
Introduction 

Single-celled organisms, such as bacteria and fungi, are put under 
pressure to reproduce as soon as they encounter nutrient-rich envi-
ronments. Their metabolism control systems have evolved to sense 
available nutrients and transfer the necessary carbon, nitrogen, and 
energy to generate building blocks for cell growth. When starved, 
the cells cease to produce biomass and begin adapting their metab-
olism to draw maximum energy from available resources to cope 
with nutrient depletion [1]. 

In multicellular organisms, uncontrolled proliferation is prevent-
ed as mammalian cells cease to take up nutrients from the environ-
ment unless otherwise stimulated by growth factors. Genetically 
mutated cancer cells, on the other hand, are non-dependent on 
such external stimuli and may show increased uptake and metabo-
lism of nutrients, promoting cell survival and proliferation [1]. On-
cogenic mutations often result in a high-rate uptake of nutrients, 
particularly glucose, which is required for cell growth and prolifera-
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tion [2]. In 1923, Otto Warburg found that when glucose was add-
ed to cancer tissue slices in Ringer’s solution, they continuously 
produced lactate in the presence of oxygen [3,4]. His attempt was 
to understand why cancer cells preferred glucose fermentation 
over oxidative phosphorylation (OXPHOS), even in the presence 
of ample oxygen. This aerobic glycolysis occurs not only in cancer 
cells but also in exercising muscle cells, activated immune cells, and 
virally infected cells. A glycolytic increase in lactate concentration 
is found in local tissues under various disease conditions, such as 
sepsis, infections, inflammatory diseases, autoimmune diseases, 
and cancer. 

Lactate has long been regarded as a by-product of anaerobic res-
piration. Increasing evidence, however, indicates that lactate is es-
sential for energy and redox homeostasis. More recent data suggest 
that lactate is a multifunctional signaling molecule with its own re-
ceptor and plays an important role in communication between 
cells and tissues. The aim of this review was to provide knowledge 
on lactate, including its general physiology and historical paradigm 
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changes, and to summarize the recent advances that highlight the 
regulatory role of lactate in diverse biological processes in both 
physiological and pathological conditions. 

Physiology of lactate 

Almost 99% of lactic acid is dissociated into lactate anions (La–) 
and protons (H+) within the physiological pH range. Therefore, in 
this review, La– will be referred to as lactate. Lactate is mainly com-
posed of L (+) enantiomer (L-form) as detected in the sera of 
healthy humans [5]. Serum D-lactate concentration ranges from 
0.013 to 0.2 mM, as opposed to that of L-lactate which may range 
from slightly above 1.14 mM at rest, 15 mM after an intense exer-
cise, and 30 mM in some cancer tissues [6]. The daily production 
of lactate in resting humans is estimated to be approximately 20 
mmol/kg/day [7]. In adults with an average body weight of 70 kg, 
approximately 1,400 mmol of lactate is produced daily from mus-
cle (25%), skin (25%), brain (20%), red blood cells (20%), and in-
testines (10%) [8]. 

Lactate is produced by the reduction of pyruvate by lactate dehy-
drogenase (LDH) during glycolysis under anaerobic or aerobic 
conditions.  

LDH is a tetrameric enzyme that catalyzes the interconversion 
of pyruvate and lactate with the complementary interconversion of 
a reduced form of nicotinamide adenine dinucleotide (NADH) to 
NAD+. The two most common subunits of LDH are the LDHM 
(or M subunit) and LDHH (or H subunit) proteins that are en-
coded by LDHA and LDHB genes, respectively. These subunits 
combine to form five isoenzymes: LDH-1 (4H), LDH-2 
(3H1M), LDH-3 (2H2M), LDH-4 (1H3M), and LDH-5 (4M) 
[9]. LDH-1 is usually called LDHB since it is composed of four 
“H” LDHB subunits. LDHB preferentially converts lactate to py-
ruvate and is expressed mainly in the heart (H). In contrast, LDH-
5 is usually called LDHA since it is composed of four “M” LDHA 
subunits. LDHA preferentially converts pyruvate to lactate and is 
expressed mainly in the skeletal muscle (M) [10]. Heterogenous 
LDHs (LHH-2 to LDH-4) exhibit subunit-dependent intermedi-
ate enzyme activity. The remaining two subunits, LDH-C and 
LDH-Bx, are specific to the testes and peroxisomes, respectively. In 
lactate-producing glycolysis, LDHA is the most important en-
zyme. 

Lactate paradigm changes 

Lactate has long been considered a waste end product of anaerobic 
glycolysis [11-14]. The development of acidosis has traditionally 
been explained by lactate overproduction during high-intensity ex-
ercises or severe disease states such as sepsis and septic shock [15]. 
A high level of serum lactate has been regarded as a predictive fac-
tor of muscle fatigue, often associated with tissue hypoxia and poor 
clinical outcomes [16]. 

The early 1980s was marked by a drastic change in the lactate 
paradigm. The idea that lactate is not responsible for acidosis start-
ed gaining acceptance, as reviewed by Robergs et al. [17]. Accord-
ing to the theory, intermediate acids of glycolysis have a low pKa; 
hence they all exist in their base form. The first intermediate acid 
of glycolysis, 3-phosphoglyceric acid, is present as 3-phosphoglyc-
erate. This signifies that the main form of glycolytic metabolites is 
not acid (pyruvic acid or lactic acid) but a base (pyruvate or lac-
tate). For example, at physiological pH (~6.4 to 7.1), lactic acid, 
due to its very low acid dissociation constant (pKa, ~3.86), disso-
ciates immediately into lactate and hydrogen ion (H+). This indi-
cates that lactic acid does not exist in living organisms. In fact, lac-
tate does not decrease metabolic acidosis, but rather removes H+ 
from the cytosol and creates NAD+ molecules, electron acceptors 
that are used for adenosine triphosphate (ATP) generation to 
maintain glycolysis [18,19]. 

How, then, is lactate removed? To maintain the serum concen-
tration range of 1 to 2 mM, 60 to 120 mmol of lactate needs to be 
removed from the blood every hour [20]. Lactate is usually re-
moved immediately from various tissues, for example, skeletal 
muscles, or it may be released and taken up by exercising muscle, 
heart, brain, kidney, and liver. Lactate may also be metabolized ei-
ther by direct oxidation or transformation into glucose. Lactate 
transformation into glucose by the liver or kidney is known as the 
Cori cycle or gluconeogenesis [21]. Lactate can also be removed 
via its oxidation into pyruvate, which involves an entry into the tri-
carboxylic acid (TCA) cycle needed for ATP production [22,23]. 

Lactate shuttles 

As the product of glycolysis and the substrate for OXPHOS or glu-
coneogenesis, lactate can be regarded as the link between different 
metabolic pathways. In 1985, George Brooks [24] proposed the 
lactate shuttle hypothesis. Lactate shuttles and metabolic interplay 
are now recognized to mediate redox and energy homeostasis not 
only between cells, tissues, and at the whole organism level but also 
at an intracellular level between cell compartments, such as cyto-
sol-mitochondria or cytosol-peroxisome shuttle. The early lactate 
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shuttle reported in various cells, tissues, and organs, including mus-
cle, heart, and liver [24-27], has now extended to those of sperm 
[28], adipose tissue [29], the brain [30], and the lungs [31-33]. 
Approximately half of the available lactate is removed through oxi-
dation at rest, and up to 80% during exercise [34]. 

In contracting skeletal muscle, for example, lactate production 
and utilization occur simultaneously. It has been proposed that my-
ocytes have two metabolic compartments, one for glycolysis (cyto-
plasm) and the other for oxidative metabolism (mitochondria) 
[35]. According to this concept, cytosolic lactate enters mitochon-
dria via lactate transporters (intracellular lactate shuttle) and is oxi-
dized to pyruvate through the mitochondrial lactate oxidation 
complex at the mitochondrial inner membrane, composed of mi-
tochondrial LDH, CD147, and cytochrome oxidase [35]. In the 
myocardium, lactate uptake increases during conditions such as ex-
ercise, β-adrenergic stimulation, fast-pacing, and shock. Lactate 
may account for up to 60% of the cardiac oxidation substrate [36]. 
In the human brain, lactate accounts for approximately 7% of the 
energy requirement during rest, which increases up to 25% during 
exercise [37]. The lactate from the blood is either oxidized by neu-
rons or converted and stored as glycogen. The lactate from glycoly-
sis of the stored glycogen in astrocytes is transported into neurons 
(referred to as astrocyte-neuronal lactate shuttle) and oxidized to 
pyruvate and utilized by the TCA cycle [38,39]. 

Lactate transporters 

Lactate is transported across cytoplasmic and intracellular com-
partments by several monocarboxylate transporters (MCTs) that 
perform proton-lactate symport. Among the 14 MCTs that have 
been identified to date, MCT1–4 are better characterized and have 
been shown to mediate the proton-linked transport of monocar-
boxylates such as lactate, pyruvate, acetoacetate, and β-hydroxybu-
tyrate. MCT1 (also known as SLC16A1) is widely distributed and 
is usually involved in the import of lactate, whereas MCT4 (also 
known as SLC16A3) is expressed in highly glycolytic cells or tis-
sues, such as white skeletal muscle, astrocytes, cancer cells, and 
white blood cells, and is mainly involved in lactate export [39,40]. 
In addition to MCTs, sodium-coupled lactate transport is carried 
out by the high-affinity transporter SLC5A8 or the low-affinity 
transporter SLC5A12 as was initially reported in the kidney [41]. 
The expression of SLC5A12 has also been reported in CD4+ T 
cells [42]. 

Lactate receptor 

Lactate is a ligand for an orphan G-protein coupled receptor 81 

(GPR81), now termed hydroxycarboxylic acid receptor 1 (HCAR-1 
or HCA1) [39]. HCA1 is predominantly expressed in the adipose 
tissue. Other tissues and organs also express HCA1, although to a 
lesser degree, in the skeletal muscle, liver, spleen, kidney, and brain. 
In addition to the plasma membrane, HCA1 is also detected in in-
tracellular organelles, such as mitochondria. As expected from the 
broad presence of the lactate receptor HCA1 in various tissues, in-
creasing evidence has shown that lactate plays diverse roles in vari-
ous pathophysiological conditions, including inflammation and 
cancer. HCA1-mediated lactate signaling may affect lipid metabo-
lism [43], neuronal excitability changes [44], cellular development 
and survival [45,46], and modulation of inflammatory responses 
[47,48]. Lactate generated by glycolytic cancer cells can also act on 
HCA1 expressed on non-cancer cells, including immune cells, en-
dothelial cells, adipocytes, and fibroblasts in the tumor stroma. 
The final consequence of lactate-mediated activation of HCA1 on 
cells in the tumor mass is the facilitation of survival, growth, and 
metastasis of cancer cells via mechanisms that mediate increased 
angiogenesis, immune evasion, and chemoresistance [49]. 

Lactate signaling via HCA1 has been shown to work synergisti-
cally with insulin to decrease cellular concentration of cyclic ade-
nosine monophosphate (cAMP) and lipolysis in the fed state, sug-
gesting that HCA1 might be linked to obesity [29]. The mecha-
nism of cAMP modulation includes attenuation of protein kinase 
A (PKA) signaling [50,51]. Lactate produced and released by in-
flammatory bone marrow neutrophils may induce mobilization via 
endothelial HCA1 signaling by inhibiting the expression of 
VE-cadherin in intercellular junctions of the vascular endothelium 
[52]. 

Lactate binding to HCA1 can also signal through a noncanoni-
cal, cAMP/PKA-independent pathway with arrestin beta 2 
(ARRB2) as an adaptor protein, leading to the inhibition of toll-
like receptor-4 (TLR-4)- and nucleotide-binding oligomerization 
domain (NOD)-like receptor pyrin domain-containing protein 3 
(NLRP3) inflammasome-mediated induction of proinflammatory 
mediators such as interleukin (IL)-1β and IL-18 [47,48,53]. 

Warburg effect 

Normal cells obtain ATP, an essential energy source for cell surviv-
al, from both glycolysis and mitochondrial OXPHOS. In 1923, 
Otto Warburg and Seigo Minami [3] found high rates of glycolysis 
in cultured tumor tissues, which were characterized by increased 
glucose uptake and excessive lactate production even in the pres-
ence of oxygen (aerobic glycolysis). They incubated slices of rat 
hepatoma in Ringer’s solution and found an increase in lactate con-
centration calculated from the increase in CO2 during 30 minutes 
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of incubation. The rate of lactate production from the hepatoma 
slice was 70 times greater than that in the normal liver, kidney, and 
heart tissue [54]. Warburg [4] also showed, in a rat model, that the 
artery feeding the tumor had lower levels of lactate and higher lev-
els of glucose than the draining vein from the tumor tissue. This 
glucose-avid, lactate-producing behavior of tumor cells regardless 
of oxygen availability was named the “Warburg effect” by Efraim 
Racker in 1972 [55]. 

Why cancer cells prefer the Warburg 
phenotype? 

Mitochondrial function is not impaired in Warburg cells, as de-
scribed in many types of cancers; the TCA cycle is activated in 
breast cancer, glioblastoma, and non-small cell lung cancer cells 
[56]. Therefore, the Warburg effect is a metabolic shift from (not a 
defect of) OXPHOS to glycolysis. Glycolysis generates only two 
molecules of ATP per glucose molecule, which is much less effi-
cient than OXPHOS (36 ATPs per glucose). Nevertheless, most 
cancer cells obtain approximately 60% of the total required ATP 
from glycolysis. The activation of glycolysis has several advantages 
for rapidly proliferating cancer cells. In addition to the faster ATP 
synthesis than OXPHOS, the activation of the glycolytic pathway 
allows cells to feed several pathways that contribute to macromo-
lecular synthesis. These include the pentose phosphate pathway, 
which produces ribose for nucleotides and NADPH for reductive 
biosynthesis, the hexosamine pathway, which is required for pro-
tein glycosylation, serine-glycine-one-carbon metabolism, which 
feeds glutathione, nucleotides, and methylation reactions; and 
glycerol synthesis for the production of complex lipids [57]. 

The mechanism of the metabolic shift 
from OXPHOS to glycolysis 

One of the key components of glycolytic activation and OXPHOS 
suppression is hypoxia-inducible factor 1α (HIF-1α) [58], which 
was originally identified as a critical transcription factor for cellular 
adaptation to hypoxic conditions. HIF-1α induces most of the gly-
colytic enzymes, including hexokinase 2, pyruvate kinase M2 
(PKM2), and LDHA. HIF-1α also activates the expression of glu-
cose transporter (GLUT) 1 and GLUT3 and a lactate transporter 
MCT4. HIF-1α activates pyruvate dehydrogenase (PDH) kinase 
1, which phosphorylates and inactivates PDH, the enzyme that 
converts pyruvate to acetyl coenzyme A (acetyl-CoA), which is es-
sential for the TCA cycle. 

Warburg and Minami [3] observed almost a century ago that 
Warburg-type cancer is characterized by the excessive production 

and accumulation of lactate. Tumors are a heterogeneous collec-
tion of normal cells, cancer cells, immune cells, and blood vessels. 
Even among cancer cells, some are glycolytic and others are oxida-
tive in the context of vascularization and preferred metabolism. Ex-
tracellular lactate excreted from glycolytic stromal cells in the tu-
mor tissue may be taken up by adjacent oxidative cancer cells, via 
MCTs, and be converted to pyruvate to enter the TCA cycle, 
which produces electron donors, such as NADH and reduced fla-
vin adenine dinucleotide to support the electron transport chain 
(ETC) for ATP production. This type of two-compartment com-
munication of tumor metabolism was termed the “reverse War-
burg effect” as aerobic glycolysis takes place in tumor stromal fibro-
blasts rather than cancer cells [59]. The mitochondrial reactive ox-
ygen species (ROS) produced by the ETC activity of reverse War-
burg cells are released into the cytosol and inhibit prolyl hydroxy-
lase (PHD) through the Fenton reaction and prevent the degrada-
tion of HIF-1α [60]. The stabilization of HIF-1α activates the tran-
scription of glycolytic genes, thus converting the oxidative cells to 
glycolytic ones. Lactate can, in turn, promote HIF-1α stabilization 
by inhibiting PHD activity. Lactate-derived pyruvate competitively 
inhibits alpha-ketoglutarate, a PHD co-factor, from associating 
with PHD [61]. Recent findings indicate that lactate precondition-
ing also primes normal fibroblasts to switch from OXPHOS to gly-
colysis through mechanism(s) including ROS-mediated HIF-1α 
stabilization [62]. PKM2 is a rate-limiting enzyme that catalyzes 
the conversion of phosphoenolpyruvate to pyruvate. PKM2 en-
zyme activity is allosterically regulated by the oligomerization type. 
The PKM2 tetramer is enzymatically more active than the dimer 
form of PKM2. However, the PKM2 dimer acts as a transcription-
al coactivator, which may translocate to the nucleus and promote 
the expression of HIF-1α-mediated pro-glycolytic genes such as 
lactate-producing LDHA [63]. Thus, lactate, the final product of 
normoxic glycolysis, further activates glycolysis through the activa-
tion of HIF-1α. In addition to hypoxia, the increase in several met-
abolic intermediates, such as succinate, fumarate, and lactate, facili-
tates the stabilization of HIF-1α. The oxygen-independent mecha-
nism of HIF-1α activation is now termed pseudohypoxia [64]. 

Lactate modulates immune cell functions 

Hypoxia and glycolysis have long been considered to activate the 
immune cells. For example, a metabolic shift from OXPHOS to 
aerobic glycolysis is regarded as a hallmark of T cell activation [65]. 
LDHA induced in activated T cells to support glycolysis promotes 
interferon (IFN)-γ expression and instead maintains high levels of 
acetyl-CoA to increase histone acetylation and transcription of ifng 
[66]. 
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Recent studies have highlighted the counterbalancing regulatory 
function of the glycolysis metabolite lactate. In addition to its meta-
bolic functions as an energy source and an intermediate metabolite 
for biosynthetic pathways, lactate also plays a modulatory role in 
inflammation and immunity. Recent reports suggest that lactate 
produced by aerobic glycolysis has an immunosuppressive effect in 
the local environment of various disease conditions including sep-
sis, cancer, chronic inflammation, and autoimmune diseases [67-
69]. In sepsis, immunosuppression is a serious problem that causes 
life-threatening secondary infections and is now called immunopa-
ralysis [70]. The immunosuppressive phase during sepsis is char-
acterized by the depletion of effector cells and T cell exhaustion, 
and a concomitant increase in regulatory T cells (Tregs) and my-
eloid-derived suppressor cells [71]. Lactate has also been shown to 
suppress the proliferation and cytokine production in human cyto-
toxic T cells [72], thereby decreasing the cytotoxic effect. Effector 
T cells are more dependent on glycolysis for proliferation and cy-
tokine production, while Tregs rely more on OXPHOS [73]. Lac-
tate accumulation in the local tissue environment is a common fea-
ture of both inflammatory diseases and cancer. Lactate in the tu-
mor microenvironment (TME) has been shown to help tumor es-
cape from immune surveillance by reshaping T cells and macro-
phages to immunosuppressive phenotypes such as tumor-promot-
ing Tregs and M2-like tumor-associated macrophages (TAMs) [72-
76].  

In contrast, increased lactate concentration observed in the local 
tissue of chronic inflammatory diseases contributes to the upregu-
lation of the sodium-coupled lactate transporter SLC5A12 by hu-
man CD4+ T cells. In a mouse arthritis model, lactate was shown 
to promote IL-17 production by CD4+ T cells through phosphor-
ylation of signal transducer and activator of transcription 3 
(STAT3) by PKM2 and fatty acid synthesis (FAS). It also led to 
CD4+ T cell retention in the inflamed tissue by reducing the gly-
colysis rate and diverting metabolic fluxes into de novo FAS [68]. 
Lactate has been shown to inhibit antigen presentation and IL-12 
synthesis by dendritic cells (DCs). The differentiation of DCs 
from monocytes is also affected by high concentrations of lactate, 
favoring less inflammatory DCs that are biased toward producing 
IL-10 [76,77]. 

Macrophages may undergo a switch in the metabolic pathways, 
which leads to differentiation into either a proinflammatory (M1) 
or a homeostatic and anti-inflammatory (M2) phenotype in re-
sponse to various stimuli, including cytokines [78]. In general, 
IFNs promote M1-like inflammatory macrophage activation by 
suppressing homeostatic pathways. In the context of tumors, 
TAMs do not completely follow M1 and M2 subtypes. TAMs usu-
ally have an M2-like phenotype and facilitate tumor growth by im-

munosuppression. Signaling functions and polarization of M2 
macrophages can be directly regulated by lactate in the TME via 
HIF-1α-dependent metabolic reprogramming [78]. The lactate 
produced by cancer cells further facilitates HIF-1α stabilization 
and induces an M2-like phenotype, such as vascular endothelial 
growth factor (VEGF). It has been shown that lactate promotes 
M2 polarization of macrophages by binding to the lactate receptor 
HCA1 [48]. 

Lactate binds to and suppresses 
mitochondrial antiviral signaling for type I 
interferon activation 

Viral RNA can be detected by retinoic acid-inducible gene 1 (RIG-
I)-like receptors (RLRs), such as RIG-I and melanoma differentia-
tion-associated gene 5 (MDA5), which subsequently activate the 
mitochondrial antiviral signaling (MAVS) protein and down-
stream axis for type I IFN production [79]. Cells infected by RNA 
viruses often show an increase in the rate of glycolysis and a de-
crease in OXPHOS activity, which is a favorable state for rapid viral 
replication [80]. Furthermore, lactate induced by glycolytic activa-
tion inhibits RLR-mediated IFN production [81,82]. Upon recog-
nizing cytosolic double-stranded RNAs, RIG-I undergoes confor-
mational changes, oligomerization, and exposure of the two N-ter-
minal caspase activation and recruitment domains (CARDs) that 
are involved in a CARD-CARD interaction with MAVS. The 
transmembrane domain (TM) at the C-terminus of MAVS is re-
quired for its localization at the mitochondrial outer membrane. 
Upon activation, MAVS develops a functional prion-like structure, 
which serves as a platform for the MAVS signalosome for the acti-
vation of the type I IFN pathway. Intriguingly, a recent report 
showed that lactate inhibits this antiviral axis by directly binding to 
the TM domain of MAVS, disrupting the mitochondrial localiza-
tion of MAVS, RIG-I-MAVS interaction and downstream signal-
ing, and IFN-β activation [82] (Fig. 1). 

Epigenetic lactylation of histones 

Surprisingly, lactate can act as a precursor for the epigenetic lactyla-
tion of histone lysine residues, which stimulates gene transcription 
from chromatin. Histones are proteins that are critical in the pack-
ing of DNA into the cell and into chromatin and chromosomes. 
Histones may experience posttranslational modifications in their 
protruding N-terminal tails as well as within the C-terminal region. 
Various histone modifications, including acetylation, methylation, 
and ubiquitylation, were reported before the discovery of histone 
lactylation in 2019 [83]. These changes in the amino acids of his-
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tone proteins can affect gene expression as well as overall chroma-
tin condensation. A total of 28 lysine lactylation sites have been 
identified on the core histones in human and mouse cells. For ex-
ample, in macrophages stimulated to produce lactate by hypoxia, 
IFNγ plus lipopolysaccharide, or bacterial challenge, histone lactyl-
ation accumulated at their promoters is associated with the shift 
from the initial M1-like phenotype to induction of M2-like ho-
meostatic genes at late time points (16–24 hours) after stimula-
tion. Histone lactylation does not occur at the promoters of proin-
flammatory genes, such as Tnf or Il6. The induced M2-like genes 
include Arg1, which is involved in wound healing. Thus, it has 
been suggested that an endogenous “lactate clock” in M1 macro-
phages challenged by bacteria turns on the homeostatic genes at 
the end of the inflammatory phase. This is a new feedback mecha-
nism that restrains macrophage activation [84]. Epigenetic regula-
tion of metabolism and immunity by histone lactylation extends 
our understanding of the roles of lactate under diverse conditions. 

Wound healing 

In healing wounds, cells divide rapidly to activate the glycolytic 
pathway, resulting in lactate accumulation in the interstitial fluids 
up to a range of 5–15 mM [39,85]. Lactate has been shown to pro-
mote reparative angiogenesis through mechanisms including re-
cruitment of endothelial progenitor cells, stimulation of endotheli-
al cell migration, activation of procollagen factors, and enhance-
ment of collagen deposition in the extracellular matrix. Lactate in-
duces the release of mediators such as VEGF, IL-1, and transform-
ing growth factor beta (TGF-β), all of which consequently stimu-
late angiogenesis and promote wound healing [86-88]. Exogenous 
lactate delivery is expected to be helpful in the management of 
non-healing wounds [88]. 

Fig. 1. The metabolism, shuttle, transporters, receptor, and diverse functions (green boxes) of lactate in glycolytic cells. See text for 
details. GPR81, G-protein coupled receptor 81; HCA1, hydroxycarboxylic acid receptor 1; ECM, extracellular matrix; ARRB2, arrestin 
beta 2; Gi, inhibitory G protein; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; MCT, 
monocarboxylate transporter; GLUT1, glucose transporter 1; NAD, nicotinamide adenine dinucleotide; NADH, reduced form of NAD; 
LDHA, A form of lactate dehydrogenase (LDH); ETC, electron transport chain; acetyl-CoA, acetyl coenzyme A; FADH2, reduced flavin 
adenine dinucleotide; TCA, tricarboxylic acid cycle; MAVS, mitochondrial antiviral signaling; RIG-I, retinoic acid-inducible gene 1; dsRNA, 
double-stranded RNA; IFN, interferon.
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Microbiome, lactate, propionate, and 
exercise performance 

The human gut microbiota is linked to various health and disease 
states. Many studies have indicated that the gut microbiota profile 
is related to the prevalence of chronic diseases such as diabetes 
mellitus and metabolic syndrome [89]. Iraporda et al. [90] 
showed that lactate downregulates proinflammatory responses in 
intestinal epithelial and myeloid cells. They suggested beneficial ef-
fects of lactate-containing foods, such as kefir, on gut microbiota in 
general and also showed their protective role against infection by 
pathogenic bacteria such as Salmonella sp. [91,92]. Lactate is an 
end product of bacterial fermentation in many lactic acid bacteria 
(i.e., Lactobacillus and Bifidobacterium), which are regarded as key 
members of the healthy gut microbiota. Lactate produced by Lac-
tobacillus and Bifidobacterium in the colon is rapidly converted into 
short-chain fatty acids, such as propionate, butyrate, and succinate. 
Lactate produced in the gut may also be released into the systemic 
circulation via MCTs and removed or metabolized in distant or-
gans [93]. On the other hand, lactate produced by exercising skele-
tal muscle may be released into circulation and can be transported 
into the gut lumen where lactate-utilizing microbiota strains are 
present. This type of novel communication of lactate between the 
gut and somatic organs was proposed as gut-soma lactate shuttle 
[32,33]. 

Many studies on the athlete’s gut microbiota have shown distinct 
microbial compositions, including elevated abundances of Veil-
lonella, Bacteroides, Prevotella, Methanobrevibacter, and Akkermansia 
[94,95]. A bacterial strain belonging to Veillonella atypica was iso-
lated by Scheiman et al. [96] from stool samples of elite marathon 
runners postmarathon who ran in the 2015 Boston Marathon. In-
triguingly, inoculation of this strain into mice significantly in-
creased the treadmill run time by 13%. They found that V. atypica, 
which utilizes lactate as its sole carbon source, metabolizes lactate 
into propionate and acetate, as detected by metagenomic analysis. 
The 13C3-labeled lactate tracing experiment in mice showed that 
serum lactate crosses the epithelial barrier into the lumen of the gut 
[96]. This study revealed that lactate, a metabolic by-product of 
aerobic exercise, maybe shuttled into the gut lumen via circulation 
and provide a carbon source to V. atypica, a gut microbiota that can 
then convert it to a bioactive propionate that improves exercise 
performance. 

Lactate in clinical settings 

Lactate treatment can be helpful in several clinical conditions. For 
example, lactated Ringer’s (LR) solution is one of the most popu-

lar crystalloid fluids for patients with trauma, burns, and surgery. 
LR contains sodium lactate, which is known to be a metabolic fuel 
that improves cardiac function. In vivo, lactate is rapidly metabo-
lized into bicarbonate by the liver [97]. In a recent study using a 
neonatal hypoxia-ischemia model, lactate administration reduced 
the extent of the brain lesion and facilitated behavioral recovery 
[98]. The usefulness of lactate administration has also been report-
ed in wound healing [88] and muscle regeneration after injury 
[99].  

Increased lactate levels may also be related to maladaptive patho-
logical conditions. For example, lactate accumulation in the TME 
is associated with cancer progression and poor clinical outcomes, 
such as resistance to chemotherapy, increased metastasis, and im-
mune evasion [74,75]. Lactate is often monitored as a prognostic 
indicator of severe disease conditions, such as sepsis. It should be 
noted that increased lactate production is due not only to hypoxia 
or tissue hypoperfusion but also multiple factors. In addition to hy-
poxia, serum lactate increases due to increased production during 
stress conditions (e.g., intense exercise, asthma, and sepsis) and de-
creased clearance of lactate by the liver and kidney. The lactate lev-
els of patients with asthma or hypertension should be interpreted 
based on their medication information. Since β2-adrenergic stimu-
lators may induce upregulation of lactate production, serum lactate 
levels can be blunted in patients using β2-adrenergic receptor 
blockers [8]. 

Conclusion 

Since Warburg’s historical finding of aerobic glycolysis in cancer 
cells, lactate has long been regarded as a culprit of muscle fatigue 
and acidosis-induced tissue damage. However, it is now accepted 
that lactate is a useful metabolic fuel for skeletal muscles, heart, and 
brain. Lactate also functions as a metabolic buffer that links glycol-
ysis and OXPHOS. The introduction of the lactate shuttle concept 
in the early 1980s vastly changed the lactate paradigm and revealed 
that lactate is a ubiquitous molecule that is metabolized and used 
almost everywhere in the body. Lactate shuttles were identified be-
tween astrocytes and neurons, contracting and resting skeletal 
muscles, glycolytic and oxidative cancer cells, and intracellular 
compartments such as the cytosol and mitochondria. The discov-
ery of the lactate receptor GPR81/HCA1 further extended the 
landscape of lactate’s playing grounds, spanning adipose tissue, 
skeletal muscles, liver, kidney, heart, brain, immune cells, endothe-
lium, and stromal fibroblasts in the tumor mass. The receptor-me-
diated nonmetabolic effects of lactate include immunosuppres-
sion, active participation in wound healing with increased angio-
genesis, decreased adipocyte lipolysis, and neuroprotection 
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through anti-inflammatory activities. Lactate overproduced during 
intense exercise has been shown to cross the epithelial barrier into 
the gut lumen, increasing the relative abundance of a strain of V. 
atypica. Metabolic conversion of lactate into propionate by V. atypi-
ca has been shown to increase exercise performance. Finally, lactate 
is involved in the epigenetic regulation of gene expression by lactyl-
ating histones, which contributes to immune modulation and 
maintenance of homeostasis. 

Lactate, regarded for a long time as a metabolic waste product 
since its discovery, is now recognized as a fuel energy source, a pre-
cursor of gluconeogenesis, a signaling molecule, a regulator of gene 
expression, a precursor for exercise-enhancing propionate produc-
tion by gut microbiota, and probably as more unknowns yet to be 
explored. 
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