

How is cardiac troponin released from cardiomyocytes?

Ola Hammarsten¹*, Mathias Wernbom², Nicholas L. Mills^{3,4}, and Christian Mueller ⁶ on behalf of the Study Group on Biomarkers of the ESC Association for Acute CardioVascular Care

¹Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden; ²Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; ³BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; ⁴Usher Institute, University of Edinburgh, Edinburgh, UK; and ⁵Cardiovascular research Institute Basel (CRIB) and Department of Cardiology, University Hospital Basel, University of Basel, Switzerland

Online publish-ahead-of-print 16 August 2022

Cardiac-specific troponin I (cTnI) and cardiac-specific troponin T (cTnT) are released following cardiac injury and are the preferred diagnostic biomarkers when acute myocardial infarction (MI) is suspected. Because cardiomyocytes are filled with sarcomeres that start to contract and consume adenosine triphposhate (ATP) whenever Ca²⁺ enters the cell, cardiomyocytes are more prone to undergo necrosis compared with other cells. In early studies, it was noted that other cell types such as endothelial cells and fibroblasts survived although all cardiomyocytes showed contraction band necrosis after 2 h of cardiac ischaemia followed by reperfusion in dogs. As the cTnI:cTnT complex binds tightly to the cardiac sarcomere, its release is dictated by local proteolysis, which separates cTnl from cTnT (Figure 1A and B). As cTnl has no affinity for the sarcomere on its own, its degradation products are more quickly released compared with cTnT that remains bound² and is for the most part degraded locally together with the insoluble material in the necrotic cardiomyocyte.³ For that reason, cTnl reaches much higher plasma levels compared with cTnT following MI with reperfusion.

Cardiac troponin elevations are also observed in conditions without obvious necrotic cardiac damage. Striking examples are the transient troponin elevations seen following strenuous exercise and after ischaemia lasting only a few minutes. Early experiments on isolated rat hearts before the troponin era show that only 5% of the creatine kinase released following limited ischaemia could be explained by the few necrotic cardiomyocytes that were found. In these instances, cTnT and cTnI are often elevated to similar levels.

Possible mechanisms involved in protein release from cardiomyocytes subjected to sublethal stress include bursting and resealing of small membranous blebs formed in response to cell swelling and active exocytosis (Figure 1C). A recent study shows that cardiac myocytes can release large extracellular vesicles derived from autophagy which have been termed 'exopheres' containing

mitochondria and sarcomere fragments. Cardiomyocytes appear to exocytose exopheres to get rid of damaged mitochondria and sarcomere proteins as part of its normal maintenance, and this process is enhanced in cardiomyocytes during conditions of cardiac stress. Conceivably, this autophagy mediated exocytosis can then result in release of sarcomere proteins like troponin into the circulation that will be higher after sublethal stress but never-the-less present under normal conditions.

An appreciation of the mechanisms through which cTn is released from cardiomyocytes will help clinicians to interpret elevated cTn in acute MI and other clinical settings associated with cardiac stress.

Funding

N.L.M. is supported by a Research Excellence Award (RE/18/5/34216) and a Chair Award (CH/F/21/90010) from the British Heart Foundation. O.H. is supported by The Swedish Cancer Society, the Swedish Heart and Lung Foundation and LUA/ALF funding at the Sahlgrenska University Hospital.

Conflict of interest: N.L.M. reports research grants awarded to the University of Edinburgh from Abbott Diagnostics and Siemens Healthineers outside the submitted work and honoraria from Abbott Diagnostics, Siemens Healthineers, Roche Diagnostics and LumiraDx. C.M. has received research support from the Swiss National Science Foundation, the Swiss Heart Foundation, the KTI, the University Hospital Basel, the University of Basel; Abbott, Beckman Coulter, Brahms, Idorsia, Novartis, Ortho Diagnostics, Quidel, Roche, Siemens, Singulex, Sphingotec outside the submitted work, as well as speaker honoraria/consulting honoraria from Amgen, Astra Zeneca, Bayer, Boehringer Ingelheim, BMS, Novartis, Osler, Roche, and Sanofi, all paid to the institution. O.H. and M.W. have no conflicts to report.

^{*} Corresponding author. Email: ola.hammarsten@clinchem.gu.se

[©] The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved.

Biomarker spotlight 719

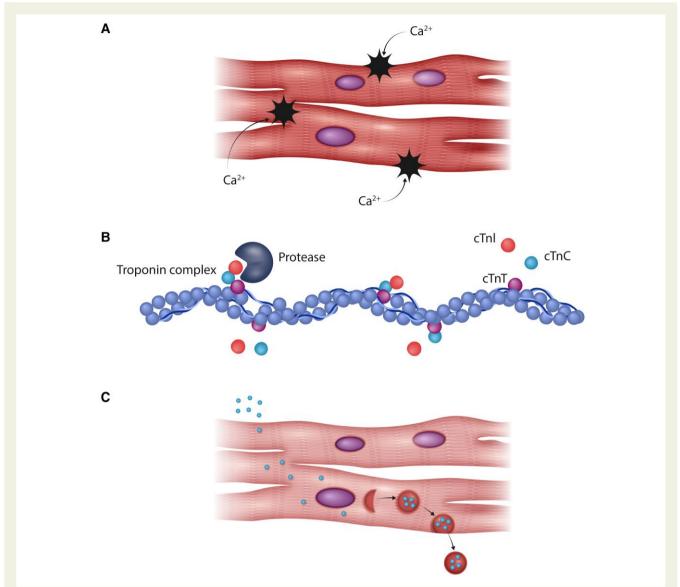


Figure 1 Release of cardiac troponin. (A) When large membrane defects allow uncontrolled Ca²⁺ entry, the sarcomeres in cardiomyocytes contract and result in contraction band necrosis. (B) The troponin complex is cleaved by proteases in necrotic cardiomyocytes, so that cardiac-specific troponin T, cardiac-specific troponin I, and cTnC are separated. As cardiac-specific troponin T and its degradation products bind to insoluble thin filaments, it is for the most part retained in the sarcomere, whereas cardiac-specific troponin I fragments are released into the circulation. (C) Possible non-necrotic release mechanisms include transient membrane defects and active autophagosome mediated exocytosis of sarcomere components in the form of exophers.

Other members of the Study Group on Biomarkers of the ESC Association for Acute Cardiovascular Care include:

Evangelos Giannitsis, MD¹; Allan S. Jaffe, MD²; Kurt Huber, MD³; Johannes Mair, MD⁴; Louise Cullen, MD, PhD⁵; Ola Hammarsten, MD, PhD⁶; Martin Möckel, MD⁷; Konstantin Krychtiuk, MD⁸; Kristian Thygesen, MD⁹

⁴Department of Internal Medicine III – Cardiology and Angiology, Medical University Innsbruck, Austria;

⁵Emergency and Trauma Centre, Royal Brisbane and Women's Hospital, University of Queensland, Australia;

⁶Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg, Sweden;

⁷Division of Emergency Medicine, Charité-Universitätsmedizin Berlin, Germany;

⁸Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria;

⁹Department of Cardiology, Aarhus University Hospital, Denmark;

¹Department of Cardiology, University Heidelberg, Germany;

²Mayo Clinic and Medical School, Rochester, MN, USA;

³Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, and Sigmund Freud University, Medical School, Vienna, Austria;

720 Biomarker spotlight

Data availability

Data available on request from the authors.

References

- Jennings RB. Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res 2013;113:428–438.
- Starnberg K, Fridén V, Muslimovic A, Ricksten S-E, Nyström S, Forsgard N, Lindahl B, Vukusic K, Sandstedt J, Dellgren G, Hammarsten O. A possible mechanism behind faster clearance and higher peak levels of cardiac troponin I compared with troponin T in patients with acute myocardial infarction. Clin Chem 2020;66:33–341.
- 3. Kragten JA, Hermens WT, van Dieijen-Visser MP. Cardiac troponin T release into plasma after acute myocardial infarction: only fractional recovery compared with enzymes. *Ann Clin Biochem.* 1996;**33**:314–323.

- Arnadottir A, Pedersen S, Bo Hasselbalch R, Goetze JP, Friis-Hansen LJ, Bloch-Munster AM, Skov Jensen J, Bundgaard H, Iversen K. Temporal release of high-sensitivity cardiac troponin T and I and copeptin after brief induced coronary artery balloon occlusion in humans. *Circulation* 2021;**143**:1095–1104.
- Huser M, Stegemann E, Kammermeier H. Is enzyme release a sign of irreversible injury of cardiomyocytes? Life Sci 1996;58:545–550.
- 6. Nicolas-Avila JA, Lechuga-Vieco AV, Esteban-Martinez L, Sanchez-Diaz M, Diaz-Garcia E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R, Castejón-Vega B, Pun-García A, Través PG, Bonzón-Kulichenko E, García-Marqués F, Cussó L, A-González N, González-Guerra A, Roche-Molina M, Martin-Salamanca S, Crainiciuc G, Guzmán G, Larrazabal J, Herrero-Galán E, Alegre-Cebollada J, Lemke G, Rothlin CV, Jimenez-Borreguero LJ, Reyes G, Castrillo A, Desco M, Muñoz-Cánoves P, Ibáñez B, Torres M, Ng LG, Priori SG, Bueno H, Vázquez J, Cordero MD, Bernal JA, Enríquez JA, Hidalgo A. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 2020;183:94–109.e123.