therapeutic strategy.

Common forms of prostate cancer cells bear luminal charac-
teristics and depend on androgenic signaling for survival and
growth, which is the basis for antiandrogenic therapy.However, it
has been realized thatmenwith prostate cancerwhowere treated
with antiandrogenic therapies frequently develop aggressive and
deadly forms of prostate cancers, which are no longer responsive
to androgen-blockade therapies. Several reports encompassing
the involvement of both AR reactivation or bypass, as well as
androgen-independent signaling, have been forwarded to explain
the mechanism of enzalutamide resistance. However, analysis of
multiple cell lines and in vivomodels, whichwere used to explore
the molecular basis, have ended up with identification of cancer
cell subtypes (5, 6). Current molecular understanding suggests
that in addition to AR reactivation bymutation or splice variants,
manifestation of enzalutamide resistance can be the result of
overgrowth of cells that are developed in the tumor by lineage
switching which may be triggered by drug-induced repression or
loss of the AR-signaling (7–9). About 10 to 20% of enzalutamide-
resistant prostate cancers show neuroendocrine (NE) features
and no effective treatments are currently available for this type of
aggressive and highly invasive prostate cancer (10–12). Though
the continued growthandmetastasis of theheavily enzalutamide-
treated prostate tumors can be driven by nonandrogenic
signaling, molecular underpinnings of critical targetable mecha-
nisms in treatment-emergentNEtypeprostate cancer cells are yet
to be fully characterized.

When prostate cancer cells become resistant to strong
androgen-receptor blockers, such as enzalutamide, their
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ACCELERATED COMMUNICATION: TRIB2 confers enzalutamide resistance in prostate cancer
common characteristics change from slow-growing and
noninvasive to fast-growing, highly invasive type, but the
knowledge about critical signaling mechanisms driving rapid
growth and resistance to enzalutamide is still limited. To
better understand the mechanistic basis behind enzalutamide
resistance, we developed an in vitro model by chronically
treating human LNCaP, MDA-PCa-2B, and LAPC4 prostate
cancer cells (AR-signaling intact) with gradually increasing
doses of enzalutamide (up to 30 μM) for >12 weeks to mimic
the clinical conditions in standard long-term enzalutamide
therapy (13). The resultant cells (LNCaP-ENR, PCa-2B-ENR,
and LAPC4-ENR) are completely resistant to clinically rele-
vant doses of enzalutamide, the blood level of which goes up to
�34 μM in average (14, 15). By gene expression array,
RT-PCR, and Western blot, we found that enzalutamide-
resistant prostate cancer cells overexpress Tribbles 2
(TRIB2), a member of the Tribbles pseudokinase family
(TRIB1-3). We also found that overexpression of TRIB2 alone,
by gene transfection, can confer resistance to physiological
doses of enzalutamide. Interestingly, molecular characteriza-
tion revealed that the overexpression of TRIB2 suppresses
luminal characteristics and induces NE features involving the
master neuronal transcription factor, BRN2 (Brain-2), and the
stemness regulator, SOX2 (SRY-box 2). Moreover, inhibition
of either TRIB2 or its targets (BRN2 or SOX2) resensitizes
resistant cells to enzalutamide. These findings indicate that
TRIB2 is a new biomarker for NE-type prostate cancer and
suggest that TRIB2 may contribute to enzalutamide resistance
in prostate cancer cells, at least in part, by promoting lineage
plasticity and phenotype switching.
Results

Enzalutamide-resistant prostate cancer cells and tumors
overexpress TRIB2

A comprehensive gene expression array analysis revealed that
the TRIB2 pseudokinase is grossly overexpressed in
enzalutamide-resistant (EN1 and EN2) prostate cancer cells,
compared to parental enzalutamide sensitive (LN1 and LN2)
cells (Fig. 1,A–D). To confirm the array data, we detected TRIB2
mRNAexpression by RT-PCR, andWestern blot showed strong
upregulation of TRIB2 protein levels in enzalutamide-resistant
(LNCaP-ENR, PCa-2B-ENR, and LAPC4-ENR) prostate can-
cer cells (Fig. 1, E and F). Overexpression of TRIB2 is correlated
with activation of the canonical Akt-signaling module showing
increased phosphorylation of Akt (pSer-473) and increased
protein level of Bcl-xL, which are standard markers that pro-
mote cell survival and decrease apoptosis in a variety of cells.
Consistent with our results, we also found elevatedmRNA levels
of TRIB2 in gene expression datasets in recognized
enzalutamide-resistant prostate cancer cells (Fig. S1) (16).
Enzalutamide-resistant cells also showed increased levels of
TRIB2 protein compared to enzalutamide-sensitive cells
(Fig. S2). Increased mRNA expression of TRIB2 (denoted as
GS3955) was observed previously by Bisoffi et al. (17), in the
androgen-resistant (C4-2 and PC3) prostate cancer cells
compared to androgen-sensitive (LNCaP) cells.
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To verify whether the in vitro observation of TRIB2 over-
expression is valid in vivo, we comprehensively analyzed
prostate tumors in tissue microarrays (TMAs). We found that
patient-derived xenografts of prostate tumors overexpress
TRIB2 when the mice were treated with enzalutamide at
30 mg/kg/day for 6 weeks (Fig. 1, G and H). Moreover, we
found that a vast majority of the clinically advanced metastatic
prostate tumors from enzalutamide-treated patients show a
robust increase in the expression of TRIB2 proteins (Fig. 1, I
and J). Altogether, these findings suggest that triggering of
TRIB2 overexpression is a fundamental mechanism in prostate
cancer cells both in vitro and in vivo when treated with
enzalutamide, a second-generation direct inhibitor of AR ac-
tivity. Note: To confirm the specificity of TRIB2 antibodies, we
used a panel of TRIB2-negative and TRIB2-positive cell lines
and tumor tissues and analyzed by both Western blot as well
as immunohistochemistry (Fig. S3).

TRIB2 plays a critical role in enzalutamide-resistant prostate
cancer cells

Because overexpression of TRIB2 was observed in prostate
cancer cells upon enzalutamide treatment both in vitro and
in vivo, we asked the question whether TRIB2 plays any role in
enzalutamide-resistant cells. By shRNA-mediated knockdown
we found that downregulation of TRIB2 strongly inhibits the
viability and growth of enzalutamide-resistant cells, whereas
benign prostatic hyperplasia (BPH-1) cells remained unaf-
fected (Figs. 2, A–C and S4), suggesting that TRIB2 plays a
critical but selective role in enzalutamide-resistant prostate
cancer cells. We also found that TRIB2 siRNA decreased
LNCaP-ENR tumor growth in nude mice (Fig. 2, D and E). No
specific, target-validated inhibitor of TRIB2 is commercially
available. However, recently, it was demonstrated that the
EGFR kinase inhibitor, Afatinib (AFA), destabilizes TRIB2
protein by covalent modification and primes TRIB2 for
degradation at high micromolar doses (18). Thus, we also
examined the effect of AFA and found that it strongly down-
regulates TRIB2 protein level and kills enzalutamide-resistant
prostate cancer cells by triggering apoptosis (Fig. 2, F–H).
These findings indicate that TRIB2 plays an important role in
enzalutamide-resistant cells and suggest that suitable more
selective TRIB2-targeting agents could be developed to kill
enzalutamide-resistant prostate cancer cells.

TRIB2 enhances prostate cancer cell growth and invasion and
confers resistance to enzalutamide

Because TRIB2 plays a critical role in the viability of
enzalutamide-resistant prostate cancer cells, it has emerged as
a new molecular target for therapeutic development. It also
raised the question whether overexpression of TRIB2 provides
any growth advantage or plays an active role in resistant
prostate cancer cells for their defense against enzalutamide
therapy. To address this, we transfected LNCaP and PCa-2B
cells with full-length human TRIB2 gene and found that the
TRIB2-overexpressing (TRIB2-OE) cells (LNCaP-TRIB2 and
PCa-2B-TRIB2) show increased levels of prosurvival proteins,



Figure 1. Overexpression of TRIB2 in enzalutamide-resistant prostate cancer cells and tumors. A, a model depicting the strategy to develop
enzalutamide-resistant prostate cancer cells in vitro. B, heatmap showing upregualted and downregulated genes in LNCaP-ENR cells (EN1 and EN2)
compared to parental LNCaP cells (LN1 and LN2). C, volcano plot to show fold change in the levels of gene expression. D, Venn diagram showing unique
and common expression of genes in parental and resistant cells. E, upregulation of TRIB2 mRNA in LNCaP-ENR and PCa-2B-ENR cells compared to parental
cells by RT-PCR. F, Western blot showing increased protein levels of TRIB2 and targets in enzalutamide-resistant cells, compared to parental cells. Positions
of the molecular weight markers for the ladder are indicated along with the Western blot data. G and I, representative IHC pictures (showing average
expression) of TRIB2 staining intensity in prostate PDX (n = 20) and patient prostate tumor samples with (n = 53) or without (n = 75) enzalutamide treatment
(G, the scale bar represents 100 μm; the scale bar represents 50 μm (inset); I, the scale bar represents 200 μm; the scale bar represents 25 μm (inset)). H and J,
dot plot showing quantitation of TRIB2 expression level in prostate tumor samples using QuPath digital image analysis software. The statistical significance
of the difference between untreated and treated samples (H and J) was calculated by two-tailed unpaired Student’s t test. IHC, immunohistochemistry;
TRIB2, Tribbles 2.
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p-Akt and Bcl-xL, and decreased level of Forkhead Box O3, a
tumor suppressor (Fig. 3A). TRIB2-OE cells also showed
increased number and size of colonies (Fig. 3B) and increased
capability to invade through Matrigel in Boyden chambers
(Fig. 3C), suggesting that TRIB2 may play a major role as a
driver to promote aggressive behavior which is frequently
observed in antiandrogenic therapy-resistant prostate cancer
cells. We also found that overexpression of TRIB2 alone makes
J. Biol. Chem. (2022) 298(2) 101556 3



Figure 2. Inhibition of TRIB2 kills enzalutamide-resistant prostate cancer cells via induction of apoptosis. A, cells were plated overnight and treated
with gene-specific shRNAs for 4 days. Protein levels of TRIB2, p-Akt, and forkhead box O3-alpha (FOXO3a) were detected by Western blot. B and C,
morphological alterations and viability of cells were detected 4 days after shRNA treatment (figure B, the scale bar represents 400 μm). D and E, effect of
FANA-modified TRIB2 antisense oligos on LNCaP-ENR tumor growth was tested in nude mice xenografts (n = 3) by intratumoral delivery at 2 mg/kg/day
every fourth day. Representative images of tumor-bearing mice from different groups were taken at the end of the study (the scale bar represents 10 mm).
The tumor volumes were measured by vernier calipers and presented as mean values ± SE. F, LNCaP-ENR cells were treated with Afatinib (AFA) for 24 h and
protein levels were detected by Western blot. G, time-dependent decrease in the viability of LNCaP-ENR cells was measured by MTS/PES assay. H, apoptosis
was measured by Annexin V binding after treating LNCaP-ENR cells with 12 μM AFA for 24 h. Positions of the molecular weight markers for the ladder are
indicated along with the Western blot data. The data are presented as mean values ± SE. *p < 0.05; **p < 0.005; ***p < 0.0005. For C and G, Two-way
ANOVA, Tukey’s multiple-comparison test was applied. FANA, 2’-deoxy-2’-fluoro-beta-D-arabinonucleic acid; TRIB2, Tribbles 2.
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prostate cancer cells resistant to therapeutic doses of enzalu-
tamide, and the enzalutamide-resistant cells are not sensitive
to the synthetic androgen, R1881 (Figs. 3D and S5). Interest-
ingly, this resistance is abolished, and the TRIB2-OE cells
become sensitive to enzalutamide again when treated with
TRIB2-shRNA or AFA (Fig. 3E). Similar resensitization to
enzalutamide was also observed in LNCaP-ENR and PCa-2B-
ENR cells when TRIB2 was inhibited (Fig. 3, F–H). We also
found that the naturally occurring castration-resistant prostate
cancer cells, C4-2B, reverted to enzalutamide-sensitive state
upon TRIB2 knockdown (Fig. S6). TRIB2-OE cells form larger
soft-agar colonies and show no sensitivity to enzalutamide
(Fig. 3I). Furthermore, we found that overexpression of TRIB2
enhances prostate tumor growth in nude mice and these tu-
mors grow uninterrupted with enzalutamide treatment (Fig. 3,
J and K). These findings suggest that not only TRIB2 enhances
the aggressive characteristics, but also greatly contributes to
the enzalutamide resistance mechanism in prostate cancer
cells.
TRIB2 confers resistance to enzalutamide by promoting
lineage plasticity to develop NE phenotype

How TRIB2 confers resistance to enzalutamide is an
intriguing question. Resistance to androgen-signaling blockers
may happen because of the overexpression or mutation of the
AR gene, or due to development of mechanism(s) independent
of androgenic signaling. To address the downstream mecha-
nism of TRIB2 action in enzalutamide resistance, we found
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that TRIB2-OE enzalutamide-resistant cells (LNCaP-TRIB2
and PCa-2B-TRIB2) show a decrease in the protein level of
luminal markers (cytokeratin 8 (CK8) and AR), but there is a
strong increase in the expression levels of NE markers, such as
Synaptophysin (SYP), Enolase-2 (NSE), and Chromogranin-A
(CHGA) (Fig. 4, A and B). These findings indicated that
TRIB2-induced resistance to enzalutamide does not involve
reactivation of the AR function or maintenance of the
luminal features, rather TRIB2 appears to be involved in
transdifferentiation of luminal epithelial cells to develop
NE-like characteristics (Fig. 4C). Transcriptomic analysis of
enzalutamide-resistant prostate cancer cells by us and others
(16) also revealed a negative correlation between the expres-
sion of TRIB2 and AR signaling-associated genes (Fig. S7).

Notably, we found a strong upregulation of the neuronal
transcription factor, BRN2, and the stemness transcription
factor, SOX2, in TRIB2-OE enzalutamide-resistant cells
(Figs. 4, A and B and S8), which were characterized to pro-
mote lineage plasticity in prostate cancer cells (16, 19). The
regulation of NE and stemness markers by TRIB2 was
confirmed by shRNA knockdown of TRIB2 in TRIB2-OE cells
(Fig. 4D). We also found overexpression of NE markers and
downregulation of AR in TRIB2-OE cells in tumor xenografts
in mice (Fig. 4, E and F). Moreover, we found consistent
strong expression of TRIB2 in multiple standard NE-type
prostate tumor samples (Figs. S9 and S10). Both the Beltran
and Labrecque databases show overexpression of TRIB2 in
NE-type prostate cancers compared to adenocarcinoma
(Fig. 4, G and H). Interestingly, inhibition of either BRN2 or



Figure 3. TRIB2 enhances prostate cancer cell growth and invasion and confers resistance to enzalutamide. A, immunoblot analysis showing the
levels of selected proteins in TRIB2-OE cells. B, colony growth of transfected and parental cells were analyzed after staining with 0.025% crystal violet.
C, in vitro invasion was measured using Matrigel-coated Boyden chambers (the scale bar represents 50 μm). D–H, sensitivity of parental and TRIB2-OE cells
to enzalutamide was measured by MTS/PES assay. The role of TRIB2 in enzalutamide resistance was verified by treating LNCaP-TRIB2 cells (E) and ENR cells
(F–H) with shRNA (1:10) or by Afatinib (6 μM). Positions of the molecular weight markers for the ladder are indicated along with the Western blot data. I–K,
impact of TRIB2 overexpression on enzalutamide resistance was measured in soft-agar colony formation assay and in nude mice giving 30 mg/kg/day for
4 weeks (n = 3) (I, the scale bar represents 20 μm). Representative pictures of tumor-bearing mice from different groups as indicated were taken at the end
of the study (the scale bar represents 10 mm). Tumor volumes were measured by vernier calipers and presented as mean values ± SE. The data presented as
mean values ± SE. **p < 0.005; ***p < 0.0005. For D, E, G, and H, Two-way ANOVA, Tukey’s multiple-comparison test was applied. TRIB2, Tribbles 2; TRIB2-OE,
TRIB2-overexpressing.
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SOX2 resensitizes TRIB2-OE cells to enzalutamide treatment,
indicating that the molecular mechanism of TRIB2 may
involve upregulation of BRN2 and SOX2, presumably to in-
crease cellular plasticity (Fig. S11). Altogether, our findings
suggest that TRIB2 helps prostate cancer cells to evade
enzalutamide therapy, apparently by switching their identity
from luminal to assume NE characteristics. Thus, it appears
that a strong positive correlation exists between TRIB2 over-
expression and the development of NE features in prostate
cancer cells.
Discussion
Targeting of androgenic signaling has been improved

significantly due to the introduction of strong AR antagonists,
though the benefit is temporary, and resistance invariably
develops which mostly occurs within 5 years since therapy
begins (5–7). It has been realized that enzalutamide-resistant
prostate cancer frequently assumes deadly phenotype if AR-
independent mechanisms develop, though the spectrum of
which is yet to be fully characterized. We observed that
overexpression of TRIB2 occurs upon treatment with
J. Biol. Chem. (2022) 298(2) 101556 5



Figure 4. TRIB2 confers resistance to enzalutamide by promoting lineage plasticity. A and B, Western blot and immunofluorescence analysis showing
protein levels of NE (BRN2) and stemness (SOX2) markers in TRIB2-OE cells, respectively (B, the scale bar represents 10 μm). C, phase contrast microscope
pictures showing small cells with well-developed needle like processes or neurites (red arrows) (the scale bar represents 400 μm). D, immunoblot for NE and
stemness markers in TRIB2-shRNA treated cells. Positions of the molecular weight markers for the protein ladder are indicated along with the Western blot
data. E, effect of FANA-modified TRIB2 antisense oligos on LNCaP-TRIB2 tumor growth was tested in nude mice xenografts (n = 3) by intratumoral delivery at
2 mg/kg/day every fourth day. Tumor volumes were measured by vernier calipers and presented as mean values ± SE. F, immunohistochemical (IHC)
analysis showing NE and stemness markers in LNCaP, LNCaP-TRIB2, and TRIB2-FANA xenograft tumors (the scale bar represents 200 μm; the scale bar
represents 50 μm (inset)). G, boxplot showing TRIB2 expression in neuroendocrine prostate cancer (NEPC) versus prostate adenocarcinoma (Adeno) patients
(8). Wilcoxon rank sum test was used to test the difference between the two groups. H, TRIB2 expression in prostate cancer phenotypes (9). AR-high prostate
cancer (AR+/NE–), Amphicrine prostate cancer (AR+/NE+), neuroendocrine prostate cancer (AR–/NE+), AR-low prostate cancer (AR-low/NE–), and double-
negative prostate cancer (AR–/NE–). The results are expressed as log2 fragments per kilobase of transcript per million mapped reads (FPKM). The data
presented as mean values ± SE. *p <0.05; **p < 0.005. For E and F, Two-way ANOVA, Tukey’s multiple-comparison test was applied. BRN2, Brain-2; FANA,
2’-deoxy-2’-fluoro-beta-D-arabinonucleic acid; NE, neuroendocrine; SOX2, SRY-box 2; TRIB2, Tribbles 2; TRIB2-OE, TRIB2-overexpressing.
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enzalutamide, both in vitro and in vivo (Fig. 1). Our findings
of the gross overexpression of TRIB2 by enzalutamide
treatment and the aggressive growth characteristics of
TRIB2-OE cells signify a negative impact of AR blockade
therapy for prostate cancer. Though upregulation of TRIB2
in prostate cancer cells upon enzalutamide treatment is a
remarkable finding, why and how TRIB2 is overexpressed in
these cells is not known at this time. Of the multitude of
factors playing roles in enzalutamide resistance, derepression
of AR-controlled suppression of gene expression seems to be
one. We found that PC3 and DU145 prostate cancer cells
that are naturally deficient in AR activity express high levels
of TRIB2 protein. Interestingly, forced overexpression and
activation of full-length AR downregulates TRIB2 protein
level, suggesting a negative regulation of TRIB2 by AR
(Fig. S12). Negative regulation of the neuronal transcription
factor (BRN2) and SPINK by AR has been found recently (16,
20). The aggressive nature of prostate cancer cells post-
enzalutamide therapy, correlates well with aggressive mela-
noma and lung cancer cells which overexpress TRIB2. This
could be, at least in part, because of the absence of strong
androgenic signaling in skin and lung cells, the presence of
which may inhibit the expression of TRIB2 in prostate cells.
However, further work is needed to substantiate this notion.

Curiosity lingered around the consequence of TRIB2
overexpression in prostate cancer cells upon enzalutamide
treatment. TRIB2 was originally discovered in Drosophila as
a regulator of wing pattern (21). Later, its expression in
human and other organisms as well as a role in cancer cells
were observed (22, 23). We wanted to address whether
TRIB2 plays any role in enzalutamide-resistant prostate
cancer cells. Interestingly, we observed that treatment with
TRIB2-shRNA decreased TRIB2 protein level and propor-
tionately reduced the viability of enzalutamide-resistant cells,
suggesting that TRIB2 plays a critical role in the enzaluta-
mide resistance mechanism in prostate cancer cells (Fig. 2).
That overexpression of TRIB2 alone can confer complete
resistance to physiological doses of enzalutamide is particu-
larly interesting (Fig. 3). However, a more remarkable feature
recently revealed from our work, is the resistance of TRIB2-
OE prostate cancer cells also to other second-generation
anti-androgens that are frequently used in the clinic in
addition to enzalutamide, such as apalutamide, darolutamide,
and abiraterone (not shown).

Intriguingly, enzalutamide-resistant TRIB2-OE cells show
decreased protein level of luminal markers (CK8 and AR) and
increased the level of NE markers (BRN2, SYP, NSE, and
CHGA), and these characteristics are reversed when TRIB2 is
downregulated by shRNA (Fig. 4, A and D). These findings
suggest that TRIB2 is a driver for transdifferentiation of
prostate cancer cells from luminal to NE type. An AR activity
low stemness program as well as NE differentiation were
observed in enzalutamide-resistant prostate cancer cells and
tumors (8–12, 24, 25). Recently, the SOX2-mediated lineage
plasticity and development of NE phenotype have been
demonstrated in PTEN (−/−): Rb1 (−/−) double knockout mice
(19, 26). Moreover, a role of BRN2 was documented in
treatment-emergent NE differentiation via upregulation of
SOX2 (16). We found that the overexpression of TRIB2
strongly upregulates BRN2 and SOX2. Moreover, inhibition
of either BRN2 or SOX2 resensitizes TRIB2-OE cells to
enzalutamide treatment, suggesting that the NE character-
istics may play an important role in enzalutamide resistance.
Abrupt deviation of cellular characteristics is an indication
that the molecular mechanism of TRIB2 involves upregula-
tion of BRN2 and SOX2, presumably to increase cellular
plasticity and lineage switching.

Based on our findings, it appears that TRIB2 induces
lineage switching by developing stemness and NE charac-
teristics, which supports enzalutamide-resistant prostate
cancer cells in a way that they are no longer required to
depend on AR-mediated signaling. Development of AR
(-)/low tumors have now been found to occur in as high as
36% of the patients when treated with anti-androgens, such
as enzalutamide, and this rate is expected to go up with
stronger agents to eliminate the AR function altogether (27,
28). We also found a strong positive correlation of TRIB2 in a
range of NE-type prostate tumor samples (Figs. S9 and S10).
Notably, we observed that the overexpression of TRIB2
promotes NE features in prostate cancer cells, and this is
reversed with inhibition of TRIB2. Thus, TRIB2 emerges as a
new driver (rather than just a biomarker) that helps prostate
cancer cells to evade enzalutamide therapy, apparently by
switching their identity from the parental luminal type and
developing NE characteristics. TRIB2 is known to regulate
the String and Twine genes and plays a role in Drosophila
morphogenesis (21). TRIB2 was also characterized to activate
Akt and ERK via a still obscure mechanism to support
aggressive cancer growth and therapeutic resistance (22, 23).
From our unprecedented observations in prostate cancer, it
became apparent that TRIB2 is a bona fide driver for
enhanced growth and enzalutamide resistance and works via
a mechanism involving the promotion of lineage plasticity
and transdifferentiation so that prostate cancer cells can
overcome the loss of support caused by interruption of the
androgenic signaling axis.
Experimental procedures

Cell lines and tissue culture

LNCaP, MDA-PCa-2B, LAPC4 human prostate cancer cell
lines and benign prostatic hyperplasia epithelial cell line, BPH-
1, were purchased from American Type Culture Collection.
The enzalutamide-resistant LNCaP-ENR, MDA-PCa-2B-ENR,
and LAPC4-ENR cells were generated by treating with the
increasing concentrations of enzalutamide over 3 months. The
castration-resistant 16DCRPC and enzalutamide-resistant
42DENZR, 49FENZR, and 49CENZR cells were kindly provided
by Dr Amina Zoubeidi (Vancouver Prostate Center). The cells
were grown in RPMI medium 1640 or DMEM (Invitrogen) or
HPC1 media (Athena Enzyme). All the media were supple-
mented with 10% fetal bovine serum and antibiotics. All the
enzalutamide-resistant cells were cultured in the presence of
30 μM enzalutamide.
J. Biol. Chem. (2022) 298(2) 101556 7
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RNA sequencing and analysis

Total RNA was isolated from exponentially growing cells
using spin columns and reagents in the RNeasy Midi Kit
following methods provided by the company (Qiagen). RNA
quality check, cDNA synthesis, and sequencing were per-
formed at the AGTC core facility using the Illumina Hi-Seq
platform. The analysis of differentially expressed genes
between groups was conducted using a negative binomial
model as implemented in the EdgeR package in R. A gene with
a fold-change > 2 (or < 0.5) and a False Discovery Rate-
adjusted p-value < 0.05 is considered differentially expressed
between two experimental conditions. The heatmap of
differentially expressed genes was plotted using the gplots
heatmap.2 function in R. Each row was scaled so that it has a
mean of zero and a SD of one. The volcano plot showing the
differentially expressed gene results was generated using the
EnhancedVolcano package in R.

Real-time quantitative PCR

Total RNA was extracted using RNeasy kit (Qiagen), and
1 μg of total RNA was used for cDNA synthesis using Su-
perScript III First-Strand kit (Invitrogen) according to the
manufacturer’s instructions. PCR reaction mixture was pre-
pared using gene-specific TaqMan gene expression assay sys-
tem (Applied Biosystems). qRT-PCR reactions were performed
in triplicate using QuantStudio six Flex Real-Time fast PCR
System (Applied Biosystems), and 2−ΔΔCt values were used to
calculate the relative expression level of the target genes
compared to controls. GAPDH was used as a normalization
control.

Western blot

Cells were plated in 60 mm diameter plates and at 60 to 70%
confluency, they were treated with inhibitors. After treatment,
the cells were harvested, washed, and lysed in lysis buffer
(50 mM Hepes buffer, pH 7.4, 150 mM NaCl, 1 mM EDTA,
1 mM orthovanadate, 10 mM sodium pyrophosphate, 10 mM
sodium fluoride, 1% NP-40, and a cocktail of protease in-
hibitors). Proteins were separated by 12% SDS–PAGE and
transferred to nitrocellulose membranes. The membranes
were blocked with 5% nonfat-milk solution and blotted with
appropriate primary antibody followed by peroxidase-labeled
secondary antibody. The bands were visualized by enhanced
chemiluminescence detection kit from Pierce Biotech. To be
accepted as valid, protein blots were analyzed at least in two
independent experiments showing similar results. Antibodies
against TRIB2, p-AKT, Bcl-xL, AR, PSA, Nkx3.1, SOX2, and
GAPDH were from Santa Cruz Biotechnology. Antibodies
against BRN2, NSE, SYP, CHGA, and CK8 were from Cell
Signaling Technology.

Human prostate cancer specimens and patient-derived
xenograft tumors

Tissue microarray with enzalutamide-treated prostate can-
cer specimens were obtained from the Prostate Cancer Bio-
repository Network, University of Washington, US Biomax,
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Inc, and Cybrdi Inc, University of Michigan. The hormone
naïve prostate tumor TMAs were obtained from Henry Ford
Health System biorepository after mandatory approval from
the Institutional Review Committee. TMA slides created from
PDX tumors (Untreated and enzalutamide treated) were ob-
tained from Dr Martin E. Gleave, Vancouver Prostate Centre.

Immunohistochemistry

Slides containing formalin-fixed paraffin-embedded sections
were incubated at 60 �C for 1 h, and antigen retrieval was
carried out in EnVision FLEX target retrieval solution, Low pH
(Agilent Dako, S236984–2) in a PT Link instrument (Agilent
Dako, PT200). The slides were washed in 1X TBST wash
buffer for 5 min, followed by treatment with Peroxidazed 1
(Biocare Medical, PX968 M) for 5 min. Nonspecific back-
ground was blocked with Background punisher (Biocare
Medical, BP974) with a 10 min treatment. The slides were
incubated with appropriate primary antibodies diluted in
EnVision FLEX Antibody Diluent (Agilent Dako, K800621–2)
overnight at 4 �C. The slides were washed and incubated with
Mach2 Double Stain one or 2 (Biocare Medical, MRCT523/
525) for 30 min at room temperature. The Slides were devel-
oped using ImmPACT DAB Substrate, Peroxidase (HRP)
(Vector Labs, SK-4105) and counterstained with Hematoxylin
(Agilent DAKO, K800821–2) for 5 min. The slides were rinsed
in distilled water, dried, and mounted using EcoMount (Bio-
care Medical, EM897 L). The slides were scanned using Aperio
CS2 digital pathology scanner, and the staining intensity was
quantified by QuPath 0.2.3 (Github) digital image analysis
software.

Plasmids and lentiparticles

TRIB2-GFP plasmids were obtained as a kind gift from Dr
Wolfgang Link. Mission lentiviral transduction particles for
TRIB2-shRNA and the siRNAs targeting BRN2 and SOX2
were purchased from Sigma Aldrich. For transfection of siR-
NAs, Lipofectamine RNAiMAX was used in accordance with
the manufacturer’s guidelines (Life Technologies).

Cell viability assay

The cells (�3000 per well) were plated overnight in 96-well
tissue culture plates and treated with drugs or appropriate
controls. After 72 h, cell viability was measured by MTS/PES
One Solution Cell Titer Assay following manufacturer’s pro-
tocol (Promega Corp).

Soft-agar colony formation assay

LNCaP and LNCaP-TRIB2 cells (1 × 105) were mixed in
0.5 ml of 0.3% soft-agar and seeded on the top of a 2 ml base
layer of 0.6% agar. Plates were allowed to settle and then the
agar layers were covered with 2 ml fresh RPMI media con-
taining 10% fetal bovine serum. The cells were treated with
enzalutamide (30 μM) for 3 weeks. Cell growth medium and
enzalutamide were exchanged every fourth day. At the end of
incubation, the cells were stained with 0.025% crystal violet,
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and the colonies were counted and photographed under a
Leica microscope at ×150.

In vivo tumor models

Animal studies were approved by the Institutional Animal
Care and Use Committee and performed according to the
institutional guidelines for animal care and handling. To
analyze the effect of TRIB2 knockdown on the growth on
prostate tumors in vivo, exponentially growing LNCaP-ENR
cells (3 × 106 cells/mouse in 50% Matrigel in PBS) were
subcutaneously injected into the flanks of 7-week-old male
athymic nude mice (n = 3). When the tumors grew to
approximately 100 mm3, mice were randomized and treated
either with control or TRIB2 FANA (2’-deoxy-2’-fluoro-beta-
D-arabinonucleic acid) oligos from Aum Biotech via intra-
tumoral injection (2 mg/kg/day every fourth day) for 4 weeks.
To study the impact of TRIB2 overexpression on enzalutamide
resistance in vivo, LNCaP or LNCaP-TRIB2 cells (3 × 106 cells/
site) were implanted subcutaneously into the right or left
flanks of nude mice (n = 3) and allowed to grow until the
tumors were palpable. The mice were randomized to receive
either vehicle (DMSO alone) or enzalutamide (30 mg/kg/day)
for 4 weeks. Tumor growth was monitored by measuring
volumes using a digital slide-calipers.

Statistical analysis

Statistical significance was assessed by either one-way
ANOVA or two-way ANOVA with post hoc multiple com-
parisons test or the two-tailed Student’s t test using GraphPad
prism software. The p-value of less than 0.05 was defined as
significant. The results are expressed as the mean ± SEM from
at least three independent experiments and are described in
each figure legend when applied.

Data availability

All the data are available either in the main Manuscript or in
the Supporting Document.
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