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Abstract

Keywords:

Introduction: Lumosity’s Memory Match (LMM) is an online game requiring visual working mem-
ory. Change in LMM scores may be associated with individual differences in age-related changes in
working memory.

Methods: Effects of age and time on LMM learning and forgetting rates were estimated using data
from 1890 game sessions for users aged 40 to 79 years.

Results: There were significant effects of age on baseline LMM scores (B = —.31, standard error or
SE = .02, P <.0001) and lower learning rates (B = —.0066, SE = .0008, P <.0001). A sample size of
202 subjects/arm was estimated for a 1-year study for subjects in the lower quartile of game perfor-
mance.

Discussion: Online memory games have the potential to identify age-related decline in cognition and
to identify subjects at risk for cognitive decline with smaller sample sizes and lower cost than tradi-
tional recruitment methods.

Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Background

In older individuals a number of neurodegenerative con-
ditions are associated with cognitive decline, especially
decline of memory function. These disorders include Alz-
heimer’s disease [ 1], Lewy body disease [2], Parkinson’s dis-
ease [2,3], cerebrovascular disease [4-6], and other
conditions [7] that have been associated with memory im-
pairments [8—10]. Currently, there is no effective treatment
for slowing the progression of these neurodegenerative
disorders, despite numerous expensive clinical trials [11].
One of the major obstacles to developing effective therapies

*Corresponding author. Tel.: +1-415-221-4810; Fax: +1-415-668-
2864.
E-mail address: scottm@lppi.ucsf.edu

http://dx.doi.org/10.1016/j.dadm.2015.04.002

for Alzheimer’s disease and other neurodegenerative disor-
ders is the high cost of identifying, recruiting, and screening
participants for clinical trials.

One approach toward reducing the cost of clinical trials is
to develop Internet-based registries of prescreened subjects
who meet specific criteria for eligibility [11,12]. Recent
studies using brief computerized cognitive tests have
shown that intraindividual decline in cognitive
performance predicts the presence of cortical amyloid in
cognitively normal subjects [13,14]. An Internet registry
that administers computerized cognitive assessments could
be used to longitudinally follow a large, diverse population
and identify subjects who demonstrate progressive
intraindividual decline. Furthermore, it has been suggested
that the use of auxiliary baseline covariates can improve
the efficiency of the estimators for treatment effects [15].
Therefore, measurements of rates of decline before subjects
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are enrolled in randomized studies may be useful as covari-
ates to predict future rates of decline and increase the statis-
tical power of the study. Furthermore, higher statistical
power could facilitate clinical trial designs with smaller
sample sizes and reduced length of monitoring.

Lumos Labs is the developer of Lumosity, which is a suite
of mobile and web-based games designed to facilitate cogni-
tive training. Over one million individuals have played a va-
riety of these games longitudinally over multiple years.
Although the validity of these games with respect to existing
measures of working memory has not been established,
many of the games have been adapted from standard cogni-
tive tests. One popular game is Lumosity’s Memory Match
(LMM), which is a two-back visual working memory task.
Although a previous cross-sectional analysis of LMM data
suggested that older age was associated with reduced
LMM game scores [16], to our knowledge, there has been
no longitudinal analysis relating LMM game scores to age.

Similar to other measures of change in cognitive perfor-
mance, the instantaneous slope of LMM game scores can
be primarily determined by the two opposing forces of
learning and forgetting [17-20]. The learning rate imparts
a positive component to the slope whereas the forgetting
rate contributes the negative component. Cognitive decline
may be associated with low learning rates or high
forgetting rates, but cognitive decline may not necessarily
exhibit declining scores if task engagement frequency is
sufficiently high. Therefore, estimation of both learning
and forgetting rates would be required to evaluate potential
cognitive decline with LMM scores.

The first goal of this study was to determine the association
between age and the learning rate, forgetting rate, and baseline
LMM score. We hypothesize that learning rates, forgetting
rates, and baseline scores would decline with age. If this hy-
pothesis is correct, then progressive intraindividual decline
in the learning rate over many years of observation may also
indicate aging and cognitive decline, an assertion that could
be tested in a future study. The second goal of this study was
to develop a model that would explain much of the variation
in the LMM data in terms of learning and forgetting effects.
If a low learning rate is an indicator of memory impairment,
then one would expect an improvement in learning rates for in-
dividuals who have completed an effective AD treatment in
future studies. Therefore, a final goal was to estimate the sam-
ple size of a study that has 80% power to detect a 25% reduc-
tion in the gap between the average learning rate of the sample
for a particular age and the average learning rate for subjects
who had been identified as decliners of the same age.

2. Methods
2.1. Instrument

LMM is an online two-back visual working memory
game developed by Lumos Labs (San Francisco, CA).
LMM presents a randomly generated sequence of colorful

geometric figures, and the user is tasked with indicating
whether the current figure matches the one presented two fig-
ures prior. The user is given 45 seconds to match as many fig-
ures as possible. The session number, session date, number
of attempted matches, and the number of correct matches
(score) are recorded for each session. The validity of the
LMM score as a measure of working memory has not yet
been evaluated, and there was no possibility of comparing
LMM performance to accepted measures of valid working
memory for this study.

2.2. Sample

Deidentified LMM game session (at least one complete
game) data for 1.3 million users was analyzed. The data
included session numbers, the session dates, and the scores
for each subject in the sample. Demographic data such as
the age, gender, and education level for each subject were
also included. Subjects played at least one session of
LMM at some time between January 2007 and August
2013. Most subjects played dozens of sessions during that
period, and some played several thousand sessions. The
game sessions were unsupervised and the environments
where the games were played may not have been free from
distractions. No assessment of working memory or motor
function before enrollment had been obtained for the sub-
jects. Moreover, the sample is limited to people who have ac-
cess to the Internet and play computer games.

One thousand eight hundred and ninety subjects were
selected from the original data set based on the satisfaction
of several criteria. First, those selected must have attained
an age between 40 and 79 years by their first session. Sec-
ond, selected subjects must have played 50 sessions of
LMM over 1 or more years to allow for more robust esti-
mates of forgetting. Third, selected subjects must have
played on 4 or more separate days. This third criterion
ensured that each individual had at least three intersession
time gaps, which are necessary for estimating individual
forgetting rates. Finally, the selected subjects must have
played at least three consecutive sessions on 3 or more
days. Because the forgetting effect is negligible when the
intersession time gaps are less than one day, this final crite-
rion ensured a good estimate of the learning rate, which was
not confounded with the forgetting effect. The final sample
consisted of older (mean age = 58.2, standard deviation or
SD = 9.5, range = 40-79, 69.4% women) individuals who
played 50 LMM sessions over one or more years.

2.3. Model and measurements

Using the nlme package for the R statistical computing
environment, we estimated the individual LMM learning
rates, forgetting rates, and the cross-sectional effects of
age on learning rates, forgetting rates, and baseline scores
with a linear mixed effects regression model. The first four
sessions were discarded to allow users to become familiar
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with the game, and the last five sessions were set aside to test
the forecast accuracy of the model. The fifth session was the
baseline session, and changes in the LMM scores were
measured with respect to this session. Equations 1 through
3 represent a model for the difference between the scores
for the Sth session and the baseline session for the ith
individual. In equation 1, the score for the ith individual
on the Sth session is Yg;; the baseline score is Ys;; and
the total elapsed time, measured in days between the first
and the Sth session, is Ts;, where S is an index between 6
and 45.

The random slope (a;) associated to the session number
is the linear rate at which the ith individual’s scores in-
crease per session and is interpreted as the learning rate.
Alternatively, the random slope (b;) for the time variable
is the linear rate at which the ith individual’s scores
decline per year after adjustment for the accumulated
practice and is interpreted as the forgetting rate. In equa-
tions 2 and 3, the random slopes (a;, b;) are expressed in
terms of the population averages (a,, b,) for the mean
age (A,), adjustments for the individual baseline age
(As;), and the individual random effects (e, €pi)-
Equation 4 relates the individual baseline score (Ys;) to
the population average (Ys,) for the mean age and an
adjustment for baseline age. The parameters of interest
are the age effects (a,B,y) and the random effects (e, ;)
associated to the individual differences in the learning
rates with respect to the mean learning rate for other indi-
viduals in the same age group.

Ys,i_YSYi:ai * (S_5>+bl * (TS,i_T57i)/365+SS7i (1)

ai:a#-’-a X (AS,i_A/l.)_i_gﬂ,i (2)
bi:bﬂ—l—ﬁ * (As‘i—A”)“‘Sb‘i 3
YS,i:YS,u+Y * (ASAVi_A/.L)_'—Si (4)

2.4. Sample size study with LMM pilot data

An Internet game may never be validated for use in a
clinical trial for AD treatments. Nevertheless, to demon-
strate the potential of an Internet registry of Internet
game play data for screening and assessing subjects during
a clinical trial, we computed the sample size of a putative
randomized placebo-controlled study using the LMM sam-
ple as pilot data. We supposed that a group of decliners
could be identified during the first 45 LMM sessions. After
discarding the first four sessions, we estimated the learning
rates for the sample with the mixed effects model specified
by equations 1 through 3. Subjects with estimated learning
rates lower than the 25th percentile for their ages were
identified as decliners. Then we supposed that the

decliners could be randomly allocated to two groups of
equal size with one group given a placebo and the other
an effective AD treatment. Subjects in both groups may
be asked to play four sessions of LMM on 14 days
spanning 1 year for a total of 56 sessions per subject.
The intersession time gaps, measured in days, between
the 14 testing days were assumed to be the following: 1,
28, 1, 56, 1, 84, 1, 28, 1, 56, 1, 84, 1. Consecutive days
were separated by 1 day.

Each decliner’s trajectory of scores deviated from the ex-
pected trajectory given by the fixed effects. If the treatment
effectively increases the learning rate, then the deviations
from the expected scores should shrink for the participants
in the treatment group. Let Cs; = Ys; — Yk denote the
change in the score between the Kth and the Sth sessions
for the ith subject, when session K occurs during the first
day of the trial. Further define (/\szi to be the expected
change for a subject possessing average learning and forget-
ting rates, and beginning the study with the same age and
baseline score as the ith subject, and playing LMM with
the same frequency. Then the subject’s deviation from the
expected change is given by Dg; = Cg; — éS,i- If the pla-
cebo group is labeled with “A” and the treatment group is
labeled with “B”, then the models for deviation after assign-
ment to group A or B are given by equations 5 and 6 with
the random effects denoted by o and the fixed effects
denoted by B.

Dg;i=Boa+Bia * (S—K)+8; * (Ts;—Tk ;) +aoa+aa
* (S—K)+ay * (Tsi—Tk,) & )

Dsi=0Bos +615 * (S—K)+8, * (Tsi—Tk;)+aop+ais
* (S_K)+0£2 * (TS,i_TK,i)+8ij (6)

The parameters of interest, 3,5 and B;g, are the average
interactions between the treatment and the session numbers
for the placebo and treatment groups, respectively. We
assumed that a successful treatment will reduce the slope,
1B, for the treatment group by 25%, so that Bja —
Big > .25 * Bya. Diggle et al. [21] provides a sample
size formula, which requires estimates of the fixed effects
and random effects in equation 5. The necessary parameter
estimates were obtained by fitting a random effects model
to the decliners’ LMM data. Then we calculated the sample
size to detect a 25% reduction in B;g with 80% power and
5% significance.

3. Results
3.1. Age effects

A likelihood ratio test comparing the full model speci-
fied by equations | through 3 to a restricted model that
did not include age as a covariate was significant
(x*(2) = 104, P < .0001). Table | summarizes the
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Table 1
Fixed effects game play data
Standard
Estimate error P-value
Baseline score [Yk ] 18.95 0.16 <.0001
Baseline score* (age 58 years) [y] —0.31 0.02 <.0001

Learning rate [a,] 0.37 7.48E—003 <.0001
Learning rate* (age 58 years) [a] —6.56E—003 7.87E—004 <.0001
Forgetting rate [b,] —2.12 0.19 <.0001
Forgetting rate* (age 58 years) [B] 0.02 0.02 27

parameter estimates for the entire sample of 1890 LMM
players. Consistent with our hypotheses, older ages were
associated with lower baseline scores (y = —0.31, stan-
dard error or SE = 0.16, P < .0001) and lower learning
rates (o = —.0066, SE = .0008, P < .0001). Older ages
were not associated with more severe forgetting rates
(B = .02, SE = .02, P < .27), a result that was contrary
to our hypothesis.

The age trends for the baseline scores and the learning
rates are graphically shown in Fig. 1 and 2 with age
accounting for only 4% of the variation in the learning
rates. The relatively large standard deviation (¢ = 0.31;
Table 2) in the learning rates, compared with the age-
adjusted mean (a, = .37), suggests a wide range in learning
ability for all ages with some learning rates near zero.

Although participants played LMM at different times
and with different frequencies, the usage patterns did not
meaningfully differ by age group and, therefore, did not
have an influence on reported age effects. The mean num-
ber of play days was 18.58 for ages 40 to 59 and 18.02
for ages 60 to 79 (pooled SD = 6.36). The difference of
the mean play days between the two age groups was not sta-
tistically significant (F(1,1888) = 3.652, P > .05). The
mean engagement period, measured in days, was 695 for
ages 40 to 59 and 650 for ages 60 to 79 (pooled
SD = 289). The difference of 45 days was statistically sig-
nificant (F(1,1888) = 11.02, P < .01). The mean number of
sessions per day was 2.15 for ages 40 to 59 and 2.22 for
ages 60 to 79 (within subject SD = 1.84, between subject
SD = .99). The difference of a small fraction of a session
was significant (F(1,1888) = 6.17, P = .01). The mean
number of days between sessions was 31.72 for ages 40
to 59 and 29.76 for ages 60 to 79 (within subject
SD = 100.41, between subject SD < .01). The effect of
age on the days between sessions was not significant
(F(1,1888) = 3.161, P = .07).

Table 2
Random effects standard deviations game play data

Standard deviation

Baseline score [g;] 6.92
Learning rate [e, ;] 0.31
Forgetting rate [y ] 7.09
Standard dev. [eg ;] 5.05

3.2. Model fit

The marginal R? (0.16) and the conditional R? (0.75) for
the full model were also estimated with r.squaredGLMM in
the MuMIn package for R. The conditional R? is the propor-
tion of the total variation explained by the full model,
including both the fixed and random effects, whereas the
marginal R? is the proportion explained by the fixed effects
only. The high conditional R? indicates a good fit for each
individual’s data series and validates the use of a random ef-
fects model. The relatively low marginal R* indicates that
the average does not fit the data very well and therefore
also reinforces the need for random effects at the subject
level.

A measure of forecast accuracy is the root mean squared
error of prediction (RMSEP) for the five forecasts for each
participant. The average RMSEP was 5.27 (SD = 3.44).
The fitted model and the forecasts are plotted with the
actual scores for four individuals in Fig. 3. The forecast er-
rors for these four examples are low relative to the average
RMSEP. In Fig. 4, the scores and forecasts of four decliners
are plotted. Contrasting against the first four examples, the
trajectories in Fig. 4 are flat, showing no general improve-
ment of the score over time. Another measure of forecast
accuracy is the test-retest reliability, which was estimated
by the sample correlation between the fifth and sixth ses-
sions. The estimated test-retest reliability was 0.79.

3.3. Sample size

Two hundred and two subjects per arm are required to
detect a 25% reduction in the gap between the average
age-adjusted learning rate of the entire sample and the
average age-adjusted learning rate for subjects who had
been identified as decliners with 80% power and 5% signif-
icance.

4. Discussion

There is considerable interest in developing computer-
ized tests [22] that will identify subjects at risk for the
development of cognitive impairment and dementia.
Such tests could be used to screen subjects for clinical
trials before prescribing treatments aimed at slowing
cognitive decline. Longitudinal change in standard neuro-
psychological assessments could be used in this fashion,
but the high cost of having subjects tested in-person by
neuropsychologists prevents this approach on a large
scale. The availability of online game data represents an
additional, but untested, avenue to screen subjects for
clinical trials.

This study is a retrospective analysis of online com-
puter game scores with the objective of demonstrating
the potential of web-based game data for identifying sub-
jects at risk for cognitive decline. Computer games are not
designed to be valid neuropsychological tests, and we
emphasize that LMM has not been validated as a measure
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Fig. 1. Age trend for the baseline score with 95% prediction interval.

of working memory. Furthermore, games are performed in
a completely unsupervised manner. Subjects may play on-
line games in an environment with many distractions or
under the influence of alcohol or other substances that
may affect performance.

Our data suggest that LMM scores are very susceptible to
the influences of practice and forgetting. A comparison of
two scores is not meaningful without an adjustment for the
engagement frequency, which has been modeled explicitly
by the use of covariates for the number of completed ses-
sions and the total elapsed time between sessions. As indi-
cated by the generally positive estimates for the individual
learning rates, frequent practice tends to improve game
score. For example, the main effect for the learning rate

(a, = .37, SE = .007, P < .0001) suggests that
the average subject, aged 58, improves by approximately 1
correct match for every three sessions when the intersession
time gaps are sufficiently small. The generally negative esti-
mates for forgetting rates indicate that long breaks cause de-
clines in game performance. The main effect for the
forgetting rate (b, = —2.12, SE = .19, P <.0001) suggests
that the average subject, aged 58, declines by approximately
two correct matches per year when there is a long break in
the sessions.

Although there has been much debate over the form of
learning and forgetting curves [17-20], the first 50
sessions of LMM were modeled successfully with simple
lines that rise in response to practice and decline during
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Fig. 2. Age trend for the learning rate with 95% prediction interval.
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Fig. 3. Model fit and forecasts of four Lumosity’s Memory Match (LMM) participants demonstrating large learning rates.

long breaks. As measured by the conditional R? for the
mixed effects model, 75% of the variation in the LMM
scores is explained by individual learning and forgetting
rates. The good fit of the model suggests that learning and
forgetting rates predict well the LMM scores. Moreover,
the estimated test-retest reliability (0.79) is comparable
with the estimates for standard neuropsychological tests.
Therefore, the learning and forgetting rates appear to be sta-
ble measures of performance that identify genuine differ-
ences between individuals.

Among the factors that cause differences between indi-
viduals, age has been shown to affect the learning rate. Base-
line scores and learning rates decline across ages, suggesting

that some individual learning rates decline over time. There-
fore, it is reasonable to conclude that a low LMM learning
rate may serve as a measure of age-related decline in the
working memory function of participating subjects,
although a follow-up study demonstrating a correlation be-
tween LMM learning rates and the scores of valid tests for
working memory would be necessary. Our data suggest
that age did not affect the forgetting rate. It must be remem-
bered that both the learning and forgetting rates are absolute
measures of change with the learning rate expressed in units
of correct matches per session, and the forgetting rate ex-
pressed in units of correct matches per year. If the forgetting
rate had been expressed as the proportional change in the
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Fig. 4. Model fit and forecasts of four Lumosity’s Memory Match (LMM) decliners.

score per year, then a significant age interaction might have
been observed.

If low LMM learning rates are shown to be valid
screening measures of cognitive dysfunction, then it would
be possible to identify declining individuals, invite them to
complete valid tests, and potentially enroll them into clinical
trials. In this study, decliners are defined as individuals
whose estimated learning rates are lower than the 25th
percentile for their age. A power analysis of a putative trial
aimed at slowing cognitive decline in preselected decliners
showed that sample sizes are extremely reasonable and
possibly smaller than sample sizes currently used in AD clin-
ical trials.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture obtained from PubMed and other traditional
sources. Publications spanning the entire history of
inquiry into the functional form of learning and
forgetting curves were reviewed.

2. Interpretation: Internet games may be used for iden-
tifying subjects at risk for cognitive decline.

3. Future directions: Validation of Internet-based
games and assessments for use in identifying in-
dividuals at risk for cognitive decline represents a
significant priority for future research.
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