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Simple Summary: The BRENDA-Score provides an easy to use tool for clinicians to estimate the risk
of recurrence in primary breast cancer. The algorithm has been validated via a second independent
database and provides five recurrence risk groups. This grouping helps clinicians to encourage high
risk patients to undergo the recommended treatment.

Abstract: Background Current research in breast cancer focuses on individualization of local and
systemic therapies with adequate escalation or de-escalation strategies. As a result, about two-thirds
of breast cancer patients can be cured, but up to one-third eventually develop metastatic disease,
which is considered incurable with currently available treatment options. This underscores the
importance to develop a metastatic recurrence score to escalate or de-escalate treatment strategies.
Patients and methods Data from 10,499 patients were available from 17 clinical cancer registries
(BRENDA-project. In total, 8566 were used to develop the BRENDA-Index. This index was calculated
from the regression coefficients of a Cox regression model for metastasis-free survival (MFS). Based
on this index, patients were categorized into very high, high, intermediate, low, and very low
risk groups forming the BRENDA-Score. Bootstrapping was used for internal validation and an
independent dataset of 1883 patients for external validation. The predictive accuracy was checked
by Harrell’s c-index. In addition, the BRENDA-Score was analyzed as a marker for overall survival
(OS) and compared to the Nottingham prognostic score (NPS). Results: Intrinsic subtypes, tumour
size, grading, and nodal status were identified as statistically significant prognostic factors in the
multivariate analysis. The five prognostic groups of the BRENDA-Score showed highly significant
(p < 0.001) differences regarding MFS:low risk: hazard ratio (HR) = 2.4, 95%CI (1.7–3.3); intermediate
risk: HR = 5.0, 95%CI.(3.6–6.9); high risk: HR = 10.3, 95%CI (7.4–14.3) and very high risk: HR = 18.1,
95%CI (13.2–24.9). The external validation showed congruent results. A multivariate Cox regression
model for OS with BRENDA-Score and NPS as covariates showed that of these two scores only the
BRENDA-Score is significant (BRENDA-Score p < 0.001; NPS p = 0.447). Therefore, the BRENDA-
Score is also a good prognostic marker for OS. Conclusion: The BRENDA-Score is an internally and
externally validated robust predictive tool for metastatic recurrence in breast cancer patients. It is
based on routine parameters easily accessible in daily clinical care. In addition, the BRENDA-Score is
a good prognostic marker for overall survival. Highlights: The BRENDA-Score is a highly significant
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predictive tool for metastatic recurrence of breast cancer patients. The BRENDA-Score is stable for at
least the first five years after primary diagnosis, i.e., the sensitivities and specificities of this predicting
system is rather similar to the NPI with AUCs between 0.76 and 0.81 the BRENDA-Score is a good
prognostic marker for overall survival.

Keywords: breast cancer; risk; prediction; BRENDA; score; follow up

1. Introduction

As most breast cancer (BC) recurrences occur within the first 60 months [1], after
diagnosis, patients have clinical follow-up (f/u) visits at 3 months intervals in the first
three years, followed by two years with check-ups every 6 months, and then returning
to an annual checkup schedule. In BC this is recommended for at least 10 years. This
is a well-established schedule in Germany. Several publications have investigated the
clinical orientated follow-up versus more intense follow-ups (i.e., including further imaging
technology like MRI or tumour markers) [2,3]. In 2016, a Cochrane review on follow-up
strategies in early breast cancer did confirm annual mammography and physical exams [4]
as sufficient.

So, thus far, the optimal interval, methods, and parameters have not been determined
by prospective randomised trials [2,5]. This might be due to the different health systems,
cost and benefit considerations, available resources or the missing survival benefit of an
earlier, smaller tumour detection [6].

Even though it is known that the pattern of distant metastasis depends on the tumour
biology [1,7–10], primary treatment, and tumour TNM. The follow up recommendations
are still ‘one standard fits all’.

To estimate the survival nomograms and prognosis, models have been validated [11,12].
These are used to identify patients with a bad prognosis. If these models are not decisive,
gene panels can further differentiate the treatment benefit in defined subgroups. Further
treatment recommendations take this into consideration. The same principle is applied
for single organ metastasis and local recurrence normograms [13,14], but the clinical
consequence is not yet established.

Following Qi Wu [10], the BRENDA database was used to create a metastatic recur-
rence index (BRENDA-Index). The individual sum of the BRENDA-Index result in a score
(BRENDA-metastatic recurrence score (BRENDA-Score)). This BRENDA-Score identifies
the patients’ risk of general metastasis (very high/high/medium/low/very low risk) over
time. Ideally, the results would enable the clinician to screen the organ just before or at
its highest risk ‘for a recurrence. In order to be a reliable clinical tool the BRENDA-Score
should be easy to use with clinical data available at primary diagnosis.

2. Materials and Methods

In this retrospective multicenter cohort study, data from the University of Ulm and
16 partner clinics (all certified breast cancer centers) in Baden-Württemberg (Germany) of
patients with breast cancer diagnosis between 2000 and 2008 were analysed. Prior analyses
of this database named BRENDA (BRENDA breast cancer care under evidence-based
guidelines) have been published [7,15–17].

This database included a retrospective chart review to extract TNM-stage, histo-
logic subtype, grading, lymphatic and vascular invasion, estrogen/progesterone/erbB-
2-expression, date of diagnosis, and all adjuvant therapies. Data on therapies, including
surgery (date of surgery, BCT breast-conserving surgery, mastectomy, sentinel-node-biopsy,
and axillary lymph node dissection), adjuvant systemic chemotherapy, adjuvant endocrine
therapy, and adjuvant radiotherapy, were collected. According to criteria published by
Schouten et al. the quality of these data is considered high [18]. Written and informed
consent was obtained from all patients included in this study. The inclusion criterion was
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histologically confirmed invasive breast cancer. The exclusion criteria were carcinoma in
situ, primary metastatic disease, bilateral breast cancer, primary occult disease, phyllodes
tumour, and patients with incomplete follow-up. As most breast cancer recurrences occur
within the first 2 to 5 years patients have follow up visits at 3 months intervals in the first
three years, followed by two years with checkups every 6 months and then returning to
an annual checkup schedule (optimal intervals, methods, and parameters have not been
determined as yet by prospective randomised trials). Although the Kaplan-Meier curves
were calculated for a metastatic free survival time of 110 months (approximately 9 years)
to show the long term data. The strength of the BRENDA database lies in the detailed
information on the actual treatment. Using this a subgroup analysis of the BRENDA-score
with guideline-adherent and non-guideline-adherent treatment has been done to show the
prediction value regardless of the treatment.

3. Surrogate Definition of Intrinsic Subtypes

To define the intrinsic breast cancer subtypes hormone receptor expression (HR),
HER2 expression and cell proliferation marker Ki67 were generally used. As Ki67 was
not available in the BRENDA database, we used grading as a surrogate parameter to
include the cell proliferation, as described before, e.g., by Parise et al. [19], von Minckwitz
et al. [20] and Lips et al. [21]. The 5 intrinsic subtypes were defined as follows: Luminal A
(HR+/HER2−/grade1 or 2), luminal B-HER2-negative like (HR+/HER2−/grade 3), lumi-
nal B-HER2-positive like (HR+/HER2+, all grades); HER2-overexpressing (non-luminal,
HR−/HER2+), and triple-negative (basal-like, HR−/HER2−).

4. Statistical Analysis

For descriptive purposes, continuous variables were presented as their mean ± stan-
dard deviation; skewed variables were presented as their median (interquartile range).
Categorical variables were presented as frequencies and percentages. Multiple imputation
was used for missing data. Univariate and multivariate analyses using Cox regression were
carried out to build a predictive model for metastasis-free survival. All significant factors in
the univariate analysis were entered into a multivariate analysis. A prognostic model was
established by all factors found to be significantly associated with metastasis-free survival
in the multivariate analysis. This model includes intrinsic subtypes, tumour size, grading,
and nodal status as “baseline” factors. The beta coefficients of the Cox regression model
were multiplied by 10 and rounded to the nearest integer (for 3 parameters with respect
to 95% confidence interval of the beta coefficients) to determine the factors multiplying
each factor. Taking, e.g., the nodal status N > 3 the beta coefficient is 1.56 and the 95% C.I.
1.35–1.78. Taking into account the 95% C.I. we used 1.5 multiplied by 10. In the case of
grading the beta coefficient for G2 was 0.49 (95% C.I. 0.09–1.08) and for G3 0.63 (95% C.I.
0.14–1.23). If we multiply these values by 10 and round to the nearest integer we obtain
for G2 5, for G3 6 and the nodal status (N > 3) 16 as weights. Since these values are too
high compared to other values, we have reduced them to 4 (G2) and 15 (Nodal status),
respectively. These adjustments are each within the 95% confidence intervals. The cutoffs
for the grouping were derived by “exhausted chaid” for 5 year metastatic free survival.
The proportional hazards (PH) assumption was checked using graphical diagnostics based
on the scaled Schoenfeld residuals. For internal model validation we used bootstrap re-
sampling techniques, to provide bias-corrected estimates of model performance, i.e., to
obtain stable optimism-corrected estimates. The optimism is the decrease between model
performance in the bootstrap sample and in the original sample. The bootstrap results were
based on 1000 samples. The item points denote the beta coefficients for covariates in the
Cox model, rounded to the nearest integer with respect to 95% CI of betas and multiplied
by 10. The metastatic recurrence index (BRENDA-Index) of a patient is the sum of her item
points. The BRENDA-Index (range 0–38) was divided into five risk groups (very low ≤ 4;
low 5–14; intermediate 15–21; high 22–26 and very high risk ≥ 27) by using exhausted
chaid for 5 year metastasis-free survival. These groups define the metastasis recurrence
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score (BRENDA-Score). Outcome analysis of the BRENDA-Score was performed using
Kaplan-Meier estimates and log-rank tests, as well as Cox regression analysis. In order to
check whether the prognostic quality is constant over time we used the nearest neighbor
estimation (NNE) method for ROC curves from censored survival data [22]. The NNE
method guarantees in contrast to the Kaplan-Meier method that sensitivity and specificity
were monotone in X for the bivariate distribution function of (X, T), where T represents
survival time. In order to test the accuracy, quality and generalizability of this prediction
model this model was validated externally with a cohort of 1883 patients (primary diagno-
sis between 2005 and 2015). The hazard ratios of the derivation and the evaluation sets were
compared. In addition, Harrell’s C-index P(Zi > Zj|Tj > Ti), for Cox models was calculated
(although it is known to be biased) to check calibration, a key component characterising the
performance of the prediction model. Calibration is the agreement between prediction from
the model and observed outcomes. Furthermore the nearest neighbour estimation was
calculated and compared for both Cox models. Because metastasis-free survival (MFS) is a
surrogate of overall survival (OS) we compared in addition the BRENDA-Index/Score as a
possible prediction tool for overall survival to the Nottingham Prognostic Index/Score [23].
All tests were 2-tailed and statistical significance was defined as p < 0.05. Statistical analyses
were performed using R (version 3.5) and IBM SPSS Statistics, version 26.0 (IBM Corp.,
Armonk, NY, USA).

5. Results

A total of 8566 patients with primary diagnosis from 2000 onwards were assigned to
the development set in this study (Table 1). The median (maximum) observation time was
4.3 y (12.0 y). The median age was 63 years (range, 18–89 years). The median tumour size
was 1.9 cm (range, 0.1–28.0 cm). 5.2% (n = 443) of the patients had T3/T4 stage tumour.
61.9% (n = 5305) were luminal A, 13.8% (n=1185) luminal B Her2-negative, 10.2% (n = 870)
luminal B HER2-positive, 4.8% (n = 410) HER2 overexpressing and 9.3% (n = 796) triple-
negative. Furthermore 38.5% (n=3294) were nodal-positive, 28.6% (n = 2446) G3 (Table 1)
and 1.7% (n = 145) M1.

Table 1. Basic characteristics.

Brenda-Score

Total Very Low Risk Low Risk Intermediate
Risk High Risk Very High

Risk

n = 8566 (%) n = 2568 (30.0) n = 2661 (31.1) n = 1718 (20.1) n = 817 (9.5) n = 802 (9.4) Sig
62.1 ± 13.1 min

18; max 89
62.1 ± 13.1 min

18; max 89
61.5 ± 13.2 min

24; max 89
62.6 ± 14.0 min

27; max 89
62.9 ± 13.7 min

18; max 89 0.005

T1 4842 (56.5) 2568 (100) 1616 (60.7) 428 (24.9) 178 (21.8) 52 (6.5)
<0.001T2 3281 (38.3) 0 (0) 988 (37.1) 1192 (69.4) 606 (74.2) 495 (61.7)

T3/T4 443 (5.2) 0 (0) 57 (2.1) 98 (5.7) 33 (4.0) 443 (5.2)
nodal negative 5272 (61.5) 2569 (100) 2063 (77.5) 626 (36.4) 15 (1.8) 0 (0)

<0.0011–3 affected lymph
nodes 1974 (23.0) 0 (0) 598 (22.5) 903 (52.6) 362 (44.3) 111 (13.8)

>3 affected lymph
nodes 1320 (15.4) 0 (0) 0 (0) 189 (11.0) 440 (53.9) 691 (86.2)

G1 817 (9.5) 539 (21.0) 228 (8.6) 7 (0.9) 7 (0.9) 1 (0.1)
<0.001G2 5303 (61.9) 2029 (79.0) 1755 (66.0) 367 (44.9) 367 (44.9) 187 (23.3)

G3 2446 (28.6) 0 (0) 678 (25.5) 443 (54.2) 443 (54.2) 614 (76.6)
luminal A 5305 (61.9) 2552 (99.4) 1559 (58.6) 790 (46.0) 316 (38.7) 88 (11.0)

<0.001
luminal

B-HER2-negative like 1185 (13.8) 0 (0) 315 (11.8) 353 (20.5) 268 (32.8) 249 (31.0)

Luminal
B-HER2-positive like 870 (10.2) 16 (0.6) 377 (14.2) 236 (13.7) 95 (11.6) 146 (18.2)

HER2 overexpressing 410 (4.8) 0 (0) 126 (4.7) 109 (6.3) 60 (7.3) 115 (14.3)
Triple-negative 796 (9.3) 0 (0) 284 (10.7) 230 (13.4) 78 (9.5) 204 (25.4)

A Cox proportional hazard model was carried out for assessing the association be-
tween various clinicopathologic parameters and metastasis-free survival rate. A prognostic
model was established by all factors found to be significantly associated with metastasis-
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free survival in the multivariate analysis. This model includes intrinsic subtypes, tumour
size, grading, and nodal status (Table 2).

Table 2. Cox regression model for metastasis-free survival including intrinsic subtypes, tumour size,
grading and nodal status. B beta coefficient; SE standard error; Sig. significance; HR hazard ratio; CI
confidence interval with lower and upper limit.

Variables in the Equation

Covariates B SE Sig. HR 95% Confidence Interval

lower upper
luminal B-HER2-negative like 0.48 0.18 0.007 1.61 1.14 2.28
Luminal B-HER2-positive like 0.42 0.15 0.004 1.53 1.14 2.04

HER2 overexpressing 0.72 0.18 0.000 2.06 1.45 2.94
Triple-negative 0.76 0.17 0.000 2.14 1.55 2.96

T2 0.50 0.09 0.000 1.65 1.38 1.97
T3/T4 0.96 0.14 0.000 2.62 2.01 3.41

G2 0.49 0.24 0.038 1.64 1.03 2.61
G3 0.63 0.27 0.020 1.89 1.10 3.22

1 ≤ n ≤3 0.80 0.11 0.000 2.23 1.81 2.74
n > 3 1.56 0.10 0.000 4.75 3.89 5.79

Bootstrap validation based on 1000 samples was used to estimate the performance
(internal validation) (Table 3).

Table 3. Bootstrap results based on 1000 bootstrap samples (internal validation) B beta coefficients.

Bootstrap for Variables in the Equation

B Bootstrap a

Bias Std. Error Sig. (2-Tailed) 95% Confidence Interval

lower upper
luminal

B-HER2-negative like 0.48 0.01 0.18 0.010 0.11 0.83

Luminal
B-HER2-positive like 0.42 −0.01 0.15 0.005 0.09 0.70

HER2 overexpressing 0.72 −0.01 0.18 0.001 0.36 1.05
Triple-negative 0.76 0.00 0.17 0.001 0.42 1.07

T2 0.50 0.00 0.09 0.001 0.32 0.69
T3/T4 0.96 −0.01 0.14 0.001 0.66 1.22

G2 0.49 0.03 0.25 0.034 0.09 1.08
G3 0.63 0.02 0.28 0.014 0.14 1.23

1≤ n≤ 3 0.80 0.00 0.10 0.001 0.60 1.00
n > 3 1.56 0.00 0.11 0.001 1.35 1.78

a Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples.

The beta coefficients of the original model and the bootstrap model were identical.
The metastatic recurrence index (BRENDA-Index) of a patient was derived by summing
the item points of each prognostic factor in the model. The item points denote the round
estimates of beta coefficients for covariates in the Cox model with respect to 95% CI of
betas multiplied by 10.

The BRENDA-Index was calculated using the following formula: BRENDA-
Index = 5 ∗ luminal B-HER2-negative like + 4 ∗ luminal B-HER2-positive like +7 ∗ HER2-
overexpressing + 8 ∗ triple-negative + 5 ∗ tumour size 2 + 9 ∗ tumour size 3/4 + 4 ∗ grading
2 + 6 ∗ grading 3 + 8 ∗ nodal status (1 ≤ n ≤ 3) + 15 ∗ nodal status (n > 3). The values of
the covariates were 1 if valid, otherwise 0.

The BRENDA-Index (range 0–38) was divided into five risk groups (very low ≤ 4;
low 5–14; intermediate 15–21; high 22–26 and very high risk ≥ 27). These risk groups
define the BRENDA-Score. In total, 30.0% of the 8566 patients were very low risk, 31.1%
low risk, 20.1% intermediate risk, 9.5% high risk, and 9.4% very high risk. The 5-years
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metastatic free recurrence rates for the various risk groups were: very low risk 98%, low
risk 95%, intermediate risk 90%, high risk 82%, and very high risk 70%. Figure 1 shows the
Kaplan-Meier curves stratified by BRENDA-Score.
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Figure 1. (a) Kaplan-Meier metastasis-free survival (MFS) curves of the derivation set stratified
by BRENDA-Score (BRENDA DB) with 110 months. Very low risk = light green, low risk = green,
intermediate risk = yellow, high risk = orange, very high risk = blue line. (b,c) Subgroup analysis
with guideline adherent (b) and non-adherent (c) treatment Kaplan-Meier metastasis-free survival
(MFS) curves of the derivation set stratified by BRENDA-Score (BRENDA DB) with 110 months. Very
low risk = light green, low risk = green, intermediate risk = yellow, high risk = orange, very high
risk = blue line.
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Taking the very low risk patients as reference group, we obtained the following hazard
ratios (HR) for low risk: HR = 2.4, 95% CI. (1.7–3.3), p < 0.001; intermediate risk: HR = 5.0,
95% CI. (3.6–6.9), p < 0.001; high risk: HR = 10.3, 95% CI. (7.4–14.3), p < 0.001, and very
high risk: HR = 18.1, 95% CI. (13.2–24.9); p < 0.001.

6. External Validation

In total, 1883 patients with primary diagnosis from 2005 to 2015 from the certified
breast cancer center in Dachau (Germany) were assigned to the validation set in this study.
The median (maximum) observation time was 8.5yr (14.3yr). The median age was 60 years
(range, 29–89 yr). In total, 75.7% (n = 1425) of the patients were luminal A, 5.9% (n = 1112)
luminal B Her2-negative, 7.6% (n = 143) luminal B HER2-positive, 3.2% (n = 60) HER2
overexpressing, and 7.6% (n = 143) triple-negative. Furthermore 28.9% (n = 545) were
nodal-positive, 13.9% (n = 261) G3 and all patients M0. In total, 45.6% of the 1883 patients
were very low risk with respect to the BRENDA-Score, 30.3% low risk, 14.1% intermediate
risk, 5.6% high risk, and 4.4% very high risk. Figure 2 shows the Kaplan-Meier curves of
the validation set stratified by BRENDA-Score.
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BRENDA-Score (Dachau DB) with 110 months follow up. Very low risk = light green, low risk = green,
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Taking again the very low risk patients as reference group, we obtained the following
hazard ratios (HR) for low risk: HR = 3.1, 95% CI. (2.0–4.6), p < 0.001; intermediate risk:
HR = 4.5, 95% CI. (2.9–7.1), p < 0.001; high risk: HR = 7.7, 95% CI. (4.7–12.7), p < 0.001; and
very high risk: HR = 14.6, 95% CI. (9.1–23.6); p < 0.001.

To validate the predictive ability of the survival model, we calculated Harrell’s c-index
(concordance-index), a “global” index for evaluating risk models in survival analysis.
Harrell’s c-index (se = standard error): Derivation data 0.77 (se 0.01); derivation data
without M1-patients 0.76 (se 0.01) and validation data 0.74 (se 0.02). The Harrell’s c-indexes
were all between 0.7 and 0.8 indicating that the BRENDA Index is a good model for
metastasis-free survival.

Next, we calculated time-dependent receiver operating characteristic (ROC) curves at
various time points for the derivation and the validation data to evaluate the time-varying
performance of the BRENDA-Index by the area under the curve (AUC). We used the nearest
neighbour estimation (NNE). The sensitivities and specificities of these predicting systems
were rather similar with the area under the curve values falling between 0.76 and 0.81.
The AUCs of the BRENDA-Index for 1, 3, and 5 years for the derivation set (evaluation
set) were as follows: 1 yr 0.81 (0.76); 3 yr 0.79 (0.78); and 5 yr 0.76 (0.76). This shows that



Cancers 2021, 13, 3121 8 of 13

there was close agreement between the AUCs of both datasets for the first five years after
primary diagnosis and the values were quite stable.

Metastasis-free survival is a strong surrogate of overall survival. Therefore, the
BRENDA-Score should also be a predictor for overall survival. Figure 3 shows the Kaplan-
Meier overall survival curves of the deviation set stratified by BRENDA-Score (log rank
(Mantel-Cox) test: p < 0.001). Taking the very low risk patients as reference group, we
obtain the following hazard ratios (HR) for low risk: HR = 1.6, 95% CI. (1.3–2.0), p < 0.001;
intermediate risk: HR = 2.7, 95% CI. (2.2–3.4), p < 0.001; high risk: HR = 4.5, 95% CI.
(3.6–5.6), p < 0.001; and very high risk: HR = 7.6, 95% CI. (6.2–9.4); p < 0.001). There were
highly significant differences (p < 0.001) between the corresponding overall survival curves
(Figure 3).
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This result was again externally validated. For the validation set of 1883 patients we
obtained the following hazard ratios for overall survival (very low risk is the reference):
low risk: HR = 2.0, 95% CI. (1.5–2.8), p < 0.001; intermediate risk: HR = 2.5, 95% CI. (1.7–3.6),
p < 0.001; high risk: HR = 4.3, 95% CI. (2.8–6.4), p < 0.001; and very high risk: HR = 8.2, 95%
CI. (5.6–12.1); p < 0.001. Harrel’s c-index for overall survival is 0.688 for the derivation data
and 0.715 for the evaluation data [24].

Finally, the BRENDA-Score was compared to the classic Nottingham prognostic
score (NPS), a very good prognostic marker for overall survival [12]. A multivariate Cox
regression model for overall survival with BRENDA- and Nottingham prognostic score
(NPS) showed that in this Cox model only the BRENDA-Score is significant (BRENDA-
Score p < 0.001; NPS p = 0.447). Therefore, the BRENDA-Score is at the moment a good
prognostic marker for overall survival.

7. Discussion

Once the initial short term breast cancer treatments with surgery, radiotherapy, and
systemic treatment are finished, most patients receive a course of anti-hormonal or antibody
treatments for a longer time. Despite these treatments this is the transition period into
the follow up time. The national guidelines initially recommend a clinical exam every
three months for two to three years, followed by bi-annual exams and visits, and then after
5 years annual controls. Mammography and breast ultrasound should be used, alternating
yearly [25].

Unfortunately there were no prospective randomized trials, nor trials showing a bene-
fit for more intensive follow up examinations [25] in the general breast cancer population.
This may be due to the heterogeneous disease which breast cancer is and the consecutive
varying metastasis pattern. Various publications have published risk factors and survival
analyses according to the known variables [26–28].
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Using administrative data to estimate the cancer recurrence was systematically re-
viewed by Izci et al. [29]. They report of 17 articles with accuracy averaging at 92.2% (95%
CI 88.4% to 94.8%). The results show the need for more standardisation and validation of
such models. A combination of rule-based approaches with machine learning algorithms
is seen as an interesting approach.

A review [30] found 58 models which predicted mortality and recurrence for breast
cancer patients. Only 17 models were externally validated by comparing the predicted
outcomes with observed outcomes. Some of these models have very good predictive
values in a well-defined subgroup. For example Huang et al for a Taiwan population [31].
Though validated with a large external database, prognosis for Black and Caucasian was
significantly under- or overestimated at certain follow up periods.

Another model called PREDICT is available in its original form and an updated
version [32]. The update improved the figures for young breast cancer patients significantly
but an external evaluation with three databases left the overall AUC at 0.752 for the update.
This was—overall—not significantly better than the AUC of the original version.

Widely known and used is the Nottingham prognostic index (NPI) by Haybittle [33].
Initially designed for primary operable breast cancer it takes tumour size in mm, nodal
stage and tumour grading into considerations. Over time it has been improved by adding
further prognostic factors and differentiating into more subgroups [12]. Due to its wide
usage and evaluation in various populations it may be considered the gold standard of
prognosis estimation.

In 2010, Sanghani et al. [34] published the IBTR 1.0 for 10 year ipsilateral breast
recurrences. Though this is well validated and improved to version 2.0 by Kindts [35]
in 2016 the clinical relevant recurrences were more likely the distant metastasis as local
recurrence might be palpated or found via routine mammography or ultrasound. Witteveen
published a similar model in 2015 [36] for local recurrences. Here an estimation is provided
for year 1, 3, and 5 after initial treatment. Witteveen herself proposed an age and risk
adapted follow up to improve the outcome for patients and health care providers. Her data
suggests benefits by additional visits around the second year but otherwise twice annual
examinations. The focus of this study was again on local recurrences and does not take
other distant metastasis into account. Based on this model for local recurrence Draeger
et al simulated an individualised follow up [37] on a historic population. This resulted
in less patient visits, cost savings, and a delay in diagnosis of local recurrence, but earlier
detection of local recurrence might benefit the survival of the patients [38]. So the question
regarding the overall benefit remains unanswered.

Our model is based on a European Caucasian population and real world data. It is
known that survival depends on guideline adherent treatment and, therefore, this may
influence the model calculation. The BRENDA database consists of high quality data from
certified breast centers and guideline adherence is a quality indicator monitored regularly
in those centers. Further, the BRENDA database was designed to evaluate the guideline
adherence. This could result in an ‘ideal’ world model regarding treatment status of the
survival data. Of course, such a database cannot contain every current variable with
a long term follow up. Parameters like complete pathological response, tumour stage,
post-neoadjuvant systemic treatment or the latest immune therapy options can be used
to improve the BRENDA-Score once sufficient numbers and sufficient follow-up data are
available. As with each grouping of variables, information is lost the tumour stage is used
via the original parameters at that time (tumour seize, nodal status, and distant metastasis).

Special subgroups, like TNBC or young patients, have not been explicitly tested.
Mainly because the BRENDA database consists of real world data with an epidemiological
mixture of breast cancer patients. Any subgroup testing from within this database can
statistically not contribute to the improvement of the model. As there were various
subgroups possible the authors encourage scientists to validate the model with their
specific patient subgroup.
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However, some of those weaknesses might be just theoretical and may not be clinically
relevant. The model was created using high quality data. The database contains unused
information on guideline adherent treatment and high quality follow-up. The effect of
guideline-adherent treatment on survival in this dataset has been published prior [16].
This information was not taken into consideration during the primary analysis for the
development of the index As the BRENDA-score is a clinical tool used at the time of
diagnosis to show the long term risk of recurrences this risk can be lowered by guideline-
adherent treatment [16]. To strengthen the predictive value of the model it was evaluated
via two different methods. First, a bootstrap evaluation was done and confirmed the initial
results. The second evaluation with an external independent database of a certified breast
center reproduced again highly significant outcomes and the initial prognostic value of our
model. Time dependent ROCs were calculated and compared to published ROC results by
Sejben et al. [39]. The authors determined for TNBC the ROC for the NPI, PrognosTILs and
Predict model. The NPI was the highest with 0.781. Here our results were very similar.

As mentioned before, a nomogram can enable clinicians to identify the high risk
patients and ensure the optimal treatment. In order to individualise the f/u the model needs
to be more precise. Ideally, the results would indicate the time period for the organs at
the highest risk, enabling the clinician to monitor this organ more intensively (i.e., blood
sample or imaging). However, thus far, a more detailed model is needed. Additionally,
this theoretic individualisation of the f/u needs to be evaluated for its patients and health
care cost benefit in clinical trials. The current S3 guideline points out the lack of evidence
regarding individualised follow up [25].

Our model seems to be superior to the NPI for risk of recurrence in distant organs.
Even though new methods, like liquid biopsy, were published [40,41] clinically those
methods were not available widely. Despite the unavailability for most caretakers the cost
and benefit is still unknown. Here the BRENDA-Score might be helpful. Sparano et al. [42]
proposed the implementation of ‘liquid biopsy’ or circulating tumor cells in prospective
follow-up. Considering the cost and unknown benefit of such tools our algorithm could
be used to identify patients with a very high recurrence risk for study participation, thus
helping the conducting scientists to optimise the available resources and reducing the
number patients needed to recruit and possibly the follow up time. With a risk distribution
per primary tumour data the clinician could easily identify patients at risk and could
monitor the patient more closely or encourage the participation in studies evaluating
surveillance methods. The authors encourage the validation of the BRENDA-Score on
different subgroups and research questions.

8. Conclusions

In this retrospective study, with a derivation set of 8566 patients and an evaluation
set of 1883 patients, all from certified breast cancer centers, a metastatic recurrence score
(BRENDA-Score) and respective index (BRENDA-Index) were developed and internally
and externally evaluated. The main findings of this study were:

(1). The BRENDA-Score is a highly significant predictive tool for metastatic recurrence of
breast cancer patients;

(2). It is based on routine parameters, easily accessible in daily clinical care;
(3). The BRENDA-Score is stable over at least the first five years after primary diagnosis,

i.e., the sensitivities and specificities of this predicting system is rather similar with
AUCs between 0.76 and 0.81;

(4). Internal and external validations confirmed these results;
(5). Finally, the BRENDA-Score is in addition a good prognostic marker for overall sur-

vival. This confirms that metastatic free survival is a strong surrogate parameter for
overall survival;

(6). A multivariate Cox regression model for overall survival with BRENDA- and Not-
tingham prognostic score (NPS) showed that only the BRENDA-Score is statisti-
cally significant.
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