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Strain engineering of electronic 
properties and anomalous valley 
hall conductivity of transition 
metal dichalcogenide nanoribbons
Farzaneh Shayeganfar

Strain engineering is a powerful technique for tuning electronic properties and valley degree of 
freedom in honeycomb structure of two-dimensional crystals. Carriers in + k and − k (opposite Berry 
curvature) in transition metal dichalcogenide (TMD) with broken inversion symmetry act as effective 
magnetic fields, where this polarized valleys are suitable for encoding information. In this work, we 
study the strained TMD nanoribbons by Slater-Koster tight-binding model, which acquires electronic 
bands in whole Brillouin zone. From this, we derive a generic profile of strain effect on the electronic 
band structure of TMD nanoribbons, which shows indirect band gap, and also exhibits a phase 
transition from semiconductor to metallic by applying uniaxial X-tensile and Y-arc type of strain. 
Midgap states in strained TMD nanoribbons are determined by calculation of localized density of 
electron states. Moreover, our findings of anomalous valley Hall conductivity reveal that the creation 
of pseudogauge fields using strained TMD nanoribbons affect the Dirac electrons, which generate the 
new quantized Landau level. Furthermore, we demonstrate in strained TMD nanoribbons that strain 
field can effectively tune both the magnitude and sign of valley Hall conductivity. Our work elucidates 
the valley Hall transport in strained TMDs due to pseudo-electric and pseudo-magnetic filed will be 
applicable as information carries for future electronics and valleytronics.

Valley Hall effect (VHE) in transition metal dichacogenides (TMDs) emerges due to inversion symmetry break-
ing. Lack of space inversion symmetry or time-reversal symmetry or both in materials systems leads to anoma-
lous velocity of electrons and consequently create anomalous Hall  current1–5. The electronic structure under 
external stimuli can change Berry curvature and evolve intrinsic anomalous Hall  effect6–11.

To improve device performance, strain as useful tool changes the band gap, the effective mass and electrons 
 mobility12–14. Moreover, vibrational modes by strain become hard and soft in two-dimensional (2D) materials, 
which is confirmed by micro Raman  spectroscopy15. Compressive strained monolayer  MoS2 at about 5% exhibits 
transition from a direct to an indirect band  gap16,17. Meanwhile, the single photon emission of thin semiconduc-
tors is tuned by elastic strain engineering. For instance, rippled graphene under extreme (> 10%) strain creates 
short wavelength and periodic pseudogauge-fields due to large variation of carbon–carbon length and spatially 
oscillating strain field, which yield to new Lnadau  quantization18.

Dopants and defects induced Midgap states, which play a key role in the electronic transport properties of 
2D semiconducting TMDs as well as light absorption and emission of  materials19,20. Several reports have been 
established to investigate the electronic structure and spatial configuration of doped TMDs by using scanning 
tunneling microscopy (STM)21–25.

Illumination of monolayer  MoS2 transistors by polarized light causes to exciting electrons into a specific val-
ley, where an anomalous Hall voltage is found and its sign is controlled by the helicity of the  light26. However, in 
bilayer devices anomalous Hall effect is not observed, because of the restoration of crystal inversion  symmetry26.

More recently, Iff et al.27 showed that localized quantum emitters in wrinkled  WSe2 monolayers can emit a 
single photon, which is controlled by strain fields due to a hybrid 2D semiconductor-piezoelectric device. In 
general, the electronic properties of  MoS2 is changed by strain for 15% compressive and 8% tensile strain, where 
semiconductor to metal transitions have been  observed28–32.

Local extrema as inequivalent valleys in the k-space i.e. electron band structure of TMDs represents the elec-
tron valley degree of freedom, which can be as significant information carriers tunable via external  fields28,33–37. 
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To manipulate electron valley degree of freedom, a proper means can be  VHE28,38–40. Similar to an ordinary Hall 
effect, in which by applying a uniform magnetic field in real space cause to drive a transverse charge current, a 
transverse valley current in the VHE in k-space is created by valley-contrasting Berry  curvatures18,41–49, which 
traverse carriers in opposite direction from different valleys by the application of an external electric field. There-
fore, 2D hexagonal materials with K and K′ valleys in the Brillouin zone exhibit VHE suitable for  valleytronics18. 
Son et al.50 applied strain to the monolayer TMD, which induces the Berry curvature dipole, enabling the 
mechanical tuning of valley magnetization due to in-plane electric field. In other study by Xu et al.51 fully spin- 
and valley-polarized anomalous Hall conductivity have been obtained in the  WS2/MnO heterostructure as a 
result of large valley splitting and time-reversal symmetry broken.

In this work, we carry out systemic electronic structure calculations based on tight-binding (TB) approach 
to investigate the electronic properties and valley Hall transport in both X-tensile- and Y-arc strained TMD 
nanoribbons. We find that (1) as the uniaxial strain increases, TMD nanoribbons exhibit a transition from 
semiconductor to metal, where valance valleys are shifted towards positive energies. Also, Midgap states in 
strained TMD nanoribbons are tuned with the strain field. (2) The sign and magnitude of anomalous valley Hall 
conductivity (AVHC) of TMD nanoribbons has been changed with strain. (3) In TMD nanoribbons under strain, 
psedomagnetic field affects the Berry curvature and creates exotic surface states, while the evolution of Berry 
curvature correlates with nonmonotonic change of AVHC. These results altogether suggest that strain field play 
as a powerful technique for tuning the quantum electronic states as well as Berry curvature and AVHC applicable 
in a wide range of quantum advanced materials.

Methods and model description
In this study, we model six strained TMD nanoribbons i.e.,  MoS2,  MoSe2,  MoTe2,  WSe2,  WSe2 and  WTe2 using TB 
model. A finite-size TMD nanoribbons in one direction is constructed, then we have to passive or remove a few 
dangling bonds on the edge of the system. These are not desired and we can remove these dangling bonds in our 
TB model by setting lattice neighbors attribute. In the TB model, we used the minimum lattice neighbors method, 
which is required to remove any atoms, which have less than the specified minimum number of neighbors. We 
consider two types of strained structure as represented in Fig. 1, as named as uniaxial X-tensile and uniaxial Y-arc 
strain with several displacement such as, δ = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.15, 0.2. Six monolayer TMDs have a 
direct band gap at the K and K′ points of the hexagonal Brillouin zone (BZ), which behave as a semiconductor.

Ab-initio calculations reveal two additional secondary extrema, that a local minimum of conduction band 
(CB) is located at Q point, while a local maximum of the valence band (VB) is located at the Γ point, midway 
between Γ and K  point52. These features are not consistent with their optical properties and  transport53,54. The 
massive Dirac Hamiltonian describe the low-energy K and K′ points of monolayer  MoS245.

TB  Hamiltonian55–57 and k.p  approximation56,58 has been developed as accurate approximations beyond the 
massive Dirac model, which take into account for diagonal quadratic terms in momentum and the presence of 
trigonal warping. In this section, we employ TB Hamiltonian for calculating the electronic band structure of 
strained TMDs.

Tight binding model for strained TMDs. The Slater-Koster TB Hamiltonian in Ref.59 captured the elec-
tronic band structure of monolayer  MoS2 in the whole BZ, including 11 bands of the d orbitals of the transition 
metal (Mo) and the p orbitals of the chalcogenide (S) atoms. It’s worth to note that the physics of monolayer 
 MX2 around the band gap can be obtained by performing an unitary transformation in the subspace that trans-
form the p orbitals of the bottom and top X layers into their combination of symmetric and antisymmetric with 
respect to the z-axis. For including the local spin–orbit  interaction60, dominating of diagonal term  LzSz can be 
appear, which each spin sector can be dealt with  separately60. Figure 1 represents a top view of the crystal lattice 
of  MX2. The reduced Hilbert space can be considered using compact notation of  Ref59:

where the S and A superscripts refer to symmetric and antisymmetric of the p-orbitals combination of 
pSi = 1/
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2
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2
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)
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tion, including the local spin–orbit coupling in the real space can be expressed:
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Figure 1.  (a) Top view of unit cell of  MX2, where δi are the nearest neighbor and  ai are the next nearest 
neighbors. Schematic of  MX2 nanoribbons for (b) X-tensile strain and (c) Y-arc strain. Engineering pseudo-
electric/magnetic fields at strained interfaces: (d) High density of atoms and electrons are created by strain in 
regions indicated by blue box and low density of atoms indicated by yellow box, which inhomogeneous charge 
distribution generates an electric field (green arrows). (e) Yellow hexagonal shows the stretching of bonds results 
in shift in Dirac cones at K and K′ points from their unstrained positions (blue hexagonal) in the reciprocal 
space. This momentum shift δk introduced a pseudovector potential term eA/c, which creates opposite sign 
pseudomagnetic fields at the two valleys. (f) The strain associated with pseudofields both electric fields (green 
arrows) and magnetic fields, where two blue/red regions indicate the ± ẑ direction of pseudospin up and down.

Table 1.  Slater-Koster TB parameters for monolayer  MoX2. Where M is Mo, W and X is S, Se. All terms are in 
units of eV and taken from Ref.62.

MoS2 MoSe2 WS2 WSe2

Crystal fields
− 0.050
− 1.511
− 6.886
− 7.503

− 0.250
− 1.488
− 4.931
− 7.327

− 0.650
− 2.279
− 3.864
− 6.759

− 1.250
− 2.321
− 5.629
− 3.559

M-X 3.689
− 1.241

3.728
− 1.222

7.911
− 1.220

5.803
− 1.081

M-M
− 0.895
0.252
0.228

− 0.823
0.192
0.215

− 1.328
0.121
0.442

− 1.129
0.094
0.317

X-X 1.225
− 0.467

1.256
− 0.205

1.178
− 0.273

1.530
− 0.123
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where the δi and  ai are the nearest and next nearest neighbor vectors are shown in Fig. 1. The hopping terms tij,µν 
within a Slater-Koster approach have been  considered59–61, which brought in Table 1.

Hamiltonian in strained lattice. The Slater-Koster TB approach for lattice deformations like strain is 
 convenient65. In this approach, the effect of strain takes into account by considering of TB parameters of energy 
integral element of two-center energy dependent on the interatomic distances, which the correction to the local 
atomic potentials due to lattice deformation is neglected as a first  approximation63,64. Here, we apply strain effect 
by varying the interatomic bond length in the simplest way. The modified hopping terms with strain at the linear 
order can be written  as65:

where |r0ij| is the distance in the absence of strain at the equilibrium positions between two atoms of (i,μ) and 
(j,ν), while |rij| is the distance in the presence of strain. Here, �ij,µν = −dlntij,µν

/
dln(r)|r =|r0ij| is the local 

electron–phonon  coupling65. In practice, |r0ij| = a for in-plane M-M and X-X bonds and |r0ij| =
√

7
12
a for M-X 

bond have been  applied65. In the absence of any theoretical and experimental estimation for the electron–phonon 
coupling, we use the Wills-Harrison  argument52 as tij,µν(r) ∝ |r|−(lµ+lν+1) , where  lμ(ν) is the absolute value of the 
angular momentum of orbital μ(ν). Following this approach, �ij,M−M = 5,�ij,X−X = 3 for M-M dd and for X-X 
pp hybridization and �ij,X−M = 4 for X-M pd hybridization. The vector  r0 as separation of two lattice site con-
nected with electron hoping is transformed by application of strain into r ∝ r0 + r0.∇u65, where ∇u = ε + ω ; ε 
is the strain tensor and ω is the rotation tensor. The strain tensor for 2D materials is a symmetric tensor as:

with components including uii is the in-plane and uij is the out-of-plane displacement as:

where u = (ux, uy, uz) is the displacement vector and r = (x,y) is the position vector. To account the local rotation 
in the system, we use the ω as the anti-symmetric rotation tensor as defined: 2 ωxy = − 2 ωyx = 

(
∂uy
∂x + ∂ux

∂y

)
, which 

ω for homogenous strain will be zero. It is worth to note that the transformation relation is r = r0.(1+ ε) for 
homogenous strain and r = r0.(1+∇u) for inhomogeneous strain fields.

Hall conductivity. Valence band (VB) and conduction band (CB) edges of monolayer  MoS2 are located 
at the corners of K points of hexagonal  plane66. The large separation of two inequivalent valleys in momen-
tum space constitutes a binary index, which is robust against scattering by long wavelength phonons and 
 deformation45. Therefore, coexistence of VHE in TMD monolayer has to be investigated similar to graphene. 
Broken inversion symmetry in TMD monolayers give rise to VHE with flowing carriers in different valleys by 
applying electric field. Calculation of quantum VHE of 2D electron gas indicates the quantized nature in unit 
of  e2/ħ, which observed in graphene at room  temperature67. In TMDs with time-reversal or broken inversion, 
pronounced Berry curvature can emerge VHE. Quantum Hall conductivity is arose due to anomalous veloc-
ity of electrons in the presence of an in-plane electric field, which is proportional to the Berry curvature in the 
transverse  direction7,68, defined as:
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tion and fn
(
⇀

k

)
 is the Fermi–Dirac distribution function for the Bloch state |nk > . Furthermore, the Bloch state 

|nk > of Berry curvature i.e. �z
n(k) become 69:

in this equation, unk is the periodic part of Bloch state |nk > . The Kubo-like formula is used to calculate Berry 
curvature as:

Where vnm,x(k) = ψmk

∣∣v̂α
∣∣ψnk = 1

�
umk

∣∣∣∂kα Ĥ(k)
∣∣∣unk is a complex velocity, and ǫm(k) and ǫn(k) are both empty 

or filled up. Berry curvature has opposite signs in the VB and CB valleys. Now, the roughly evaluation of valley 
Hall conductivity for electrons for zero Kelvin near K valley become 70:

here, g(E) = 2

π�2v2f
E is the electron density of states (DOS) at K point, and Fermi–Dirac at zero kelvin becomes 

delta function.

Results and discussions
Monolayer TMDs as a direct gap semiconductor emerge advanced optical materials for device applications. Hsu 
et al.71 reported that strain modifies the wavefunctions, band curvature and optical matrix, which affects the 
binding energy of the K-K direct exciton and radiative lifetime. In this study, we determine the direct/indirect 
gap properties for TMD nanoribbons without/with strain fields, which play as an effective perturbation for 
modulating electronic properties. We have first studied the electronic structures of six compound of TMDs 
nanoribbons with applied X-tensile and Y-arc strain by the TB approach. Taking the  MX2 nanoribbons as an 
example, the model of strained structure is shown in Fig. 1.
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Figure 2.  Electronic band structure of  MoX2 (X = S, Se, Te) for two types of strain labeled as uniaxial X-tensile 
and Y-arc strain with c =  = 0, 0.04, 0.08.
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Electronic properties. The lattice deformation gauge fields by strain in TMD nanoribbons indicates a gap 
difference between two valley points, which can be source of valley Hall current in the strained nanoribbons. 
We perform TB approach to investigate the electronic properties of TMDs, i.e.  MX2 nanoribbons. The calculated 
electronic band structure of six TMDs nanoribbons is shown in Figs. 2 and 3, indicating semiconductor behavior 
of TMD nanoribbons with indirect band gap except for  MoTe2, where their band gap variations is presented in 
Tables 2 and 3. The nature of the band gap remains indirect for both type of strain, i.e. X-tensile and Y-arc strain 
ranging of 0.02, 0.04, 0.06, 0.08, 0.10, 0.15 and 0.2 (see supplementary information). The size of the band gap 

Figure 3.  Electronic band structure of  WX2 (X = S, Se, Te) for two types of strain labeled as uniaxial X-tensile 
and Y-arc strain with c = 0, 0.04, 0.08.

Table 2.  Band gap variation of X-Tensile strain.

Strain/Band gap (eV) 0 0.02 0.04 0.06 0.08 0.1 0.15 0.2

MoS2 0.37 0.22 0 0 0 0 0 0

MoSe2 0.16 0 0 0 0 0 0 0

MoTe2 0 0 0 0 0 0 0 0

WS2 0.26 0.24 0 0 0 0 0 0

WSe2 0.17 0 0 0 0 0 0 0

WTe2 0.03 0 0 0 0 0 0 0

Table 3.  Band gap variation of Y-arc strain.

Strain/Band gap
(eV) 0 0.02 0.04 0.06 0.08 0.1 0.15 0.2

MoS2 0.37 0.35 0.31 0.25 0.2 0 0 0

MoSe2 0.16 0.15 0 0 0 0 0 0

MoTe2 0 0 0 0 0 0 0 0

WS2 (direct) 0.26 0.24 0.21 0.19 0.16 0 0 0

WSe2 0.17 0.15 0.14 0.11 0 0 0 0

WTe2 0.03 0.02 0.01 0 0 0 0 0
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goes to zero through a X-tensile strain after 0.02, while for Y-arc strain decreases monotonically under strain of 
0.6–0.8%. A valence band in all six compounds of Y-arc strained TMD nanoribbons is split and flatted, which 
is further enhanced by increasing strain and leads to decreasing the electrons mobility. Evaluation of electronic 
properties of TMD nanoribbons by considering the DFT calculations has been established in several  reports72,73. 
The band gap values calculated from conventional DFT functional underestimate those values derived from the 
experimental  results74. Various factors on the experimental side such as  doping75 and the dielectric screening of 
the  substrate76 affect band structure, which complicate the comparisons to theoretical band  structure74. Huang 
et al. in their  paper77 by using first-principles DFT calculations found that the dynamic energy barrier have been 
decreased by applying the stress and strain, where the phase transition of  MoTe2 from 2H to 1 T’ controlled by 
biaxial or uniaxial tensile  strain77. The electronic properties of TMD nanoribbons (Mo-,W-,S2,Se2) by imple-
menting first-principles DFT calculations studied by Davelou et al.78. They showed that TMD nanoribbons with 
zigzag edges are always metallic regardless of the composition, the width or the edge structures, which is in 
good agreement with our  results78. Furthermore, the effect of strain on the electronic and magnetic properties 
of the  MoS2 nanoribbons has been investigated by first-principle  calculation79. Where, the stretchable  MoS2 is 
nonmagnetic and its band gap decreases with increasing strain, and direct band gap at weak strain changes to 
indirect band gap with increased strain up to 10%79, which are in good agreement with our results. The band gap 
response of  MoTe2 for both type of strain is the same, where it remains metallic. The CB minimum and the VB 
maximum of strained  MoTe2 are contributed and dominated from the d orbitals of Mo atoms and p orbitals of Te 
 atoms77,80, which make the strain effect on band gap unambiguous. Figure 4 indicates the Electronic band struc-
ture of  MoS2 without strain and with two types of strain, where valance valleys are shifted towards positive ener-
gies by red arrows after external stimuli. Red dashed lines in this figure show the direct and indirect band gap.

In several reports have been revealed that the electronic and transport properties of TMD semiconductors 
can be crucially impacted by midgap states induced by dopants, defects, electric field and strain field, which 
can be native or intentionally incorporated in the crystal  lattice81–83. The midgap states in the band structures of 
strained TMD nanoribbons in this study originate mainly from strain field, and tune with strain values. Herein, 
we calculated local density of states (LDOS) (commensurate with experimental STM data) to characterize the 

Figure 4.  Electronic band structure of  MoS2 (a) without strain and (b), (c) with two types of strain labeled as 
uniaxial X-tensile and Y-arc strain. Red dashed lines show the direct and indirect band gap, while red arrows 
represent shifted valance valleys towards positive energies after external stimuli. Bottom panels are zoom of 
exterma of valance and conduction bands.
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midgap states as shown in Figs. 5, 6, 7, 8g–i, and we have indicated the position of midgap states in these figures 
to avoid any confusion.

Herein, we apply the Slater-Koster TB-Hamiltonian to illustrate the strain effects on the electronic band struc-
ture (Eqs. 1, 2, 3) and the symmetry properties at specific k points relevant to the low-energy degrees of freedom, 
where modified hopping term is responsible for existence of midgap states. It’s worth to note that an alternative 
way to include the coupling terms such as strain and electromagnetic fields to TB-Hamiltonian has been estab-
lished based on the effective k.p Hamiltonian, which expands the full TB model as  (HTB(k) =  H0

TB(k) +  Hstrain)84, 
where both methods take into account the midgap states as crucial impact on the electron transport properties 
of strained TMD nanoribbons.

Valley hall conductivity. Intriguing properties in quantum materials are contributed by Berry curvature; 
such as intrinsic anomalous Hall effect. Exploring the evolution of Berry curvature due to external stimulus 
could be lead to emergent quantum transport properties. As mentioned in method section, Berry curvature 
(Eqs. 8, 9) is sensitive to changes of wavefunction and electronic band structure, which is tuned by external 
stimulus. For instance, in gated monolayer TMDs, controllable of VHE has been proposed by Rashba type spin 
orbit coupling, which needs strong displacement fields of 0.3–0.4 eV/A° in ionic liquid gated  device85–87. We fur-
ther determine that strain field can manipulate Berry curvature, where plays a significant role in exotic electronic 

Figure 5.  Hall conductivity and local density of states (LDOS) of  MoX2 (X = S, Se, Te) for uniaxial X-tensile 
strain with c = 0, 0.01, 0.02, 0.05, 0.1. In (g), (h) and (i) gap and midgap states are indicated.
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states of quantum materials, such as the VHE. Herein, we apply two uniaxial strains to TMD nanoribbons for 
tuning of Berry curvature and investigate the changes of magnitude and sign of their valley Hall conductivity 
due to modified electronic structures.

Our calculation of band structure of strained TMD nanoribbons reveals that valence bands are shifted to 
positive energies in the K-space. Therefore, strain alters the sign of valence bands and Berry curvature, which 
leads to sign and magnitude change of valley Hall conductivity as shown in Figs. The valley-carried orbital mag-
netic moment characterize the valley degree  experimentally7,88,89. In our work, the orbital magnetic moment for 
conduction and valance band in the presence of the strain fields is defined as: mk(k′)

νz = −ν
ed(d′)

�
�νk(k′)z(k)

90; 
where Ω is the Berry curvature and ν =  ± stands for the valence and conduction band. This formula indicates that 
the magnitude and sign of magnetic moment depends on Berry curvature, which is tuned by strain field. Our 
findings reveal that strain field changes the order of d orbital energies of transition metal in TMD nanoribbons, 
which induces a crystal field splitting and lead to change of sign and magnitude of the valley Hall conductivity.

We now discuss how strained TMDs affect the valley Hall conductivities due to Berry curvature features. We 
calculate the transverse (σxx) and valley Hall conductivity (σxy) of TMD nanoribbons without strain and with 
X-tensile strain as represented in Figs. 5, 7, and for Y-arc strain in Figs. 6, 8. A theoretical hypothesis of VHE 
can be done based on Eqs. 7, 10. By varying the strain parameters; the magnitude and sign of the valley Hall 
conductivity can be tuned, where σxx and σxy in Figs. 5, 6, 7, 8 figure out this variations. Moreover, the observed 
small resistance of strained TMD nanoribbons in the absence of external magnetic field reveals the existence of 
induced pseudomagnetic potential in strained structures due to strain field.

Figure 6.  Hall conductivity and local density of states (LDOS) of  MoX2 (X = S, Se, Te) for uniaxial Y-arc strain 
with c = 0, 0.01, 0.02, 0.05, 0.1. In (g), (h) and (i) gap and midgap states are indicated.
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Pseudoelectric and pseudomagnetic field (Landau level). Inhomogeneous strains in graphene can 
induce pseudomagnetic fields very similarly to real  fields93. The induced magnetic field introduce multiple sin-
gularities in density of states as Landau level, which is separated by band  gaps91. A strain gradient creates pseu-
doelectric and pseudomagnetic fields at strained structure, where high or low density of atoms and, hence, elec-
trons (inhomogeneous charge distribution) are emerged as shown in marked regions in Fig. 1, which results in 
an pseudoelectric field. In Y-arc strained TMD nanoribbons, stretching of bonds cause the momentum K and K′ 
points of Dirac cones shift as δk from their unstrained positions in the reciprocal space. This δk as a momentum 
shift generates a pseudovector potential term eA/c92, which creates opposite signs of pseudomagnetic fields at 
the two valleys. The Y-arc strain creates rare and dense regions in the TMD nanoribbons, acting as two different 
materials in a superlattice. Pseudomagnetic fields are ± ẑ field direction for pseudo spin up and down, where the 
valley polarized states are formed due to reversal of pseudospins.

Local density of states (LDOS) of X-tensile strained TMD nanoribbons in Figs. 5 and 7g, h, i suggest that new 
electron states of conduction bands are created by increasing strain fields and electron valance band states are 
shifted toward Fermi energy due to induced pseudofields in strained TMD nanoribbons. Furthermore, Figs. 6 
and 8g, h, i indicate the LDOS for Y-arc strained TMD nanoribbons, where maximized LDOS is located in the 
bottom of arc shaped. LDOS of Y-arc TMD nanoribbons confirms the emergence of new quantized Landau 
level, due to pseudomagnetic potential of inhomogeneous strain profile of Y-arc strained TMD nanoribbons.

Figure 7.  Hall conductivity and local density of states (LDOS) of  WX2 (X = S, Se, Te) for uniaxial X-tensile 
strain with c = 0, 0.01, 0.02, 0.05, 0.1. In (g), (h) and (i) gap and midgap states are indicated.
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Conclusion
In conclusion, by employing TB approach we have investigated the electronic, and valley Hall conductivity of 
six TMD nanoribbons such as  MoS2,  MoSe2,  MoTe2,  WSe2,  WSe2 and  WTe2 considering X-tensile and Y-arc 
strain up to 20%. The nature of electronic structure is indirect for both type of strained TMD nanoribbons and 
a transition from semiconductor to metallic is observed for almost all TMD nanoribbons by enhancing strain 
fields, where the valance valleys are shifted towards positive energies. Furthermore, we note that anomalous 
valley Hall conductivity (AVHC) of TMD nanoribbons in the sign and magnitude altered with strain. The 
deformed hexagonal structure of reciprocal lattice in Brillouin zone by strain field moves the Dirac cones at the 
K and K′ points (changed momentum K → K + δk) in opposite direction, which interpreted as a pseudo-vector 
potential. Meanwhile, pseudomagnetic field due to gradient strain in TMDs affects electron valleys in opposite 
direction for K and K′ valleys. Moreover, stretching the TMDs lattice as Y-arc strain changes the local electron 
density, which creates an in-plane electric field. Pseudomagnetic field in strained TMD nanoribbons affects 
the Berry curvature and emerges new quantized Landau level in align with nonmonotonic change of AVHC. 
Our findings demonstrate that there is a coupling between the strain field and the valley degree of freedom in 
TMD nanoribbons, which leads to a significant advance in valley-dependent electronics as well as fundamental 
condensed matter physics.

Figure 8.  Hall conductivity and local density of states (LDOS) of  WX2 (X = S, Se, Te) for uniaxial Y-arc strain 
with c = 0, 0.01, 0.02, 0.05, 0.1. In (g), (h) and (i) gap and midgap states are indicated.
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