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A B S T R A C T

Small non-coding RNAs control normal development and differentiation in the embryo. These regulatory mo-
lecules play a key role in the development of human diseases and are used often today for researching new
treatments for different pathologies. In this study, CaCo2 colorectal adenocarcinoma cells were initially epi-
genetically reprogrammed and transformed into CD4+ cells with nano-sized complexes of amphiphilic poly-(N-
vinylpyrrolidone) (PVP) with miRNA-152 and piRNA-30074. The transformation of cells was confirmed by
morphological and genetic changes in the dynamic of reprogramming. CD4+ lymphocytes marker was detected
using immunofluorescence. Amphiphilic poly-(N-vinylpyrrolidone)/small non-coding RNAs complexes were
investigated for transfection efficiency and duration of transfection of CaCo2 colorectal adenocarcinoma cells
using fluorescence.

1. Introduction

Recently a substantial number of articles have been published about
different small non-coding RNAs (sncRNAs) due to their wide influence
on cell biology and physiology. Despite the great interest in this class of
small regulatory molecules, the properties of sncRNAs for modifications
of cellular genome have not been studies as much. In this study,
genomic reprogramming of CaCo2 adenocarcinoma cells into CD4+
cells were undertaken. Three major types of sncRNAs, small interfering
RNAs (siRNAs), micro-RNAs (miRNAs), and piwi-interacting RNAs
(piRNAs), associated with proteins in the Argonaute/piwi family.
Among the three types of small RNAs, piRNAs are the most numerous
and are the least investigated [1]. SncRNAs, which regulate normal
stem cells physiology, also support cancer cell reprogramming [2–5].
From the numerous families of sncRNAs we selected separate se-

quences via bioinformatics tools to be the best candidates for the
transformation of CaCo2 cells. Small RNA targets were predicted by

three computational algorithms [6–8].
Previous articles had observed transformations of different cancer

cells therefore we transformed and investigated cell lines that are more
commonly connected with cancers in humans [9–11]. A-549 lung
adenocarcinoma cells were reprogrammed into CD4+ cells after in-
cubation of cells with a complex of a DDMC vector with piRNA-30074
and antago-miRNA-155 followed by further treatment of the cells with
IL-7 [9]. Girardi Heart cells (combined cervix cancer with write atrium
cancer) were transformed into CD4+ cells after treatment with a
complex of the DDMC vector with an antagonist of piRNA-30074,
miRNA-155 and miRNA-125b [10]. Acute myeloid leukemia cells were
transformed into platelet-like cells after using a complex of PNVP with
antago-miRNA-155 [11].
This study continues previous investigations about the possibility of

transforming cancer cells into other types of cells. In this research
nearly 40 sncRNAs and theirs complexes were investigated for their
ability to modify CaCo2 colorectal adenocarcinoma cells. The influence
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that piRNA-30074 and miRNA-152 complexes may have on CaCo2
adenocarcinoma cells, and whether this combination is the best mix of
sncRNAs for the transformation/reprogramming of this type of cells
into CD4+ cells is described. MiRNA-152 was used for possible in-
duction of apoptosis in CaCo2 cells and for its anti-tumorigenic effect.
PiRNA-30074 was used as a factor for regulating transformation of

stem cells. In the first series of experiments, after adding the mixture of
piRNA-30074 and miRNA-152 to the CaCo2 adenocarcinoma cells, the
transitional form of cells was obtained. In the second series of experi-
ments, IL-7 was added to the obtained cells. After 14 days of incubating
the cells with IL-7, CD4+ cells were detected using immuno-
fluorescence techniques.

2. Materials and methods

2.1. Cell culture

The CaCo2 (ATCC HTB-37 ™) is a human colorectal adenocarcinoma
cell line with ten common markers, i.e. t(1q;?), 10q-, t(11q17q) and 7
others. The t(1q17q) and M11 were found in a portion of cells. The ins
(2), 10q-, and t(15q;?) were generally paired, and t(11q;17q) and t
(21q;?) were mostly three-copied. Normal N9 was absent, and N21 was
lost in some cells. One to four small acrocentric chromosomes were
detected. No Y chromosome with bright distal q-band was detected by
Q-observation.
Cells were routinely maintained in accordance with standard pro-

tocol [12]. CaCo2 cells cultures routinely were maintained in tissue
culture flasks in Dulbecco’s Modified Eagle Medium (DMEM) con-
taining 10% Fetal Bovine Serum, 2mM l-glutamine, 100mg/ml peni-
cillin, and 100 ME/ml streptomycin (Pan-Eco, Ltd., Russian Federation)
and incubation parameters were set at 37 °C with 5% CO2. After 2 days,
cells were prepared for further cultivation with a growth concentration
of cells at 0,5× 106/ml. After accumulation of cells number 1×106 /
ml, they were prepared for transfection by nanoparticles.
After the medium change, nanoparticles were added in a con-

centration of 50 μl/ml per milliliter of culture medium (90% DMEM,
10% Fetal Bovine Serum, 2mM l-glutamine, 100mg/ml penicillin, and
100 ME/ml streptomycin) and cells were incubated at 37 °C with 5%
CO2.

2.2. Cell treatment

Cells were incubated for 30 days after transfection and they were
analyzed after 11, 21 and 30 days. One portion of the cells were re-
moved at 11, 21 and 30 days, treated with a lysis buffer from an
RNAeasy mini kit (Qiagen, USA), and frozen at -20 °C for further total
RNA isolation, reverse transcription reaction, and specific cDNA tran-
script amplification.

Another portion of the cells was used for staining using the
Leishman-Romanowsky method.

2.3. Magnetic separation

On the 31st day of incubation, a third portion of cells was treated
with recombinant IL-7 (AbDSerotec, UK, Kidlington), and the cells were
further incubated for 14 days, with routine changing of the medium.
One part of these cells was used for staining using the Leishman-
Romanowsky method, and another part of these cells was treated using
the Dynabeads® CD4 Positive Isolation Kit, which utilizes
DETACHaBEAD™ DYNAL™ Dynabeads™ (both purchased from
Invitrogen, Life Technologies, USA). Separated cells were stained using
CD4+/FITC staining reagent (R&D, USA) and were observed using
fluorescent microscopy techniques (AxioVertA1, Zeiss, Germany).
Negatively selected cells were treated with CD117 purified mouse anti-
human antibodies (Caltag Laboratories by Invitrogen, USA), treated
with Dynabeads® Pan Mouse IgG (Invitrogen, Life Technologies, USA)
and stained using the Leishman-Romanowsky method. The last part of
the cells, which were negatively separated, were treated using the
Dynal® Monocyte Negative Isolation Kit (Invitrogen, Life Technologies,
USA) and stained using the Leishman-Romanowsky method.

2.4. Carriers

An amphiphilic Poly-(N-vinylpyrrolidone), with an Mn=3500,
containing one hydrophobic n-octadecyl end group was used. The side
groups of amino acid β-alanin were introduced in 8mol % of polymer
rings by the recently described method [11–22]. The overage diameter
of particles was approximately 100 nm.
Oligonucleotides (25% w/w) was added to the polymer.

Immobilization of the system was achieved by mix in sterile aqueous
solution at room temperature.
For the nuclear transfection efficiency control, the pmKate2-N

vector was used, expressing and encoding far-red fluorescent protein
mKate2 (Evrogene, Russia) [23–33]. Photos were made via fluorescent
microscopy for quantification of transfection efficiency level (Ax-
ioVertA1, Zeiss, Germany). For the control, cells without any treatment
were used, and cells which were treated with unloaded nanoparticles
(Fig. 1).

2.5. Reverse Transcriptase-PCR

Total RNA was extracted from the cell culture using the RNAeasy
Mini kit (Qiagen, USA) according to the manufacturer’s protocol. In
these experiments a standard two-step reverse transcriptase-PCR pro-
cedure was used. All products were from Fermentas (Thermo Fisher).
For our investigations we chose gene expression profiles of genes which

Fig. 1. Microscopic photos of CaCo2 colorectal adenocarcinoma cells treated with complexes of PVP with deep-red Kate2 fluorescent gene vector after 14 (A.) and 28
days (B.) (investigation of transfection efficiency) (Magnification x600).
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regulate main functions of cells: apoptosis, proliferation, cell cycle,
tumorigenic and mutagenic activity.
Amplification of Caspase-9, MKI-67, OCT4, mTOR, VMAF and

PIWIL1, BACH1, HMOX1, RB1, DICER1, AGO2, HOXA10, KIR1DL2,
TGFBR2, ICOS1B, GITR3A, and β-actin cDNA (as an internal control)
was performed with an automatic thermocycler (TProfessional,
Biometra, Germany).
Statistically significant changes in four genes expressions were ob-

tained. The custom primers sequences were: Caspase-9 (NG_029188.1)
5′- TCCAGATTGACGACAAGTGC-3′, 5′- CACTCAGGAAGACGCGTTAC-3′;
MKI-67 (ENST00000617118) 5′- TGCAAACAGGTCAGGAAGG-3′, 5′-
CTGCCCCCAAGTTCTTGAT-3′; m-TOR (ENST00000376838) 5′- CCACC
TATCCCAAGACCTCA-3′, 5′- GTGATCCCCTCTGTGCATCT-3′; PIWIL1
(ENST00000245255) 5′- TGCTATTCACCGGCTTCCTT-3′, 5′- TGCTCACT
CCTGAAAGTACGT-3′. Oligonucleotide sequences were for miRNA-152
(MIMAT0026479) 5′-3′: AGG UUC UGU GAU ACA CUC CGA CU, and for
piRNA-30074 (DQ569962.1): 5′ – AAAGCTTTAAGTGTGTTGGCGTGC
TTC – 3′.
The polymerase chain reaction was made in accordance with stan-

dard protocols. All components of reaction were purchased from
Invitrogen (USA). PCR products were loaded on 1.5% agarose gel and
electrophoresed then colored with Ethidium Bromide, exposed to a gel
doc system (Syngene, India) and quantified with Quantity One Software
(Bio-Rad, USA). Sequences for inner control β-actin
(ENST00000331789) gene primers were: 5′- TCCCTGGAGAAGAGCTA
CGA-3′, 5′-AGCACTGTGTTGGCGTACAG-3′.
Leishman-Romanowsky staining of the CaCo2 cells was made in

accordance with the Blood safety and clinical technology guidelines on
standard operating procedures for hematology.

3. Statistics

Data are presented as the mean ± SEM. Two-tailed Student’s t-test
was used for analyses comparing the groups. The observed differences
between study groups were considered statistically significant if p-va-
lues were ≤ 0.05. For the control groups, cells without any treatment,
and cells that were treated with unloaded nanoparticles were used. All
manipulations with the CaCo2 cell culture were repeated three times.
All gene expression data were normalized to gene expression levels of
beta-actin. For the external control, culture of cells without any treat-
ment in the same moment of time as experimental cells was used. All
samples were prepared in triplets.

4. Results

CaCo2 colorectal adenocarcinoma cells were transformed into
CD4+ cells after treatment of the cells with complexes of PNVP with
the apoptotic regulator miRNA-152 and piRNA-30074 for 30 days, and
subsequent treatment with recombinant IL-7, a differentiation factor for
lymphocytes [24,25]. A small number of CD117+ cells was also ob-
tained using manual magnetic separation.
In the pilot studies, transfection activity of poly-(N-vinylpyrroli-

done) (PVP) carriers with colorectal CaCo2 cancer cells had been in-
vestigated. The highest and most stable transfection activity using PVP
particles was from 14 days to 28 days after treatment of the cells
(Fig. 1).
In the first series of experiments, the influence of complex PVP with

piRNA-30074, complex PVP with miRNA-152 and complexes of PVP
with piRNA-30074 and miRNA-152 on the morphology and genetics of
human CaCo2 colorectal adenocarcinoma cells was investigated. The
morphology of the adenocarcinoma cells changed during the dynamic
transformation. Cellular and nuclear forms, sizes and number were
different when compared with control cells (Fig. 2). Cells had apoptotic
changes such as: pyknosis of nuclei, apoptotic vesicles in the cytoplasm
and in the extracellular medium, and increased cellular size (Fig. 2).
The expression levels of Caspase 9 gene was increased on the 11th

day after treatment with complexes of PVP with piRNA-30074 and
miRNA-152, compared to control cells. Decreased levels of the pro-
liferation marker MKI-67 gene in cells treated with complexes of PNVP
with miRNA-152 were obtained after 11 and 31 days, as well as in cells
treated with complexes of PVP with piRNA-30074 and miRNA-152 after
31 days, compared with the control group. The level of mTOR gene
expression was increased in all treated cells, compared to the cell
control group. Levels of PIWIL1 gene expression were also increased in
all treated groups of cells 11 days after the addition of sncRNAs (Fig. 3).
In the literature, data regarding colorectal cancer have, to some

extent, been contradictory. Several studies have reported no prognostic
value of MKI-67 expression. One study reported an association between
a low tumor cell proliferation rate at the invasive margin and poor
prognosis of TNM stage II colorectal cancer, whereas others have re-
ported an adverse prognostic value of a high MKI-67 after curative
resection for colorectal cancer [26,27]. In accordance with our data, a
study of prognostic markers in colon cancer stage II and III treated with
surgery with or without adjuvant 5-FU and leucovorin (calcium foli-
nate) therapy, showed an improved outcome among patients with a
high percentage of MKI-67-positive tumor cells [28,29].
One study has delineated a role for mTOR in pancreatic cancer cell

lines, confirming that the mTOR pathway is important for stem-like cell
functions [30].
In the next series of experiments CD4+ cells after incubation with

IL-7 were obtained, which are previously changed cells after pretreat-
ment with complexes of PNVP with piRNA-30074 and miRNA-152. An
absence of adhesive properties and changes in the sizes and morphology
of cells and nuclei were obtained following treatment with complexes of
PVP with piRNA-30074 and miRNA-152. Cells exhibited sharp forms,
and the cytoplasm enriched a large nucleus. In the group of cells treated
with complexes of PVP with only piRNA-30074 or only miRNA-152,
had observed changes in cellular morphology, but these changes were
not as clear as the changes observed in cells that were treated with
complexes of PVP with piRNA-30074 and miRNA-152 plus IL-7. A total
of 10–15% of CD4+ cells were obtained following cell separation
(Fig.4).
Transformation of CaCo2 adenocarcinoma cells into CD4+ cells

was obtained and confirmed. Cells were separated with magnetic na-
noparticles in order to isolate CD117 cells (Fig. 4). CD4+ and CD-
117+ cells were obtained, which indicate the pro-T stage and the
subsequent pre-T stage, respectively, of αβ T cell development [31].

5. Discussion

The transformation of human colorectal adenocarcinoma CaCo2
cells into CD4+ cells 30 days after reprogramming with complexes of
amphiphilic PVP with miRNA-152 and piRNA-30074 and 14 days fol-
lowing IL-7 addition was observed. SncRNAs play an important role in
many intracellular processes such as regulation of gene transcription,
protein translation, epigenetic modification, genomic stability, and
chromatin organization [32–36].
Eventually, almost all cells could be reprogrammed to pluripotency,

although with different latency periods. Induction of the apoptosis
pathway and overexpression of pluripotency factors accelerate the ki-
netics of reprogramming by increasing the cell division rate, which may
facilitate the acquisition of DNA and/or histone modifications [37–39].
At the 11th day after transfection with complexes of PVP with

piRNA-30074 and miRNA-152, an increase was found in the pro-
liferative factor MKI-67, which may indicate changes in the pro-
liferative potential of transfected cells and the influence of added
sncRNAs on cell genetics [40–42]. Certainly, primary activation and
genetic transformation of cells begins in the first two weeks after ad-
dition of complexes of PVP with piRNA-30074 and miRNA-152.
After this period, the expression of specific proteins is followed up

because of the appearance of new types of cells, which is where CD4+
cells develop. What happened with primary cancer cells? First, one type
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of the cells is “dying” due to that they can’t transform and adapt to new
environmental conditions. Another population then of cells can be
ready for further transformation. Potential candidates for this ob-
servation could be cancer cells after division and cancer stem cells.
These underlying mechanisms need further investigation.
Three possible mechanisms could be proposed that result in trans-

formation of cells into CD4+ progenitor cells. First, miRNA-152 in
combination with piRNA can induce apoptosis, blockade of mobile
transposable elements, or caspase nucleus elimination. Piwi proteins,
whose gene expression was observed 11 days after transfection, may
affect the post-transcriptional regulation of oncogenes and tumor sup-
pressor genes [43,44]. MiRNA-152 is a member of the miRNA-148/152
family. These family members potentially act as oncogenes and tumor
suppressors [45,46].
MiRNA-152 mimics can induce caspases activity, suppress cell

growth and inhibit cell motility in hepatocellular cancer by down-reg-
ulation of TNFRS6B, Wnt-1, DNMT1, ERK1/2, AKT, FGF2 [47,48].
Low miRNA-148/152 expression is associated with a significantly

shorter life expectancy, a decrease in therapeutic response, and a poor
prognosis in patients with colorectal cancer [49]. Increased levels of
Caspase 8 were obtained after transfection of colorectal

adenocarcinoma cells with complexes of piRNA-30074 and miRNA-
152. In this case, miRNA-152 could play a role similar to master-reg-
ulator miRNA in changing gene expression of cell lifetime.
A second possible mechanism to explain the observed transforma-

tion into CD4+ cells is regulation of chromatin acetylation and histone
methylation in cells by piRNAs, in order to support chromatin stability
in the genomes of cells in post-transformation stage [50]. Recent in-
sights have been gained by treating reprogrammed cells with agents
that affect the chromatin state. It is likely that a key step in the gen-
eration of induced pluripotent stem cells (iPS) cells is the reopening of
the somatic cell chromatin.
However, piRNAs subsequently recruit piwi proteins and H3K9me3

to the promoter region to form large transcriptional silencing com-
plexes, which cover transcriptional start sites (TSS), hindering the
ability of RNA polymerase II to recognize the TSS, leading to silencing
of target gene expression [51–53].
PIWI proteins accumulate γ-H2Av foci and can form a complex with

RecQ1, suggesting a positive contribution of PIWI proteins to the repair
of DNA damage [54–59]. In an ovarian cancer cell line, HILI repaired
cisplatin–induced DNA damage to help cancer cells survive platinum-
based chemotherapy [60]. Most piRNAs are complementary to

Fig. 2. Changes of CaCo2 colorectal adenocarcinoma cancer cells morphology on the 11th, 21 st and 31 st days after transfection.
Microscopic photos of CaCo2 colorectal adenocarcinoma cells after using the complex of PVP with piR-30074 (1), complex of PVP with miR-152 (2) and complex of
PVP with piR-30074 and miR-152 (3) on the 11th (A), 21 st (B) and 31 st (C) days of incubation.
In photos obtained staining with the Leishmann-Romanowsky method (Magnification x600).
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transcripts and are able to inhibit expression of retrotransposon
mRNAs, as well as repress the mobile genomic transposon elements
(TE) that protect the integrity of the genome [61,62]. Components of
TEs, both transcripts and proteins, are elevated in cancers compared to
normal tissues. In gastric cancer and multiple myeloma cell lines,
piRNA-823 levels affect tumor aggressiveness, although strangely, in
opposite directions: in gastric cancer cells, piRNA-823 has an overall
tumor suppressor activity in multiple myeloma, it promotes cancer
development, suggesting perhaps functional interactions with cell-spe-
cific factors [63].
MiRNA inhibitor molecules and siRNA-based therapeutics are cur-

rently being developed as potential therapeutic avenues [64–69].
However, piRNAs have not been explored as a therapeutic target [70].
A third, possibility is regulation of reprogramming and partial cell

differentiation in an IL-7-dependent way orchestrated by a combination

of piRNA, miRNA and IL-7, the powerful lymphocyte progenitor dif-
ferentiation factor.

6. Conclusions

PiRNAs and miRNAs edit intra-nuclear and extra-nuclear genetic
program of CaCo2 colorectal adenocarcinoma cells caused in theirs
modification and transformation into stem-cell-like state, and prepare
this cell to further changes after using the recombinant IL-7. Treatment
of transitory form of cells with IL-7, support maturation of stem-cell-
like form of cells into CD4+ lymphocyte-like morphologic and geno-
typic cell-type. Applying a sncRNAs mix with a nanosize polymer car-
rier may be a useful tool in the future as combined therapy of colorectal
cancer.

Fig. 3. A. Photos of results of electrophoresis in agarose gel of Caspase-9, MKI-67, mTOR, OCT4, and PIWIL1 gene expressions (from left to right) in CaCo2 colorectal
adenocarcinoma cells after adding the complex of PVP with piR-30074, complex of PVP with miR-152 and complex of PVP with piR-30074 and miR-152 on the 11th
day. B. Photos of results of electrophoresis in agarose gel of genes expressions of beta-actin, Caspase 8, mKi-67, mTOR, and PIWI (from left to right) in CaCo2 cells
after using the complexes of PVP with piR-30074, PVP with miR-152 and complex of PVP with piR-30074 and miR-152 on the 31st day. C. Graphs of genes
expressions levels (in percent) calculated for Caspase 9, MKI-67, mTOR, OCT4, PIWIL1to compare with the internal beta-actin control (100%).
1 – Complex of PVP and piR-30074 -11 day,
2 – Complex of PVP and piR-30074 31 day,
3 – Complex of PVP with miR-152 - 11 day,
4 – Complex of PVP with miR-152 -31 day,
5 – Complex of PVP with piR-30074 and miR-152 – 11 day,
6 - Complex of PVP with piR-30074 and miR-152 – 31 day.
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