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Abstract

Objective: To develop an explainable lightweight skin disease high-precision classification model that can be deployed to the
mobile terminal.

Methods: In this study, we present HI-MViT, a lightweight network for explainable skin disease classification based on
Modified MobileViT. HI-MVIT is mainly composed of ordinary convolution, Improved-MV2, MobileViT block, global pooling,
and fully connected layers. Improved-MV2 uses the combination of shortcut and depth classifiable convolution to substan-
tially decrease the amount of computation while ensuring the efficient implementation of information interaction and mem-
ory. The MobileViT block can efficiently encode local and global information. In addition, semantic feature dimensionality
reduction visualization and class activation mapping visualization methods are used for HI-MViT to further understand
the attention area of the model when learning skin lesion images.

Results: The International Skin Imaging Collaboration has assembled and made available the ISIC series dataset. Experiments
using the HI-MVIiT model on the ISIC-2018 dataset achieved scores of 0.931, 0.932, 0.961, and 0.977 on F1-Score, Accuracy,
Average Precision (AP), and area under the curve (AUC). Compared with the top five algorithms of 1SIC-2018 Task 3, Marco’s
average F1-Score, AP, and AUC have increased by 6.9%, 6.8%, and 0.8% compared with the suboptimal performance model.
Compared with ConvNeXt, the most competitive convolutional neural network architecture, our model is 5.0%, 3.4%, 2.3%,
and 2.2% higher in F1-Score, Accuracy, AP, and AUC, respectively. The experiments on the ISIC-2017 dataset also achieved excel-
lent results, and all indicators were better than the top five algorithms of ISIC-2017 Task 3. Using the trained model to test on the
PH? dataset, an excellent performance score is obtained, which shows that it has good generalization performance.

Conclusions: The skin disease classification model HI-MViT proposed in this article shows excellent classification perform-
ance and generalization performance in experiments. It demonstrates how the classification outcomes can be applied to
dermatologists’ computer-assisted diagnostics, enabling medical professionals to classify various dermoscopic images
more rapidly and reliably.
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Introduction

Dermatosis is a common disease, frequently occurring
disease in medicine. The World Health Organization once
said that skin diseases will be the most common disease
in human history in the 21st century, with the highest mor-
bidity rate and the highest disability rate. About 30% to
70% of people of different races and ages in the world
suffer from skin diseases.' Dermatologists employ dermo-
scopy, a noninvasive skin imaging method, to aid in diag-
nosis.” Although qualified human experts can correctly
identify a substantial proportion of dermoscopic images
with an accuracy of 80%, it requires considerable time
and work to do so.? Therefore, research that uses computer-
aided diagnosis methods to categorize images of skin ill-
nesses is extremely significant.

The traditional method of classifying skin disease
images is based on a series of processes including prepro-
cessing, lesion extraction, and feature extraction.* First,
use effective methods such as asymmetrical, border,
color, diameter Rule, Menzie’s rule, or seven-point check-
list to extract features from skin lesion images, and then
use various machine learning methods such as eXtreme gra-
dient boosting, decision tree, or support vector machine to
classify hand-designed features.’ Because the traditional
method relies heavily on the quantity and quality of manu-
ally designed features, it cannot be used for more types of
skin lesion image classification, and cannot meet the classi-
fication requirements of higher accuracy.® Compared with
traditional methods, methods based on convolutional
neural networks (CNN) can learn meaningful features dir-
ectly from data, Esteva et al.7 employed a CNN framework
based on Inception-V3 to train a skin disease classification
model with an accuracy rate of 71.2% and verified that the
algorithm was capable of categorization accuracy on par
with 21 dermatologists who hold board -certification.
Duman et al.® propose a novel ensemble method that com-
bines various advantages of several existing CNN models
to deal with large-scale imbalanced datasets. By using
the weighted aggregation method, the accuracy score is
improved by 5% to 10%, compared with the state-of-
the-art, the average sensitivity and area under the curve
(AUC) values are 0.825 and 0.923, respectively,
ranking second. Compared with traditional methods,
the classification of images of skin diseases has been
improved using CNN-based techniques. The following
difficulties still exist in the more effective categorization
of skin lesions because of the uniqueness of skin disease
images: (1) The dermoscopic image only contains a small
portion of the skin lesion region; the majority of the space
is taken up by normal tissues or other unimportant
details, which could skew the findings of the recognition
process. (2) The classification process is more challen-
ging and it is challenging to acquire reliable findings
due to the similarities between classes and differences

within classes of skin lesions.” Figure 1 shows images of
three skin diseases: melanocytic nevi, melanoma, and
actinic keratosis. It is evident that while various types of
dermoscopic images may share geometric shapes or
colors, the same type of dermoscopic images may have
stark visual contrasts, which would negatively impact the
model’s capacity to generalize.

For these factors, it is typically more challenging to cat-
egorize images of skin lesions than it is to classify the
objects and settings in natural images. As a result, better
models must be created to improve the efficacy of the clas-
sification of skin lesions. In 2020, the Google team applied
the Transformer'® technology widely used in the field of
natural language processing to the field of computer
vision and proposed Vision Transformer'' (ViT). This
study has established a new standard for employing
Transformer-based techniques to solve issues related to com-
puter vision. Transformer-based techniques are currently
being commonly applied in the area of medical image pro-
cessing, significantly cutting down on time and labor
expenses. Using the ISIC-2017 dataset,'> Wang et al.'’
created the O-Net algorithm to categorize dermoscopy
images. However, compared with the CNN-based light-
weight model, ViT still has a big gap in terms of model para-
meters and inference speed, and it is very difficult to
implement it on the mobile terminal. Sachin et al.'* offered
a lightweight general visualization Transformer for mobile
devices as a solution to these problems, which is the first
lightweight ViT work based on the performance of light-
weight CNN networks. According to experimental findings,
MobileViT outperforms MobileNetV3, CrossViT, and other
nets on a wide range of tasks and datasets.

To better understand the development process and latest
progress of skin lesion image classification technology, we
review the relevant work of skin lesion image classification
models based on deep learning'>® in recent years in
Table 1. It details the keywords, methods, data, modality,
dermatology categories, and results of the relevant models.

Building on related work, we propose HI-MViT, a light-
weight model for explainable skin disease classification and
the goal is to model local and global information with fewer
parameters to achieve fast and robust dermoscopic image
classification performance on the mobile side. It uses
MobileNet* and Vision Transformer hybrid architecture
MobileViT as the basis, and innovatively designed the
Improved-M V2 block to improve it, which can substantially
scale back on the number of calculations and facilitate better
landing on the mobile terminal. Experiments on the
ISIC-2018 dataset®™ show that F1-Score, Accuracy, average
precision (AP), and AUC have achieved excellent scores of
0.931, 0.932, 0.961, and 0.977, respectively. The following
is a summary of this article’s major contributions:

1. This study proposes an explainable skin disease classi-
fication lightweight model HI-MViT, which is mainly
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Figure 1. Dermoscopy images of melanocytic nevi, melanoma, and actinic keratosis.

composed of ordinary convolution, Improved-MV2,
MobileViT block, global pooling, and fully connected
layers. The network is much more concentrated on the
skin lesion area thanks to the Transformer’s unique self-
attention mechanism and global vision, which increases
the classification accuracy of skin lesion images. The
framework also inherits the lightweight and high effi-
ciency of CNN.

2. Innovatively proposed the Improved-MV2 block. The
combination of the expansion layer, projection layer,
and depthwise separable convolution uses a shortcut
to drastically cut back on calculation while ensuring
the efficient implementation of information interaction
and memory. It is more suitable for the use of light-
weight models and facilitates the implementation of
models on mobile terminals.

3. A large number of performance experiments and
visualization experiments were conducted on the
ISIC-2018 and ISIC-2017 skin lesion classification
datasets released by the International Skin Imaging
Collaboration to fully verify the superiority of the
model. Under the same data processing and experimen-
tal conditions, HI-MViT achieved better performance
than the selected existing mainstream classification
models. At the same time, the trained model is tested
on the PH? dataset, and excellent classification perform-
ance is obtained, which proves that it has good general-
ization performance and robustness.

Methods

HI-MVIT structure

The structure of the HI-MViT model proposed in this article
is shown in Figure 2. Its purpose is to build a lightweight
interpretable deep learning model that can be deployed on
the mobile terminal for accurate and fast classification of
skin lesion images. HI-MViT is mainly composed of ordin-
ary convolution, Improved-MV2, MobileViT block, global
pooling, and fully connected layers. Blocks marked with a
down arrow represent the need for downsampling.

MobileViT block

The MobileViT block can efficiently encode local and
global information. In MobileViT block, for a given input
tensor X € R®>WXC an n x n standard convolutional layer
is first used, proceeded by a 1 x 1 convolutional layer to
generate features X; € R™*"*4_pn x n convolutional layers
encode local spatial information, while pointwise convolu-
tions project tensors into d-dimensional spaces by learning
linear combinations of input channels.'*

We extend X, into N non-overlapping flattened patches
Xy € RPN*d 1o allow HI-MViT to acquire a global descrip-
tion with spatial induction bias. The relation X € RPV*¢
between patches is encoded by applying Transformer, as
shown in equation 1, where P = wh, N = HW /P is the
number of patches, h <N, w <N are the height and
width of the patch correspondingly, p € {1, ---, P}.

Xc(p) =

HI-MVIiT does not lose either the patch sequence or the
spatial order of the pixels inside every patch. The result
of folding X € RPN* is X € RI*WXd After that, Xy is
pointwise convected to a low-dimensional region and
joined with X using the Concat method. The local and
global characteristics are then combined in the concatenated
tensor using a further n X n convolutional layer.

As a result the fact that Xy(p) uses convolution to
encode local information for n X n areas. So every pixel in
X can encode the details of every pixel in X for the patch
at the P—position P. The global knowledge for this patch is
encoded by X¢(p). As a consequence, Figure 3 depicts the
HI-MVIiT H x W’s overall efficient receptive field.

Transformer(Xy(p)), 1 <p <P (D

Improved-MV2 block

The Improved-MV?2 block executes a depthwise separable
convolution operation, a 1 X 1 expansion layer to raise the
total amount of channels, and a 1Xx 1 projection layer to
return the channel count to its initial size.*' The skip con-
nection is established between two bottleneck layers with
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Figure 2. Network structure diagram of HI-MViT.

Figure 3. In MobileViT block, every pixel is aware of other pixels.
Gray grids represent pixels, and black grids composed of gray grids
represent patches. Through the transformer, the red pixel
processes the blue pixel at the corresponding point in other
patches. This enables the red pixel to encode information from
every pixel in the image since the blue pixel has previously used
convolution to encode data from nearby pixels.

fewer channels, which is just the opposite of the residual
structure in ResNet.’” Figure 4(a) depicts the structure
when stride=1 and Figure 4(b) depicts the architecture
when stride =2.

Depthwise convolution and pointwise convolution are
the two components of Depthwise Separable Convolution
(DSC). Every convolution kernel is convolved with a

different dimension of the input feature matrix in a stand-
ard convolution. Every channel of the input feature map is
given its convolution kernel using depthwise convolution,
which then combines the outcomes of all the convolution
kernels to get the final output. Typically, a depthwise con-
volution layer comes after a pointwise convolution oper-
ation. Pointwise convolution is a 1 X 1 convolution that
executes channel merging on the feature map produced
by depthwise convolution in addition to allowing users
to flexibly modify the number of output channels.
Therefore, DSC not only has the advantages of fewer
parameters and faster calculation but also overcomes the
disadvantage of lack of information interaction in group
convolution.*® Ordinary convolution is contrasted with
depthwise convolution and pointwise convolution in
Figure 5.

Through this modification to the feature map’s
channel splitting, DSC has decreased the total amount
of parameters, which has improved the network’s light-
weight. Every spot in the spatial position of the related
feature map will undergo a convolution operation
under the assumption that the input feature map is Dy X
Dy X M pixels in size, the convolution kernel is D X
Dr XM pixels in size, and there is N convolution
kernels total. Then it can be seen that a single convolu-
tion requires a total of Dy XDyXDpXDpXM
calculations.

Therefore, for N convolutions, the total calculation
amount is: Dy XDy XDpXDp XM XN. In the same
way, it can be analyzed that the total calculation of
depthwise convolution is: Dy X Dy X Dp X D X M, and
the total calculation of pointwise convolution is:
M X N X Dg X Dg. So the total calculation of DSC is:
Dy XDy XDp XDp XM+ M XN X Dg X Dg. Then,
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Figure &. Improved-MV2 block structure: (a) stride=1 and (b) stride=2.
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Figure 5. Comparison of ordinary convolution with depthwise convolution and pointwise convolution.

compared to ordinary convolution the ratio of DSC calcu-
lation to ordinary convolution is: + ~. Taking this article
as an example, in theory, the calculatlon amount of ordinary
convolution is 8~9 times that of DSC, and the calculation
efficiency of DSC is far better than that of ordinary
convolution.

Improved-MV2 additionally permits memory-efficient
implementation, which is crucial for the use of lightweight

models on mobile terminals. Create a directed acyclic com-
putational hypergraph G with nodes representing tensors of
intermediate calculations and edges representing operations
to use a typical efficient inference implementation in
PyTorch. The overall amount of tensors that must be main-
tained in memory is kept as low as possible by scheduling
computations accordingly. As a whole, all reasonable calcu-
lation sequences are searched and the smallest one
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Table 2. Specific network parameter configuration information of the HI-MViT model.

Image 256 X 256
Conv-3x3,|2 128 X 128
Improved-MV2

Improved-MV2,|2 64 X 64
Improved-MV2

Improved-MV2,|2 32X32
MobileViT block (L=2)

Improved-MV2,|2 16 X 16
MobileViT block (L=1)

Improved-MV2,]2 8x8
MobileViT block (L=13)

Conv-1Xx1

Global pool 1x1
Linear

Network Parameters

is selected. The specific operation process is shown in
equation 2:

M(G) = mingex) Maxe..q Z |A]
A€RG2.G)

] + size(w;) (2)

where |A| is the size of tensor A and R(i, 7, G) a sequence of
intermediary tensors linked to any of the (z;...x,) nodes.
The total quantity of RAM needed for internal storage
throughout the process is size(i). There is just one atypical
order of computation that makes calculating the memory
needed for inference on graph G simpler for graphs with
only ordinary parallel structures (such as residual compo-
nents), as shown in equation 3:

M(G) = maxpec| Y IAI+ D |Bl+ lopl

AE0pinp AEopou

(©)

Taking the Bottleneck Residual block as an example, the
operation F(x) can be expressed as a combination of three
operations, as shown in equation 4:

F(x)=[A-N Blx “)

where A:R™*k —» R™Xn  is the linear transformation,

N:RSXSXn s RSXSXn the nonlinear transformation of each

1 . 3
2 1 16
1 32
4 1 64
2 64
8 1 96
1 96(d = 144)
16 1 128
1 128(d=192)
32 1 160
1 160(d = 240)
1 640
256 1 -
1 1000
- - 5.6M

channel, B:RS**" — R¥X*K and is the linear transform-
ation of the other output x is the input, s the stride, k the
size of the convolution kernel, and n the quantity of
channels.

For HI-MViT, N = Hardswish - dwise - Hardswish, the
result is applied to each channel transform. Assuming that
the input size is dominated by |x| and the output size by
||, then the memory required for F(x) computation can
be reduced to as shown in equation 5:

|s?k| + |s"22K'| + O(max (s, s™%)) (5)

In Improved-MV2 we used Hardswish as the activation
function, replacing rectified llinear unit 6 (ReLU6)** in
the original version. Due to the large number of channels
in the middle two layers, using Hardswish will not cause
too much information loss, and Hardswish has multiple
advantages in the use of lightweight models. The majority
of hardware and software architectures offer ReLU imple-
mentations that are optimized. Second, by operating in
quantized mode, it prevents any potential loss of numerical
accuracy brought on by various implementations of
approximative sigmoid forms.>> The Hardswish activation
function can also be implemented as a divided function to
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decrease the amount of memory allocation, which will sig-
nificantly lower the latency cost and make it easier to
deploy HI-MVIiT in the future on mobile devices.
Equation 6 defines the Hardswish activation function,
where x is the input variable.

Rel
Hardswish [x] = x% (6)

HI-MVIT parameter

Table 2 displays the details of the configuration of the
HI-MViT model’s specific network parameters, where d
stands for the input dimension of the transformer layer in
the MobileViT block.

Evaluation metrics

Precision, Recall, Accuracy, F1-Score, AP, and AUC were
chosen as the network assessment metrics to thoroughly
assess the efficacy of the HI-MVIT classification algo-
rithm,36 and the definitions are shown in equations (7) to
(12):

.. TP
Precision = —— @)
TP + FP
TP
R =
ecall TP+ FN (8)
TP + TN
Accuracy = + )
TP + FP+ TN + PN
2xPrecision*Recall
F1- = 1
Score Precision + Recall (10)
1
AP = J p(r)d(r) (11)
0
1
AUC = j tf)d(f) (12)
0

Among them, TP, TN, FP, and FN are the amount of true
positive, true negative, false positive, and false negative
samples, respectively, ¢ and f are the true positive rate and
false positive rate, p is Precision, and r is Recall.

The percentage of the real positive class (7P) compared
to the total positive classes (7P + FP) which are considered
to be positive is known as Precision. The percentage of all
true positive classes (TP 4+ FN) that are considered to be
positive classes is known as Recall (7P). The percentage
of all accurate assessment information (TP + TN) to the
whole is the accuracy score. While evaluating the correct-
ness of its performance, the F1-Score assigns equal
weight to the Precision and Recall scores. The Precision—
Recall (PR) curve has Recall on the abscissa and
Precision on the ordinate, and its area is denoted by the
symbol AP. It can be regarded as a key indicator for

assessing the overall performance of the model because it
also considers the model’s Precision and Recall. The false
positive rate (FPR) is on the abscissa and the true positive
rate (TPR) is on the ordinate of the receiver operating char-
acteristic (ROC) curve, which is referred to as AUC. It
served as the benchmark for evaluation in the ISIC-2017
skin disease categorization challenge and carefully assessed
the model’s sensitivity and specificity.”’

Results

Datasets

This is a diagnostic study aimed at developing and valid-
ating the diagnostic accuracy of our proposed model. In
this article, we conduct a series of experiments on the
HI-MViT model on two skin lesion classification chal-
lenge datasets (i.e. ISIC-2017 and ISIC-2018 datasets)
and a publicly available dermoscopic image dataset (i.e.
PH? dataset). Among them, the PH? dataset is only used
in the test, mainly for the evaluation of the generalization
performance of the model. The 10,015 dermoscopic
images for the HAM10000 dataset were collected over a
20-year period from 2 different sites: Dermatology at
the Medical University of Vienna, Austria, and the CIliff
Rosendahl Skin Cancer Clinic in Queensland, Australia.
Inclusion criteria: (1) included dermoscopic images
were of sufficient quality for analysis and diagnosis and
(2) ensure that each image has appropriate clinical diag-
nostic labeling, as well as labeling of dermoscopic fea-
tures (e.g. pigment grid, structure, blood vessels, etc.).
Exclusion criteria: (1) exclusion of poor-quality images,
which may include blurred, overexposed, or underex-
posed images and (2) unmarked or poorly marked
images are excluded.

The ISIC series datasets are aggregated and published by
the International Skin Imaging Collaboration. The
ISIC-2017 classification dataset consists of 2750 dermo-
scopic images, which are divided into 3 different categories:
melanoma, seborrheic keratosis, and nevus. The
HAM10000 dataset, also known as the ISIC-2018 skin
lesion classification dataset, has 10,015 dermoscopic
images with a size of 600 X 450 pixels that span 7 main cat-
egories of skin illnesses. The PH? dataset is released by the
Dermatology Service of Pedro Hispano Hospital, which
contains 200 dermatoscopy images with a resolution of
768 X 560 pixels, consisting of 80 nevus, 80 atypical
nevus, and 40 melanomas images. In the ISIC-2018
dataset, we divided the dataset into training set, verification
set, and test set according to the ratio of 6:3:1. Then, data
enhancement is performed on the divided training set, and
the data processing process is strictly controlled to
prevent data leakage. While on the ISIC-2017 dataset, we
use the division ratio specified in the official challenge.
Table 3 displays the dataset’s precise distribution of data.
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Table 3. The specific data distribution of ISIC-2017, 1SIC-2018, and
PH? classification datasets.

ISIC-2017 Melanoma 374 30 117
Seborrheic keratosis 254 42 90
Nevus 1372 78 393
ISIC-2018 Actinic keratosis (AKIEC) 197 98 32
Basal cell carcinoma 309 154 51
(BCC)
Benign keratosis (BKL) 660 330 109
Dermatofibroma (DF) 70 34 11
Melanoma (MEL) 668 334 111
Melanocytic nevi (NV) 4024 2011 670
Vascular skin lesion 86 42 14
(VASC)
PH? Nevus - - 80
Atypical nevus = = 80
Melanoma S = 40

When preprocessing the dermoscopic images in the
dataset, we first resize the images to 256 X256 and use
CenterCrop to return a center-cropped image.”® Then a
variety of data enhancement methods are used, including
random rotation ([-900, +900]), random vertical flip,
random horizontal flip, adding noise, adjusting contrast,
and normalization to prevent excessive model training. As
it is known, deep networks are data-hungry and a lot of aug-
mentation methods have been applied with dermoscopy
images to increase reliability and robustness.’*™*'
Therefore, an increased number of data has been used in
this work to improve the performance of the proposed
approach. Specifically, we use the min—max normalization
method to adjust the pixel values of the image to the range
[0,1]. Intensities in medical images are usually inhomogen-
eous and significantly affect the performance of automated
image analysis techniques. Although various normalization
algorithms with different image types have been applied to
obtain high performance in the literature,*** they can
cause increased computational costs. At the same time,
we also randomly add Gaussian noise and Salt noise to
the image to achieve data enhancement. Although generally
Gaussian or speckle type of noise occurs in dermoscopy
images, they may include different types of noise that can

be caused by different reasons such as imaging techniques
or environmental factors.**

Figure 6 shows schematic diagrams of images of differ-
ent categories in the ISIC-2017, ISIC-2018, and PH? classi-
fication datasets.

Implementation details

The deep learning framework PyTorch 1.12.1 was
employed to implement each experiment in this article.
The hardware device used in the experiment is a computer
equipped with four GeForce RTX 2080 Ti GPUs and 64GB
of memory, and the operating system is Ubuntu 20.04.3.
After a series of detailed comparative experiments, this
article selects the AdamW™* adaptive learning rate opti-
mization algorithm as the optimizer and the loss function
selects the cross entropy function. The weight decay is
adjusted to 1E-2, the batch size is 16, and the epoch is
50. The starting learning rate has been set to 0.0002. On
the ImageNet 21 K dataset,27 the network is pretrained in
this study, and the pretraining variables are obtained.
After loading it into the HI-MViT model, transfer learning
is performed to ensure the best results for skin disease
image classification. Specifically, first, migrate the pre-
trained parameters obtained on ImageNet, modify the
number of categories of the classification head, and then
use the dermoscopic image to fine-tune some parameters
of the model until convergence.

To fairly compare the performance of different methods
and reduce the impact of chance and error, we conducted a
five-fold cross-validation on ISIC-2017 and ISIC-2018, and
showed the average performance and standard deviation.

Comparative experiment

We conducted comparative experiments on the ISIC-2018
dataset to explore the hyperparameter selection in model
design and verify the effectiveness of Improved-MV2.

Hyperparameter optimization. We designed comparative
experiments to select training hyperparameters, including
optimizers and loss functions, for the HI-MViT skin
lesion image classification model. In the comparison
experiment, the optimizer selected the current mainstream
and cutting-edge adaptive learning rate optimization algo-
rithms: NAdam, AdaMax,46 and AdamW, and the loss
function selected FocalLoss,47 PolyLoss,48 and Cross
Entropy Loss function. The classification results of the
HI-MVIT structure employing various optimizers and loss
functions are shown in Table 4.

Table 4 shows that the HI-MViT model performs best
when AdamW is employed as the optimizer and Cross
Entropy Loss is utilized as the loss function. The scores
of Precision, Recall, F1-Score, Accuracy, AP, and AUC
are respectively 0.931, 0.932, 0.931, 0.932, 0.961, and
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Figure 6. Schematic diagram of images of different categories in (a) ISIC-2017, (b) ISIC-2018, and (c) PH? classification datasets.

Table &. Classification performance of the HI-MViT model using different optimizers and loss functions.

NAdam Focalloss 0.643+0.001  0.704 + 0.007
PolyLoss 0.773 +£0.007  0.796 + 0.011
Cross entropy loss  0.754+0.012  0.779 +0.013
AdaMax Focalloss 0.566 +£0.011  0.699 +0.010
PolyLoss 0.793+0.012  0.812 +0.007
Cross entropy loss 0.776 + 0.005 0.797 + 0.006
AdamW Focalloss 0.873+0.001  0.877 +0.012
PolyLoss 0.868 +0.002 0.878 + 0.005
Cross entropy loss  0.931+0.003  0.932 +0.002

AUC: area under the curve.

0.977, respectively. Compared with the AdamW +
FocalLoss combination and AdamW + PolyLoss combin-
ation with the second-best performance, the indicators
have increased by 5.8%, 5.4%, 5.9%, 5.4%, 3.1%, and
0.9%, respectively.

To more intuitively understand the changes in indicators
during training and verification, Figure 7 depicts the accur-
acy and loss values’ tendency as the number of model train-
ing and verification steps grows for various optimizer and
loss function configurations. Figure 7 shows that the
optimal performance combination AdamW + Cross
Entropy Loss can learn the features contained in the

0.634+0.009  0.704+0.007 0.728+0.007  0.870+0.013
0.768 £0.001  0.796 £0.011  0.845+0.012  0.932+0.006
0.744 +0.010  0.779+0.013  0.823+0.011  0.915+0.003
0.624 +0.003  0.699+0.010  0.724+0.011  0.879 +0.006
0.797 +£0.006  0.812+0.007  0.870+0.004  0.939 +0.009
0.774+0.010  0.797 +0.006  0.856 +0.002  0.927 +0.008
0.872+£0.002  0.877+0.012  0.930+0.007  0.968 +0.003
0.868 +0.003  0.878+0.005 0.920+0.010  0.965 + 0.002
0.931+0.005 0.932+0.002 0.961+0.004 0.977 + 0.001

images in the dataset in fewer epochs during training and
verification. And it converges quickly under the premise
of ensuring stability.

Improved-MV2 validity verification. We performed compari-
son studies on the Improved-MV2 block in the HI-MViT
architecture suggested in this article to confirm its
efficacy. We set the activation functions in the original
MV2 block to ReLU6, Gaussian error linear
unit (GELU),* exponential linear unit (ELU),>° leaky
rectified linear unit (Leaky ReLU),’! parametric rectified
linear unit (PReLU)’? respectively. The pooling layer of
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Figure 7. Accuracy and loss value changes of different optimizers and loss function combinations during training and verification.

the model is divided into two methods of global average
pooling™ and global maximum pooling* for discussion
and experimentation. The comparative experimental
findings on the ISIC-2018 classification dataset are dis-
played in Table 5.

Table 5’s results indicate that HI-MViT performs highest
in the experiment when the pooling layer is adjusted to Global
Average Pooling, with grades of 0.931 for F1-Score, 0.932 for
Accuracy, 0.961 for AP, and 0.977 for AUC. Compared with
the original MobileViT model (using ReLU6), the improve-
ments are 5.1%, 5%, 7.4%, and 2.5%, respectively.
Compared with the suboptimal model in the performance
of each indicator, it has increased by 4.9%, 4.5%, 3.1%,
and 0.8%, respectively. When HI-MViT uses global
average pooling, F1-Score, Accuracy, AP, and AUC are
increased by 1.1%, 1.2%, 1.3%, and 0.7%, respectively,
compared with the case of using global maximum
pooling. It can be known from the above conclusions that
the innovative design of the Improved-MV2 block is very
effective in the HI-MViT model.

Classification results on the ISIC-2018 dataset

Compared with mainstream algorithms. The comparative
evaluation between this model and the currently mainstream

methods on the ISIC-2018 classification dataset is shown in
Table 6, including ResNeXt,55 ShufﬂeNet,56 MnasNet,>’
MobileNet,31 MobileOne,58 ConVNeXt,59 Vision
Transformer,'!  Swin Transformer,60 MetaFormer,%!
EfﬁcientFormer,62 MaxViT,63 and FasterViT.%*

As can be seen from the results in Table 6, compared
with the mainstream classification models based on CNN
or Transformer selected in the experiment, our scheme per-
forms better in various evaluation indicators. Compared
with ConvNeXt, the most competitive CNN architecture,
our model is 5.0%, 3.4%, 2.3% and 2.2% higher in
F1-Score, Accuracy, AP and AUC, respectively.
Compared with FasterViT, which has the highest AUC
score in the Transformer architecture, the F1-Score,
Accuracy, and AP of HI-MViT have increased by 5.2%,
5.0%, and 3.4%, respectively. The experimental results
fully demonstrate that the method proposed in this article
has excellent performance in the comprehensive perform-
ance of skin lesion classification.

Compared with the top algorithms in the ISIC-2018 classification
challenge. The top five algorithms on ISIC-2018 Task 3 are
contrasted with the results of the HI-MViT model provided
in this article in Table 7. These algorithms do not use add-
itional data. The deep learning strategies adopted by the top
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Table 5. Validation of the Improved-MV2 block on the 1SIC-2018 classification dataset.

Global average pooling RelLU6 0.889+0.008 0.882+0.011  0.88+0.006 0.882+0.011 0.887+0.015 0.952+0.008
GELU 0.884+0.012 0.883+0.008 0.877+0.012 0.883+0.008 0.905+0.013 0.946+0.014
ELU 0.882+0.009 0.887 +£0.014 0.882+0.010 0.887+0.014 0.93+0.010 0.969 +0.004
Leaky ReLU 0.874 +0.009 0.876+0.003 0.87 +0.003 0.876+0.003 0.914+0.006 0.961+0.011
PRelLU 0.865+0.001 0.865+0.005 0.858+0.013 0.865+0.005 0.906+0.006 0.951+0.010
HI-MViT(Ours) 0.931+0.003 0.932+0.002 0.931+0.005 0.932+0.002 0.961+0.004 0.977 + 0.001
Global max pooling RelLU6 0.875+0.013 0.876 +0.013 0.87 +£0.011 0.876+0.013 0.914+0.002 0.955+0.009
GELU 0.876 +0.015 0.878+0.003 0.874+0.003 0.878+0.003 0.929+0.002 0.968 +0.008
ELU 0.873+0.014 0.876+0.012 0.872+0.007 0.876+0.012 0.917+0.009 0.959 +0.003
Leaky RelLU 0.874+0.008 0.878+0.006 0.873+0.012 0.878+0.006 0.923 +0.008 0.958 +0.004
PReLU 0.870+0.016 0.874+0.013 0.871+0.004 0.874+0.013 0.91+0.006 0.958+0.013
HI-MViT(Ours) 0.922 +0.003 0.920+0.005 0.920 +0.002 0.920 + 0.005 0.948 + 0.004 0.970 + 0.006

AUC: area under the curve; ELU: exponential linear unit; GELU: Gaussian error linear unit; PRLU: parametric rectified linear unit.

five teams are the deep neural network (DCNN) integrated
model® (Team-1), CNN-based model®® (Team-2), Xception
+DenseNet121 hybrid model®” (Team-3), Inceptionv4 +
ResNet-152 +DenseNet-161 Hybrid model®® (Team-4), and
improved DCNN model® (Team-5).

Table 7 shows that, except for BCC and NV, the
HI-MVIT framework yields the best results for all evalu-
ation markers across the five categories. The AUC score
on BCC is only 0.1% lower than the best performance,
which is 0.991, but it improves the best performance
obtained by the model of Team-1 by 2.3% and 1.6% on
F1-Score and AP. Although only 0.3% below the best per-
formance in NV’s AP score, 0.978, HI-MViT improves the
best performance obtained by the model of Team-1
F1-Score and AP by 2.1% and 0.3%. Taking AKIEC as
an example, compared with the top five algorithms,
HI-MVIT performed suboptimally in terms of various indi-
cators. F1-Score, AP, and AUC increased by 18.9%,
16.6%, and 0.9%, respectively, achieving 0.939, 0.993,
and 1 good results. Macro-average can more comprehen-
sively measure the classification performance of the
model in each category. The scores of F1-Score, AP, and
AUC of HI-MVIiT are 0.899, 0.960, and 0.986, respect-
ively. Compared with the models of Team-1 and Team-2
with suboptimal performance, they have improved by
6.9%, 6.8%, and 0.8%.

Figure 8 shows the grouped histogram of the evaluation
indicators of the HI-MViT model on the ISIC-2018 test set.

The model performs optimally overall for classifying
images of different skin diseases. especially the AUC,
which is the gold standard for evaluation, and the scores
of each category are close to full marks.

To understand the classification effect of HI-MViT for
different categories in the ISIC-2018 dataset more clearly
and intuitively, Figure 9 shows the confusion matrix of
HI-MVIT on the test set. By observing Figure 9, it can be
found that there are relatively more misjudgments in the
NV and MEL categories, which may be caused by the
high similarity images between the NV and MEL
categories.

The PR and ROC curves of HI-MViT on the test set are
displayed in Figure 10. AP is a representation of the region
beneath the PR curve. The PR curve implies improved
model performance when it is more inclined to the upper
right. The square value under the ROC curve, or AUC, is
a measure of how well the algorithm generalizes. The
nearer the ROC curve is to the (0,1) point, the greater. It
can be observed that in the PR curve, the AP values of
AKIEC, DF, and VASC are the highest, which are 0.993,
0.992, and 1, respectively. In the ROC curve, the curves
of AKIEC, BCC, DF, and VASC are all very close to the
(0,1) point, and the AUC values are 1, 0.991, 1, and 1,
respectively.

Compared with the latest skin lesion classification models. To
better represent the good performance of HI-MViT in skin
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Table 6. Performance comparison between the method in this article and the mainstream models on the ISIC-2018 dataset.

CNN ResNeXt 0.837 £0.007 0.844 +0.006
ShuffleNet 0.869 +0.006 0.869 + 0.002
MnasNet 0.862 +£0.002 0.864+0.015
MobileNet 0.864 +0.006 0.867 +0.013
MobileOne 0.857 +£0.011 0.881+0.002
ConvNeXt 0.868 +0.004 0.898 +0.007
Transformer Vision Transformer  0.679 +0.001  0.742 + 0.005
Swin Transformer 0.823 +0.002 0.861 + 0.014
MetaFormer 0.855+0.005 0.898 +0.007
EfficientFormer 0.857 + 0.004 0.881 + 0.008
MaxViT 0.820 +£0.001 0.833+0.014
FasterViT 0.878 +0.015 0.882 + 0.005
Ours HI-MViT 0.931+0.003 0.932 +0.002

0.839 +0.013

0.867 +0.011

0.860 +0.011

0.865 +0.011

0.868 +0.009

0.881 +0.007

0.696 +0.013

0.839 +0.003

0.874 +0.013

0.868 +0.006

0.823 +0.010

0.879 +0.014

0.931 + 0.005

0.844 +0.006

0.869 +0.002

0.864 +0.015

0.867 £ 0.013

0.881+0.002

0.898 +0.007

0.742 +0.005

0.861 +0.014

0.898 +0.007

0.881 +0.008

0.833 £0.014

0.882 +0.005

0.932 +0.002

0.896 +0.003

0.925 +0.004

0.932 +0.013

0.922 +0.013

0.925 +0.003

0.938 +0.008

0.795 + 0.004

0.904 + 0.006

0.931+0.015

0.925 +0.002

0.884 + 0.005

0.927 +0.011

0.961 + 0.004

0.959 £ 0.007

0.969 +0.003

0.974 +0.002

0.967 £ 0.001

0.952 +0.003

0.955 £ 0.005

0.907 +0.002

0.937 +£0.008

0.955 +0.003

0.952 +0.003

0.953 +0.011

0.969 +0.005

0.977 £ 0.001

23.0M

1.3M

3.1M

5.0M

27.8M

86.2M

27.5M

11.4M

11.3M

28.5M

31.4M

4.9M

AUC: area under the curve; CNN: convolutional neural networks.

lesion classification, we selected six latest networks’®">

specifically designed for skin lesion classification for com-
parison, and the results are shown in Table 8. As can be
seen, Table 8 covers CNN-based, Transformer-based, and
lightweight networks, and in comparison, our method has
a better accuracy score on the ISIC-2018 dataset.

Visualization of the learned embeddings and CAMs. To
enable the model to concentrate more on the skin lesion
area and enhance the classification effect, HI-MViT
employs the Transformer-based multihead self-attention
method to acquire the global representation of the
image. To verify this, we used two methods to visually
compare the ConvNeXt and HI-MViT: one is to visualize
the dimensionality reduction of semantic features in the
test set, and the other is to visualize the Class
Activation Map (CAM).

First, we use a linear dimensionality reduction method
(PCA’®) and two nonlinear dimensionality reduction
methods (t-SNE’” and UMAP’®) to visualize the features
learned by a specific layer of the model. Figure 11 shows
the results of ConvNeXt and HI-MViIT using PCA,
t-SNE, and UMAP on the ISIC-2018 test set for dimension-
ality reduction visualization, which can reflect the ability of
the model to distinguish different types of samples. It can be
seen from Figure 10 that among the three dimensionality

reduction visualization algorithms, the visualization
results of HI-MVIiT are better than ConvNeXt, with
smaller intraclass distances, larger interclass distances,
clear cluster boundaries, and fewer mixed samples. This
reflects that HI-MVIT has a stronger ability to discriminate
images of skin lesions.

CAM visualizes which pixels of an image a neural
network pays attention to when predicting a class. In this
article, six different CAM methods are used to generate
class activation heatmaps for skin disease images, including
GradCAM,”  Guided Grad-CAM, GradCAM++,*
AblationCAM,81 ScoreCAM,82 and EigenCAM.83 Among
them, Guided Grad-CAM can generate high-resolution
fine-grained thermal maps. Figure 12 shows the class acti-
vation heatmap obtained by HI-MViT on different categor-
ies of skin disease images in the ISIC-2018 dataset. It can be
observed that there are differences in the specific subregions
and concentrations that different CAM algorithms focus on
HI-MVIT, but they all focus on the attention region repre-
senting the location of the skin lesion when performing
classification, rather than the surrounding normal skin
tissue and hair tissue.

Visualization of effective receptive fields and attention maps.
Different from traditional CNN’s process of gradually
expanding the receptive field by using larger convolution
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Figure 8. Grouped histogram of evaluation indicators of HI-MViT model on ISIC-2018 test set.
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Figure 9. Confusion matrix of HI-MVIT on the ISIC-2018 test set.

kernels and deeper convolutions, the Transformer-based
HI-MViT model we propose can obtain global represen-
tation earlier by modeling long-distance dependencies. We
visualize the average effective receptive field at different
stages of the ConvNeXt and HI-MViT models,84 and the
results are shown in Figure 13. It can be observed that com-
pared with the convolutional neural network, the global
information interaction capability of HI-MViT can help the
feature extractor to quickly establish a global receptive
field, thereby achieving faster context understanding.

To better understand the change of attention of
HI-MViT in the process of classifying skin lesion
images, we visualized the attention maps of different
stages85 of the model on ISIC-2018, as shown in
Figure 14. It can be observed that HI-MViT can model
the global information through the self-attention mech-
anism, thereby improving the ability to identify skin
lesions from the global receptive field. At the same
time, with the deepening of the module, the attention
will gradually focus on the skin lesion area, so the
lesion type of the skin lesion area can be more accur-
ately identified.

Classification results on the ISIC-2017 dataset

Compared with mainstream algorithms. Table 9 shows the
performance comparison between HI-MViT and main-
stream classification models for skin lesion classification
on the ISIC-2017 dataset. It can be seen that HI-MViT per-
forms better in all indicators than other comparison models
in Table 9. Compared with ConvNeXt, the master of the
convolutional neural network, our method improves
F1-Score, Accuracy, AP, and AUC by 7.6%, 7.4%, 8.8%,
and 5.0%, respectively. In the Transformer architecture,
EfficientFormer, which is also a lightweight network, is
considered to be the most competitive method. Compared
with its scores in F1-Score and AUC, HI-MViT increased
by 4.3% and 1.9%, respectively, which reflects the strong
performance of HI-MVIT in skin lesion classification.
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Figure 10. (a) Precision-recall curve and (b) ROC curve of HI-MViT on the ISIC-2018 test set. ROC: receiver operating characteristic.

Compared with the top algorithms in the ISIC-2017 classification
challenge. The effectiveness of the technique used in this
article is contrasted with the top 5 algorithms used in
ISIC-2017 Task 3 in Table 10. The deep learning strategies
adopted by the top five teams are the ResNet ensemble
model®® (Team-1), CNN-based model®’ (Team-2), transfer
learning-based model®® (Team-3), deep residual network
model® (Team-4), and multitask deep learning model®®
(Team-5). The strategies outlined in this study have pro-
duced the best outcomes across all categories of evaluation
metrics.

Figure 15 is a grouped histogram of the evaluation
indicators of the HI-MViT model on the ISIC-2017 test
set. The model’s performance on every indication of
each class can be observed to be fairly balanced, and
its total performance is quite outstanding. At the same
time, the weighted average AUC score as the
ISIC-2017 challenge evaluation standard is 0.962. The
Accuracy, AP, and AUC scores on the seborrheic kerato-
sis category achieved good results of 0.933, 0.968, and
0.988, respectively.

The confusion matrix for the algorithm on the ISIC-2017
test set is shown in Figure 16, and the deviation between the
real category and the predicted category can be seen. It can
be seen that a part of nevus is misjudged as melanoma
because the division of nevus species does not exist in the
original dataset. To fully exploit the training potential of
the dataset, we generally divide all the images not marked
as melanoma and seborrheic keratosis into nevus for classi-
fication. Certain nevus images may be incorrectly assessed
due to the similarities between classes and the variations
within classes.

Figure 17 is the PR and ROC curves of the network in
this article on the ISIC-2017 test set. It can be seen that in
the PR curve, the overall trend of all categories is close to

(1,1), which shows that the model is well-balanced
between the two indicators of Precision and Recall. In the
ROC curve, the inflection points of the three classifications
are very close to (0,1), and the outstanding overall effective-
ness of the model may be assessed based on the area under
the curve, which is very near 1.

Compared with the latest skin lesion classification models.
Table 11 shows the accuracy scores of six networks specif-
ically designed for skin lesion classification'*'="> com-
pared to our method on the ISIC-2017 dataset. Table 11
contains a variety of methods based on EfficientNet B3,
CNN, Transformer, metaheuristic optimization algorithms,
and noise label correction methods. It can be seen that our
lightweight classification model HI-MViT obtains better
accuracy performance.

Visualization of the learned embeddings and CAMs. Figure 18
compares the results of semantic feature extraction and dimen-
sion reduction visualization of HI-MViT and ConvNeXt on the
ISIC-2017 test set. It can be seen in the three dimensionality
reduction visualization algorithms that there is the existence
of the mixing of data points of different categories in
ConvNeXt. The intercluster distribution distance of
HI-MVIT is far, the intracluster distribution is similar, the
cluster boundary is clear, and the data is less mixed.

The CAM visualization results shown in Figure 19 allow
us to more intuitively understand which pixels HI-MViT
pays more attention to as the basis for classification when
classifying the ISIC-2017 dataset. It can be seen that
HI-MViT mainly focuses on the skin lesion area in the
image, and does not pay too much attention to the surround-
ing skin tissue, which is also a prerequisite for ensuring
accurate classification results.
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Table 8. Performance comparison between the method in this article and the latest skin lesion classification models on the 1SIC-2018

dataset.

Alam et al.” (2022) A feature extraction block based on CNN to construct stepwise feature tracking is used for the 0.906
classification of skin disease images
Anand et al.”*(2022) A deep learning-based model was used to identify benign and malignant stages of skin cancer 0.891
using the concepts of transfer learning methods
Popescu et al.”? (2022) A system based on the collective intelligence of nine CNNs is proposed for detecting and 0.867
classifying skin lesions
Tada and Han” (2023) A hybrid skin lesion classification model is constructed by combining convolution operations 0.911
and self-attention structures
Durdes and Véstias’™ (2023) A low-cost intelligent embedded system for skin cancer classification based on cascade 0.870
inference technology and Vitis-Al
Li et al.”® (2023) An auxiliary diagnosis method for skin lesions based on enhanced MobileNet model 0.926
HI-MViT(Ours) A Lightweight Model for Explainable Skin Disease Classification Based on Modified MobileViT 0.932
CNN: convolutional neural networks.
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Figure 11. Dimensionality reduction visualization results of ConvNeXt and HI-MViT on the ISIC-2018 test set.

Validate generalization performance on PH® dataset

The generalization ability reflects the ability of the model to
judge unknown data. A model with good generalization
ability can make correct judgments when the data fluctu-
ates. We used the model trained on ISIC-2017 to test on a

skin disease dataset PH® with an unknown distribution to
verify the generalization effect of HI-MViT. Table 12
shows the test results of different mainstream classification
models on the PH? dataset.

Compared with the most competitive ConvNeXt and
EfficientFormer, our method improves Accuracy by 3.9%
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Figure 12. HI-MVIT class activation heatmap on the ISIC-2018 dataset.

and 1.7%, and AUC by 3.5% and 2.4%, respectively.
Therefore, according to the experimental results shown in
Table 12, it can be shown that HI-MViT has good model
generalization performance and robustness, and can still
maintain good classification performance in the face of
unknown data and parameters.

Discussions

Using dermoscopic images, our technique successfully
achieves high classification accuracy of skin lesion classifi-
cations. The F1-Score, Accuracy, AP, and AUC scores for
experiments utilizing the HI-MViT skin disease image clas-
sification algorithm were 0.931, 0.932, 0.961, and 0.977,
respectively. Compared with the top five algorithms
of ISIC-2018 Task 3, the scores of Marco’s average
F1-Score, AP, and AUC of HI-MViT are 0.899,
0.960, and 0.986, respectively. The improvements were
6.9%, 6.8%, and 0.8% when compared to the
second-best-performing model, respectively. This demon-
strates the effectiveness of the skin disease classification

methodology used in this study. Compared with
FasterViT, which has the highest AUC score in the
Transformer architecture, the F1-Score, Accuracy, and AP
of HI-MVIiT have increased by 5.2%, 5.0%, and 3.4%,
respectively. It can be seen that the HI-MVIiT findings
have lower intraclass distances and higher interclass dis-
tances compared to ConvNeXt using the dimensionality
reduction visualization method. This reflects that
HI-MVIT has a stronger ability to discriminate images of
skin lesions. While performing classification findings, the
model appears to focus more on the lesion site than on
irrelevant  skin  tissue, according to explainable
class-activation heatmaps. We also visualized the effective
receptive field and attention map at different stages of
HI-MVIiT, to more intuitively recognize the ability of
HI-MVIT to model local and global information. The per-
formance experiment on the ISIC-2017 dataset also
achieved excellent results, and the results of 0.898, 0.895,
0.947, and 0.962 were obtained on FI1-Score, Accuracy,
AP, and AUC, respectively. All indicators are better than
the top five algorithms of ISIC-2017 Task 3. Using the
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Table 9. Performance comparison between the method in this article and the mainstream models on the ISIC-2017 dataset.

CNN

Transformer

Ours

ResNeXt

ShuffleNet

MnasNet

MobileNet

MobileOne

ConvNeXt

Vision Transformer

Swin Transformer

MetaFormer

EfficientFormer

MaxViT

FasterViT

HI-MViT

0.717 £0.002

0.763 +0.012

0.757 £0.007

0.752 + 0.006

0.762 + 0.006

0.828 +0.006

0.648 +0.010

0.781 £ 0.006

0.780 + 0.005

0.842 +0.003

0.811+0.014

0.847 +0.011

0.908 + 0.001

0.728 +0.009

0.763 +0.011

0.772 +0.014

0.74+0.003

0.79 £ 0.005

0.821 +0.006

0.688 + 0.004

0.826 +0.014

0.814 +0.005

0.892 +0.002

0.815+0.008

0.844 +0.005

0.895 + 0.003

AUC: area under the curve; CNN: convolutional neural networks.

0.711+0.003

0.759 +0.011

0.756 + 0.007

0.745 £ 0.003

0.764 +0.012

0.822 +0.007

0.628 +0.014

0.770 +0.005

0.785 £ 0.005

0.855+0.012

0.805+0.009

0.836 +0.009

0.898 + 0.002

0.728 +0.009

0.763 +0.011

0.772 +£0.014

0.74+0.003

0.79 £ 0.005

0.821 +0.006

0.688 + 0.004

0.826 +0.014

0.814 +0.005

0.892 +0.002

0.815+0.008

0.844 + 0.005

0.895 + 0.003

0.788 £0.012

0.814+0.002

0.809 £ 0.007

0.801 +0.006

0.820 £0.010

0.859 +0.013

0.705+0.010

0.814+0.010

0.866 + 0.001

0.939 +0.004

0.858 +0.001

0.903 +0.014

0.947 + 0.002

Table 10. Performance comparison between the method in this article and the top five models of ISIC-2017 Task3.

0.842 +0.005

0.855+0.013

0.853 +0.002

0.856 +0.010

0.878 +0.006

0.912 +0.013

0.756 + 0.013

0.892 +0.001

0.922 +0.010

0.943 +0.005

0.913+0.011

0.949 +0.005

0.962 + 0.004

Team-1 (Matsunaga et al.?) 0.625 0.711 0.868
Team-2 (Diaz®) 0.185 0.656 0.856
Team-3 (Menegola et al.??) 0.624 0.716 0.874
Team-4 (Bi et al.?) 0.541 0.695 0.870
Team-5 (Yang et al.*°) 0.500 0.526 0.830
HI-MViT(Ours) 0.798 0.826  0.949

AUC: area under the curve.

trained model to test on the PH? dataset, compared with the
most competitive ConvNeXt and EfficientFormer,
HI-MVIT has improved Accuracy by 3.9% and 1.7%, and
AUC has increased by 3.5% and 2.4%. This shows that
HI-MVIT has good generalization enough to face changes
in data and parameters. Dermatologists can use the

0.599 0.790 0.953 0.612 0.750 0.911
0.299 0.840 0.965 0.242 0.748 0.910
0.504 0.791 0.943 0.564 0.754 0.908
0.684 0.771 0.921 0.612 0.733 0.896
0.716 0.809 0.942 0.608 0.667 0.886
0.903 0.968 0.988 0.876 0.924 0.966

HI-MVIT skin disease classification model’s classification
result as an evaluation index to aid in their diagnosis,
which will enable them to more rapidly and accurately iden-
tify various dermoscopic images.

The International Skin Digital Imaging Society sponsors
ISIC, a global organization devoted to skin cancer diagnosis
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Figure 15. Grouped histogram of evaluation indicators of HI-MViT model on ISIC-2017 test set.
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Figure 16. Confusion matrix of HI-MViT on the ISIC-2017 test set.

(ISDIS). It sponsors the ISIC-2017 and ISIC-2018
Challenge, which focuses on the study and diagnosis of
skin lesions. Task 3 is skin disease classification.”® For
the categorization of skin diseases, convolutional neural
network-based structures have been employed in the major-
ity of the studies that have been published to date. Alwakid
et al.”’ classified skin lesions in images by using a convolu-
tional neural network system and a modified version of
ResNet50. The HAM10000 dataset’s seven skin cancer

cases with uneven samples were used in the analysis. The
F1-Score is 0.86, the average accuracy is 0.86, the precision
is 0.84, the recall rate is 0.86, and so on. Ali et al.”® applied
transfer learning to pretrained ImageNet weights and
improved convolutional neural networks to train
EfficientNets BO-B7 on the HAM10000 dataset. With an
F1-Score of 87% and a Top-1 accuracy of 87.91%,
EfficientNet B4 was the best model. Chaturvedi et al.”
employed a MobileNet-based model that had been pre-
trained on approximately 1.28 million images from the
2014 ImageNet Competition and then was refined via trans-
fer learning on 10,015 dermoscopic images from the
HAM10,000 dataset. The precision, recall, and F1-Score
weighted average scores for the model employed in this
study are 89%, 83%, and 83%, respectively, with an
overall accuracy rate of 83.1% for the 7 classes in the
dataset. The method in this article is superior to all the
abovementioned models using the ISIC-2018 Task 3
dataset, with scores of 0.931, 0.932, 0.961, and 0.977 on
F1-Score, Accuracy, AP, and AUC, respectively.
Compared with the best-performing EfficientNet B4 in
the above model, this article improves F1-Score and
Accuracy by 6.1% and 5.29%, respectively.

Most significantly, this work makes use of the
MobileViT-based explainable lightweight skin disease clas-
sification algorithm. Unlike earlier CNN-based techniques,
HI-MVIiT combines the strengths of the Transformer and
CNN: Transformer may offer spatial inductive bias, allow-
ing it to eliminate positional bias. Also, the addition of
CNN can hasten network convergence and improve the
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Figure 17. (a) Precision-recall curve and (b) ROC curve of HI-MViT on the ISIC-2017 test set. ROC: receiver operating characteristic.

Table 11. Performance comparison between the method in this article and the latest skin lesion classification models on the ISIC-2017

dataset.

Salian and Sawarkar®® (2022)

Wu et al.” (2022)

Wang et al."® (2022)

Golnoori et al.?® (2023)

Kim et al.?* (2023)

Zhu et al.*® (2023)

Classification of malignant skin lesions using the concept of fine-tuned transfer learning  0.871
based on the improved and fine-tuned EfficientNet B3 model

Skin lesion classification model based on deep convolutional neural network and transfer  0.867
learning

It combines the advantages of CNN and transformer and fully utilizes global and local 0.872
information to improve medical image segmentation and classification

Improving the performance of skin lesion classification systems by optimizing the 0.816
hyperparameters and architecture of deep neural networks using metaheuristic
optimization algorithms

A new paradigm based on deep learning is proposed, allowing the extraction of 0.878
fine-grained differences between skin lesions on a pixel basis to achieve high-precision
classification of skin lesions

A noise label correction method is proposed to deal with noisy labels in medical image  0.872
datasets to improve classification performance

0.895

A Lightweight Model for Explainab
MobileViT

HI-MViT(Ours)

CNN: convolutional neural networks.

stability of the structure training process. The
Transformer’s self-attention mechanism can efficiently
gather global information, and numerous heads can map it

to various areas, strengthening the model’s capacity for

expression.'%

Table 4’s hyperparameter comparison experiment find-
ings show that each combination that chooses AdamW as

le Skin Disease Classification Based on Modified

the optimizer performs much better than the other unse-
lected combinations. This is because AdamW, as a
variant of Adam, can automatically adjust the learning
rate without requiring too many parameter adjustments,
reducing redundancy. It can also automatically adjust the
weight decay coefficient to make the model more stable
and avoid overfitting. In terms of the loss function,
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Figure 18. Dimensionality reduction visualization results of ConvNeXt and HI-MViT on the ISIC-2017 test set.
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Figure 19. HI-MVIT class activation heatmap on the 1SIC-2017 dataset.

FocalLoss performs relatively poorly. The reason is that
FocalLoss is very susceptible to noise interference, and
since it values difficult samples more, wrong samples in
the data may mislead the direction of model learning.'®"
However, finding the ideal collection of hyperparameters
for a given dataset is challenging due to the large adjust-
ment costs of its hyperparameters.

The efficacy verification findings for the Improved-MV?2
block on the ISIC-2018 classification dataset are displayed
in Table 5. Compared with global max pooling, global

average pooling performs better on the same model. This
is because there is no need to optimize parameters and
fixed input size in global average pooling, which can effect-
ively avoid overfitting this layer. The spatial data is sum-
marized using the global average pooling, which is more
resistant to the spatial modification of the input.

After choosing the ISIC-2018 dataset’s performance
comparison of modern mainstream algorithms in Table 6,
ViT performed poorly, even worse than some lightweight
models whose parameters are much smaller than it. This
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Table 12. The performance results of the trained model tested on the PH? dataset.

CNN ResNeXt 0.781
ShuffleNet 0.749
MnasNet 0.809
MobileNet 0.822
MobileOne 0.820
ConvNeXt 0.817
Transformer Vision Transformer 0.807
Swin Transformer 0.811
MetaFormer 0.872
EfficientFormer 0.874
MaxViT 0.831
FasterViT 0.844
Ours HI-MViT 0.885

0.798 0.789 0.798 0.829 0.827
0.759 0.747 0.759 0.834 0.876
0.777 0.792 0.777 0.855 0.859
0.902 0.857 0.902 0.896 0.883
0.885 0.846 0.885 0.901 0.896
0.875 0.839 0.875 0.909 0.928
0.860 0.833 0.860 0.902 0.840
0.857 0.827 0.857 0.898 0.899
0.878 0.873 0.878 0.938 0.926
0.897 0.883 0.897 0.917 0.939
0.907 0.862 0.907 0.925 0.922
0.897 0.870 0.897 0.906 0.910
0.914 0.897 0.914 0.942 0.963

AUC: area under the curve; CNN: convolutional neural networks.

is mainly due to the following reasons: (1) large data
demand: Training Vision Transformer with less than 100
million images cannot get an optimal solution. It is hard
to compile a dataset of more than 100 million images in
the medical field of image analysis; occasionally, a
medical image dataset only contains thousands or perhaps
a few hundred images. (2) A large number of calculations
and parameters: the global attention mechanism has a
large number of calculations, and the calculation cost
squared with the input length greatly limits its application
on high-resolution input. (3) The number of stacked
layers is limited, and there is an excessive smoothing
problem. (4) The ViT model’s training procedure is
unstable and parameter sensitive.'%*

From the confusion matrix in Figure 9, it can be found
that different categories will misjudge each other. This is
because, as shown in Figure 1, there are significant inter-
class similarities and intraclass differences in skin disease
images, making it difficult to distinguish. Even dermatolo-
gists often require an extensive histopathological examin-
ation to draw concrete conclusions at the time of
diagnosis.103 On the other hand, due to the problem of
unbalanced samples in the dataset, the number of samples
of benign lesions is often dozens of times that of malignant
lesions, which makes it easy for us to think of expanding the

data to improve the classification performance of model.'**

To verify this conjecture, this article uses traditional
methods such as flipping, rotating, and adding noise, to
amplify the data. Among them, the samples of AKIEC,
BCC, DF, and VASC are increased by 10 times, the
samples of MEL and BKL are increased by 4 times, and
the samples of data enhancement are resized as the training
set. Surprisingly, the effect of the model trained using the
dataset after data augmentation is even worse, and it does
not achieve the effect of enhancing the classification
ability of the model. This is due to the blind pursuit of
the balance between classes and the abuse of data enhance-
ment methods will introduce a large amount of additional
noise, resulting in excessive differences between the train-
ing set and the test set. More specifically, incorrect data
augmentation causes the original distribution of data to
change, and the similarity of data distribution before and
after data augmentation is low.'®> Therefore, before per-
forming data amplification, it is necessary to ensure that
the distribution of the data does not change significantly
before and after the amplification, and at the same time
ensure the quality of the new image generated by the data
amplification.

Our research still has certain limitations. First always
foremost, medical ethics mandate thorough testing of any
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new technology’s effectiveness and security in clinical set-
tings. Medical artificial intelligence that uses dermoscopic
information to diagnose diseases carries some risks. Only
dermatologists should use the study’s findings as a guide.
Secondly, to strengthen the model’s capacity for generaliza-
tion, our research solely relies on dermoscopic images and
fails to incorporate any other categories of medical indica-
tors into the model’s design or training, including the
patient’s age, race, or location of the disease.'%® Third,
there are very few case samples from people of color in
the existing skin disease dataset, and the deep learning algo-
rithm trained with the skin disease data of white people may
not be able to better diagnose people of color.'®” Fourth,
dermoscopic image-based deep learning approaches for
skin disease diagnosis rely on their databases or public data-
bases and lack external validation with a large number of
samples, which is also the path of our future study. In
light of the aforementioned issues, we will continue
working with the Xiangya Hospital Dermatology
Department to produce a dataset of dermoscopic images
that contains more members of the yellow race, more skin
conditions, and more metadata. And test our model in a
real medical setting, taking into account the interobserver
variance. At the same time, we plan to further optimize
the HI-MViT model and deploy it to the mobile terminal,
so that patients can easily and quickly identify whether
the lesion area is malignant or not through the smart ter-
minal device. Combined with the online diagnosis of der-
matologists, it meets the public’s requirements for
timeliness and convenience of diagnosis.

Conclusions

In this study, we propose HI-MViT, a lightweight model for
explainable skin disease classification based on Modified
MobileViT. HI-MViT is mainly composed of ordinary con-
volution, Improved-MV2, MobileViT block, global
pooling, and fully connected layers. Improved-MV2 uses
the combination of shortcut and depth classifiable convolu-
tion to substantially scale back on the number of calcula-
tions while ensuring the efficient implementation of
information interaction and memory. The MobileViT
block can efficiently encode local and global information.
In addition, HI-MVIiT uses semantic feature dimension
reduction visualization and class activation mapping visual-
ization methods to further understand the model’s attention
area when learning skin lesion images, and better improve
the classification effect. We evaluate the performance of
HI-MViT on ISIC-2017 and ISIC-2018 datasets. The
results show that HI-MViT achieves superior performance
scores on the ISIC-2017 and ISIC-2018 datasets compared
to the comparison models. At the same time, the perform-
ance of testing on the PH? dataset using the trained model
is also very good, reflecting the good generalization
performance of HI-MViT. In addition, the results of

comparative experiments verify the effectiveness of the
Improved-MV2 module in HI-MViT. As a future work,
the performance of the proposed HI-MViT method can be
compared with the performance of a capsule network
because capsule-based networks can preserve spatial rela-
tionships of learned features and have been used in recently
published works for image classification.'®® In the future,
we plan to further cooperate with the Dermatology
Department of Xiangya Hospital to build a more diversified
image database of skin lesions and deploy HI-MViT to
mobile devices to better provide patients with convenient
medical services.
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