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Maximal Shannon entropy 
in the vicinity of an exceptional 
point in an open microcavity
Kyu‑Won Park1, Jinuk Kim1, Songky Moon2 & Kyungwon An1*

The Shannon entropy as a measure of information contents is investigated around an exceptional 
point (EP) in an open elliptical microcavity as a non-Hermitian system. The Shannon entropy is 
maximized near the EP in the parameter space for two interacting modes, but the exact maximum 
position is slightly off the EP toward the weak interaction region while the slopes of the Shannon 
entropies diverge at the EP. The Shannon entropies also show discontinuity across a specific line in 
the parameter space, directly related to the exchange of the Shannon entropy as well as the mode 
patterns with that line as a boundary. This feature results in a nontrivial topological structure of the 
Shannon entropy surfaces.

Any real physical system is open since it inevitably interacts with its surroundings. To investigate such a system, 
it is convenient to introduce a non-Hermitian Hamiltonian based on the system-bath interaction model1. In a 
non-Hermitian system, the openness effects are dramatically exhibited in the vicinity of a singular point where 
two interacting modes coalesce, i.e., their eigenvalues and eigenvectors coincide, respectively2. This singular 
point, never occurring in a closed system, is called an exceptional point (EP).

EP has recently been extensively studied in various systems such as cold atoms3, carbon nanotubes4, 
nanowires5, photonic crystal slabs6, electrical circuit resonators7, optical microcavities8, magnon-polariton 
systems9, ultrasonic acoustic cavities10, and so on, both theoretically and experimentally. They have not only 
led to useful applications such as microcavity sensors11,12 and time asymmetric loop for optical communication 
band13 but also revealed many intriguing phenomena related to parity-time symmetry14–16, chirality17,18, phase 
transition19,20, mode switching21 and topological transfer of energy22.

One of the most intriguing effects associated with EP is the radiative properties of atoms interacting with 
two resonance modes in an open cavity. The atomic spontaneous emission in an open cavity is enhanced by the 
Petermann factor23 due to non-orthogonality of modes. Such enhancement has been experimentally confirmed 
in various devices24–26. It is also predicted that the Petermann factor diverges at an EP27, which implies the atomic 
spontaneous emission would be greatly enhanced under this condition. The Petermann factor is also interpreted 
as excess noise28, suggesting the linewidth of a laser operating at an EP would be greatly broadened beyond the 
Schawlow-Townes limit.

Recently, there has been a report of experimentally observing increased linewidth of phonon lasing coupled 
to two cavity modes coalescing at an EP, supporting this line of reasoning29. However, there is a conflicting theory 
suggesting negligible enhancement in spontaneous emission at an EP due to coherent perfect cancellation of two 
diverging Petermann factors associated with two cavity modes30; the theory is classical in parts, and only the 
bi-orthogonality of the cavity modes is taken into account whereas the spatial distributions of the cavity modes 
are neglected. The reason why this conflict arises and which interpretation of the spontaneous emission near EP 
is valid are still open questions.

It is worth noting that at an EP the spatial integral of the square of the mode function over the cavity com-
pletely vanishes27, which implies the mode function itself would become spatially irregular and disordered in 
both real and imaginary parts. It is therefore natural to conjecture that the enhancement in spontaneous emis-
sion as well as the excess noise associated with the diverging Petermann factor is to some degree related to this 
disordered mode pattern. One is thus led to ask how the information contents associated with the mode dis-
tribution behave near an EP in an open physical system in term of the Shannon entropy, which as a measure of 
average information contents is directly related to the degree of the irregular31 or disorder physical quantities32.
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In this paper, we take on this intriguing question by introducing the Shannon entropy for the probability 
density of eigenmodes and applying it around an EP in a dielectric microcavity. The Shannon entropy is originally 
defined as a measure of average information contents associated with random outcomes in data communication33 
and information theory34. It has been utilized in diverse research areas to quantify amount of information, 
including black holes35, confined hydrogen-like systems36 and quantum entanglement37. The Shannon entropy 
has also been used as an indicator for avoided crossing in dielectric microcavities38 and related to the quantum 
transition from order to chaos39.

Eigenmodes and eigenvalues in an elliptical dielectric microcavity.  Before we evaluate Shannon 
entropy, let us first discuss the physical system that we consider. Assume a closed physical system described by 
a Hermitian Hamiltonian HS . Let us suppose it is allowed to interact with a bath and thus becomes an open sys-
tem. The resulting open system can be described by a non-Hermitian Hamiltonian formulated by

where G(out)
B  is an outgoing Green function in a bath, and VSB(VBS ) is the interaction from the bath (the closed 

system) to the closed system (the bath)1. It should be noted that the domain of H and thus that of its eigenvec-
tors is restricted to the part of the system excluding the bath1,40. If we pay attention to two particular eigenstates 
interacting with each other, with the interaction with the other states negligible, the non-Hermitian Hamiltonian 
can modeled in a 2-by-2 matrix form as

where ǫi ∈ C(complex) and its eigenvalues are

with Z =
√

(ǫ1−ǫ2)2

4 + g2 . We denote the eigenstates corresponding to eigenvalues E± as ψ± , respectively. Typi-
cally, we assume the coupling g to be of a real value to simplify the consideration of strong and weak interac-
tions. Under this condition, there is a repulsion in the real part of the energy eigenvalue with a crossing in the 
imaginary part for 2g > |Im(ǫ1)− Im(ǫ2)| . On the other hand, there is a repulsion in the imaginary part with a 
crossing in the real part for 2g < |Im(ǫ1)− Im(ǫ2)| . The former (latter) case corresponds to the strong (weak) 
interaction. Especially, when Z = 0 , the eigenvalues E± are degenerate while the eigenfunctions ψ± coalesce to 
|ψEP� ∝ |ψ1� + i|ψ2� (with a choice of π/2 relative phase)41, corresponding to an EP, where |ψ1,2� are eigenfunc-
tions with eigenvalues ǫ1,2 when g = 0 . The EP is a singular point where the transition between the strong and 
the weak interactions takes place27,42.

In the present work, we consider an elliptical dielectric two-dimensional microcavity as our open system. The 
closed version of this system is integrable and can be associated with a Hermitian Hamiltonian. The off-diagonal 
elements in Eq. (2) comes then only from the external interaction ( VSBG

(out)
B VBS ) in Eq. (1) in our system. The 

domain of eigenmodes should then be restricted to the inside of the ellipse as discussed above.
In order to study EP by two interacting modes, we need two external parameters to vary. We choose n 

the refractive index of the cavity medium and χ the deformation parameter associated with the major axis 
a = R(1+ χ) and the minor axis b = R

1+χ
 . These two parameters can be independently varied and easily con-

trollable in actual experiments. Since functional form of the matrix elements ǫ1,2 and g on these parameters are 
not explicitly known, which is usually the case in many open physical systems, we rely on numerical methods to 
obtain the eigenvalues and their eigenmodes of electromagnetic wave confined in the dielectric cavity.

We obtained the eigenvalues and eigenmodes by solving the Helmholtz equation ∇2ψ + n2k2ψ = 0 with the 
boundary element method43 for TM electromagnetic modes in the elliptical dielectric two-dimensional cavity 
(in xy plane), where k is the wave number and ψ is the z-component of the electric field.

Shannon entropies in dielectric microcavity.  The Shannon entropy for a discrete probability distribu-
tion ρi given at N number of different states is defined as

with a normalized condition 
∑N

i=1 ρi = 1 . Here, we choose the mode intensity pattern inside our cavity as the 
probability distribution and the N-mesh points for the mode intensity pattern as the N spatial-coordinate states 
of a fictitious particle in the corresponding billiard or as our N different states. The probability distributions are 
discretized at the N-mesh points. Note that the Shannon entropy in our case is different from the von Neumann 
entropy: the former is defined in terms of the probability distributions corresponding to the discretized spatial-
coordinate states whereas the latter is defined by the distribution of the eigenvalue spectrum.

Results
We pay attention to two particular modes, which form an EP in the parameter space s = (n,χ) . Their eigen-
values are depicted in Fig. 1 as a function of n and χ in the form of eigenvalue surfaces. In order to display the 
EP structure more clearly, we consider the eigenvalue offsets, �E± = E± − EAV with EAV = E++E−

2  , from their 

(1)H = HS + VSBG
(out)
B VBS,

(2)H =
(

ǫ1 g
g ǫ2

)

,

(3)E± =
ǫ1 + ǫ2

2
± Z

(4)S(ρ) = −
N
∑

i=1

ρi log ρi ,
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average values EAV instead of the eigenvalue themselves E± . The eigenvalues are presented in kR with k the 
complex wave number. An EP is located at 

(

nEP ≃ 2.9772,χEP ≃ 0.16657
)

 . The line n = nEP in Fig. 1 separates 
the two regimes of interactions, i.e., the strong ( n > nEP ) and weak ( n < nEP ) interactions. The mode patterns 
|ψ±(x)|2 of two interacting modes at three representative points (A, B and C) in the parameter space are plotted 
in Fig. 1c. Note that the mode pattern at the EP (B) has more uniform and chaotic probability distribution than 
the others (A1,2 , C 1,2).

Shannon entropies in the vicinity of an EP.  In Fig. 2, the Shannon entropies S(ρ; n,χ) of probability 
density for the two interacting modes around the EP considered in Fig. 1 are plotted in the parameter space. 
The plots reveal two interesting features, an extreme value in the vicinity of the EP and a nontrivial topological 
structure around it, resembling that of the imaginary part of energy eigenvalues.

For the extreme value, we first note that the Shannon entropy is maximized near the center of interaction at a 
fixed refractive index n in both weak and strong interaction regimes. It is because the coherent superposition of 
eigenfunctions in either weak or strong interaction regime makes the intensity distribution more uniform. The 
dotted black arrows in Fig. 2a suggest that the trace of these maximum points would reach a peak of S(ρ) ≃ 7.89 
in the vicinity of the EP. We can understand this feature by recalling that the mode function at an EP is given by 
ψEP ∝ ψ1 + iψ2 , where both ψ1 and ψ2 can be approximately described by real wavefunctions far from the EP. 
As a result, the nodes of the intensity distribution occur only where two mode functions vanish simultaneously, 
which is extremely rare, giving rise to a distribution with a weak contrast and increased uniformity, though cha-
otic in pattern, and hence an increased Shannon entropy. On the other hand, when an avoided crossing occurs, 
we have ψ± ∝ ψ1 ± ψ2 , which still can give a clear node structure with a strong contrast or a smaller Shannon 
entropy. A similar consideration can be made for mode crossing.

A close examination reveals that the maximum Shannon entropy occurs slightly off the EP. Magnified views 
of the Shannon entropies in the vicinity of the EP, Fig. 3a,c, show that only the mean values (dashed gray lines) 
of the Shannon entropies of two interacting modes show a maximum at the EP. Individual Shannon entropies 
either exhibit a peak and a dip structure, respectively, in the weak interaction region ( n < nEP ) or show rapid 
transitions from one branch to another in the strong interaction region ( n > nEP ) in the vicinity of the EP. In 
Fig. 3a, the Shannon entropies S(χ) are plotted as a function of χ with the refractive index fixed at n− = nEP − δn 
(weak interaction regime) with δn = 1× 10−10 . In this case, mode crossing without exchange of mode patterns 
results in the repulsion of Shannon entropies with an extreme local minimum and a local maximum, respectively, 

Figure 1.   The real and imaginary parts of the eigenvalues of two interacting eigenmodes in a dielectric elliptical 
microcavity round an EP. (a) The real parts of eigenvalues ( �E± ) in the parameter space (n,χ) . They show 
repulsions for n > nEP (strong interaction regime) whereas showing crossings for n < nEP (weak interaction 
regime). (b) The imaginary parts of eigenvalues. On the contrary to the real parts, crossings occur for n > nEP 
while repulsions for n < nEP . The EP is located at (nEP ≃ 2.9772,χEP ≃ 0.16657) . The blue (red) surface 
corresponds to E+(E−) in both (a) and (b). (c) The mode patterns for two interacting modes (A1,2,B,C1,2) are 
plotted for (n = 3.3,χ = 0.161) , (n ≃ nEP,χ ≃ χEP) , and (n = 2.7,χ = 0.172) , respectively. The mode patterns 
are the most uniform at the EP.
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at χ ∼= χEP . On the other hand, in Fig. 3c, the Shannon entropies S(χ) at n+ = nEP + δn (strong interaction 
regime), where avoided crossing with mode pattern exchange occurs, result in the crossing or the exchange of 
Shannon entropies at χ ∼= χEP . From these considerations, we can understand why the Shannon entropy sur-
faces in Fig. 2b resemble the imaginary part of the energy eigenvalue surfaces in Fig. 1b. Interestingly, the slopes 
Ṡ(χ) ≡ ∂S

∂χ
|n=n∓ of the Shannon entropies in Fig. 3b,d become divergently large as the EP is approached in both 

n− and n+ cases. S(n) and Ṡ(n) at χ± = χEP ± δχ with δχ = 10−10 behave in a similar way.

Discussion
Diverging slopes of Shannon entropies very near an EP.  In order to understand the behaviors of the 
Shannon entropy and its divergent slope very near the EP, let us consider the Shannon entropy as a function of 
small perturbation ǫ in the vicinity of the EP by using the Newton-Puiseux series44. The eigenvalue equations in 
the vicinity of an EP can be written as

(5)
(HEP + ǫH1 + ···)

(

|ψEP� + ǫ
1

2 |ψ1� + ···
)

= (�EP + ǫ
1

2 �1 + ···)
(

|ψEP� + ǫ
1

2 |ψ1� + ···
)

.

Figure 2.   Shannon entropies of two interacting modes around the EP. (a) The Shannon entropy for the intensity 
distributions of two interacting modes in a dielectric elliptical microcavity around the EP considered in Fig. 1. 
The Shannon entropy is peaked at the center of interaction either in the strong or the weak interaction regime 
for a fixed refractive index n. (b) The Shannon entropy �S(ρ) with respect to a mean is obtained in the same 
way as in Fig. 1. The structure of �S(ρ) resembles that of �Im(kR) in Fig. 1b. The blue (red) surface corresponds 
to ψ+(ψ−) eigenmode in (a) and (b).
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Using this expansion we can express the probability density ρ±(x, ǫ) = |ψ±(x, ǫ)|2 as

where c =
√
�φEP|H1|ψEP� with �φEP| the adjoint of |ψEP� and JEP(x) is the Jordan vector at the EP (see “Meth-

ods”). Note that the probability density is given by ρ(x) ≡ |ψ(x)|2 for the electromagnetic eigenmode ψ(x) of a 
dielectric microcavity. Consequently, the Shannon entropy near the EP can be expanded to the lowest order of ǫ as

and its derivative as

and therefore dS±(ǫ)dǫ → ∓∞ as ǫ → 0 . Equations (7) and (8) explain the branching of the Shannon entropies at 
the EP with divergent slopes as shown in Fig. 3. The fact that the slopes diverge at the EP indicates the Shannon 
entropy would change rapidly under perturbations in the vicinity of the EP. These property can be used to build 
a sensor operating at an EP by monitoring the eigenmode distribution.

It is noteworthy that the separation (repelling) of two Shannon entropies is larger for χ < χEP (also for 
n < nEP although not shown) than for χ > χEP (or n > nEP ) in Fig. 3a,c. This is due to the fact that the strong 
(weak) interactions between two modes induce the strong (weak) mixture of their eigenfunctions, resulting in 
the more (less) similar Shannon entropies. Consequently, the global maximum (Smax

∼= 7.89996) of the Shannon 
entropy occurs toward the doubly weak interaction region specified by χ < χEP and n < nEP as shown in Fig. 4. 
The displacement of the global maximum of Shannon entropy from the EP is extremely small, in the order of 
�χ/χEP ≃ 3× 10−4 and �n/nEP ≃ 7× 10−4 . The global maximum of the average of two Shannon entropies 
occurs exactly at the EP as already discussed in Fig. 3.

(6)
ρ±(x, ǫ) ≃ |ψEP(x)|2 + ǫ|c|2|JEP(x)|2

± 2
√
ǫRe

[

cψ∗
EP(x)JEP(x)

]

,

(7)
S±(ǫ) ≃ SEP ∓ 2

√
ǫ

N
∑

i=1

Re
[

cψ∗
EP(xi)JEP(xi)

]

×
{

log
[

|ψEP(xi)|2
]

+ 1
}

,

(8)

dS±(ǫ)

dǫ
≃ ∓

1√
ǫ

N
∑

i=1

Re
[

cψ∗
EP(xi)JEP(xi)

]

×
{

log
[

|ψEP(xi)|2
]

+ 1
}

,

Figure 3.   Shannon entropies and their slopes in the vicinity of the EP. (a) Magnified view of the Shannon 
entropies S(χ) and (b) the slopes of the Shannon entropies at n− = nEP − δn with δn = 1× 10−10 . (c) 
Magnified view of the Shannon entropies S(χ) and (d) the slopes of the Shannon entropies at n+ = nEP + δn 
with δn = 1× 10−10 . The gray dashed line in (a) and (c) represents the average of the two Shannon entropies. 
The blue (red) curve corresponds to ψ+(ψ−) eigenmode in (a)–(d).
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These two observations support our conjecture that the mode distribution at the EP might contain the largest 
information contents or exhibit the most uniformly complex spatial patterns, roughly speaking. The statement is 
true for the average Shannon entropy and approximately true for the global maximum. Based on this confirma-
tion, one may then legitimately ask the relation of the most uniformly complex mode pattern at the EP and the 
increased vacuum fluctuations occurring in the EP mode. The answers to such investigation, which is beyond 
the scope of the present work and is thus left for a future study, would then shed light on the current conflicting 
experimental observation of an increased linewidth29 to the classical theory predicting no such enhancement30.

Topological structure of the Shannon entropy in the vicinity of an EP.  For the nontrivial topologi-
cal structure of the Shannon entropy seen in Fig. 2a,b, we note that the two cyclic variations are required for the 
Shannon entropy values to return to the original values on the Shannon entropy surfaces, just like the imagi-
nary part of the complex energy surfaces shown in Fig. 1b. The surface discontinuity is exhibited along the line 
n ≃ nEP for χ > χEP—let us call this line the interaction branch (IB)—for both modes in Fig. 5a,b. This feature 
can be quantified by δS(ρ) = S(ρ; n−,χ)− S(ρ; n+,χ) as shown in Fig. 5c, where δS(ρ) remains almost zero 
for χ < χEP whereas it increases significantly for χ > χEP . The discontinuity of the Shannon entropy surfaces 
across the IB is directly related to the exchange of the Shannon entropy as well as the mode pattern exchange.

This exchange property can be further quantified by introducing the relative entropy or the Kullback-Leibler 
(KL) divergence, which is a measure of the distance between two probability distributions of a random variable45. 
The KL divergence from Q to P, DKL

(

P ‖ Q
)

 , is defined by

The KL divergence for the two interacting modes along the n± lines, respectively, is plotted in Fig. 5d. It is seen 
that the KL divergences are almost the same when χ < χEP and they become zero at the EP. However, their dif-
ference �Dw,s

KL becomes larger across the interaction branch when χ > χEP . These results are consistent with the 
fact that the mode patterns as well as the Shannon entropies in the weak interaction regime are not exchanged 
whereas those in the strong interaction regime are exchanged.

Methods
Series expansion of Shannon entropy and its derivative near an EP.  We performed the series 
expansion of the eigenvectors and eigenvalues near an EP following the method described in Ref.44. At an EP, 
two eigenvectors coalesce to one eigenvector |ψEP� with an eigenvalue �EP.

Its adjoint satisfies

For completeness at the EP, we can define the so-called Jordan vector |JEP� with the relation

and its adjoint by

(9)DKL(P � Q) = −
N
∑

i=1

P(xi) log
Q(xi)

P(xi)
.

(10)(HEP − �EP)|ψEP� = 0

(11)�φEP|(HEP − �EP) = 0.

(12)(HEP − �EP)|JEP� = |ψEP�.

Figure 4.   Global maximum of Shannon entropies. The global maximum Smax
∼= 7.89996 occurs for ψ+ mode 

of eigenvalue E+ , located at χ ∼= χEP − 0.00005 ≃ 0.9997χEP and n ∼= nEP − 0.002 ≃ 0.9993nEP.
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The Jordan vector and its adjoint are subject to the normalization conditions �φEP|JEP� = �IEP|ψEP� = 1 and 
�IEP|JEP� = 0.

In order to obtain the expressions for the eigenvalues and eigenvectors near the EP, let us consider the Taylor 
expansion of the Hamiltonian in terms of a small perturbative parameter ǫ ≪ 1 near the EP.

Note that the eigenvalues and eigenvectors in the vicinity of EP can be expanded in fractional powers of ǫ 
(Newton-Puiseux series). Hence, the eigenvalue equations in the vicinity of EP can be written as

Equating terms corresponding to different powers of ǫ , we obtain the following relations for the leading orders.

Comparing the Eq. (12) with Eq. (17) yields the result:

In order to find the �1 , let us rewrite Eq. (18) using Eq. (19):

(13)�IEP|(HEP − �EP) = �φEP|.

(14)H = HEP + ǫH1 + ···.

(15)
(HEP + ǫH1 + ···)

(

|ψEP� + ǫ
1

2 |ψ1� + ···
)

= (�EP + ǫ
1

2 �1 + ···)
(

|ψEP� + ǫ
1

2 |ψ1� + ···
)

.

(16)HEP|ψEP� =�EP|ψEP�,

(17)HEP|ψ1� =(�EP|ψ1� + �1|ψEP�),

(18)(HEP|ψ2� +H1|ψEP�) =(�EP|ψ2� + �1|ψ1� + �2|ψEP�).

(19)|ψ1� = �1|JEP�.

Figure 5.   Topological structure of Shannon entropies around the EP. (a) The Shannon entropy for ψ− state 
and (b) for ψ+ state drawn individually. The discontinuity appears at the line n ≃ nEP in both cases. The EP as 
a branch point, the branch cut (BC)—blue (red) arrow for the real (imaginary) part of the eigenvalue—and the 
interaction branch (IB) are shown on the base planes. (c) The difference δS(ρ) between the Shannon entropies 
at n = n− and n = n+ for ψ− (red dots) and ψ+ (blue dots) states. (d) The KL divergence DKL or the relative 
entropy at n = n+ (orange dots) and at n = n− (yellow dots) for two interacting modes.
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With Eq.  (20) multiplied by �φEP| from the left, we get �φEP|[�21|ψ
J
EP� + �2|ψEP� −H1|ψEP�] = 0 since 

�φEP|(HEP − �EP) = 0 . Using the normalization condition for the Jordan vector, we find

As a result, the two values of �1 = ±c with c =
√
�φEP|H1|ψEP� determine the leading terms in expansions. So 

the eigenvalues are

and the eigenvectors are

Now let us calculate the Shannon entropy and its derivative. Shannon entropy in our case is defined as

for the probability density ρ(x) ≡ |ψ(x)|2 of a classical eigenmode ψ(x) of a two-dimensional dielectric micro-
cavity. Near an EP, the probability density ρ±(xi , ǫ) = |ψ±(xi , ǫ)|2 are given by

up to the lowest order of ǫ . Then, the Shannon entropy in the vicinity of the EP can be written as

where SEP ≡ −
∑N

i=1 |ψEP(xi)|2 log
[

|ψEP(xi)|2
]

 and W1 ≡ Re
∑N

i=1

[

cψ∗
EP(xi)JEP(xi)

]{

log
[

|ψEP(xi)|2
]

+ 1
}

 . 
Hence, the dominant term �S(ǫ) for the separation of the Shannon entropy at EP is given by

The derivative of the Shannon entropy with respect to ǫ is given by

Using

as ǫ → 0 , we obtain

As a result, dS±(ǫ)dǫ → ∓∞ as ǫ → 0 . Figure 3 shows these features clearly.
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]∂ρ±(xi , ǫ)

∂ǫ
.

(29)
∂ρ±(xi , ǫ)

∂ǫ
≃ ±

1√
ǫ
Re

[

cψ∗
EP(xi)JEP(xi)

]

(30)
dS±(ǫ)

dǫ
≃ ∓
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ǫ
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