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Abstract
It is well known that pandemic-related uncertainty affects various macroeconomic indicators, including environmental 
quality. Due to pandemic outbreaks, the reduction in economic activities affects the environmental quality in many 
economies. The study explores the impact of pandemic uncertainty on environmental quality in East-Asia and Pacific 
countries. Most past research use only  CO2 emissions, which is an inappropriate measurement of environmental quality. 
Besides  CO2 emissions, we have utilized other pollutants like  N2O and  CH4 emissions along with ecological footprint. 
The traditional econometric approaches ignore cross-sectional dependence and heterogeneity and give biased outcomes. 
Hence, we have employed a new method, “Dynamic Common Correlated Effects (DCCE),” which can excellently deal 
with the problems mentioned above. The short-run and long-run DCCE estimations show a negative and significant 
influence of pandemic uncertainty on ecological footprint,  CO2 and  CH4 emissions in whole and lower-income group 
of East-Asia and Pacific region. Moreover, pandemic uncertainty has a negative relationship with all indicators of 
environmental quality in higher-income economies. The study provides a unique opportunity to examine how pandemic 
uncertainty through anthropogenic activities affects environmental quality and serves as a significant resource for 
policymakers in planning and estimating the effectiveness of environmental quality measures. It is necessary to carry 
out sustainable environmental policies in East-Asia and Pacific region according to the vulnerabilities and resilience to 
global pandemic uncertainty.

Keywords Pandemic uncertainty · Environmental quality · GHG emissions · Ecological footprint · Cross-sectional 
dependence

Introduction

Six major epidemic and pandemic outbreaks have swept the 
world since last few decades, namely SARS1 in 2003, Avian 
flu in 2003–2009, Swine flu in 2009–2010, MERS2 in 2012, 
Ebola (2014–2016), and the Zika virus in 2015–2016 (Rah-
man et al., 2013; Ahukaemere et al., 2019; Lokhandwala & 
Gautam, 2020). The novel coronavirus (COVID-19) is said 
to have sparked more comprehensive debate and uncertainty 
than the above-mentioned pandemics. The main concerns 
for the current COVID-19 pandemic include global trans-
mission, frequent emergence, incremental effect in suscep-
tible or vulnerable groups, infection and mortality to health 
officials, and a significant number of deaths (Babaranti, 
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2019; Kong and He, 2020). In recent times, the countries 
have implemented lockdown policies and even blocked or 
limited several activities such as trades, airlines, transpor-
tations, and educational institutes to control COVID-19. 
Argumentatively, each country’s oil consumption has been 
significantly reduced due to the closure of local transporta-
tion and regular social events, which leads to abatement in 
greenhouse gas (GHG) emissions (Bekun et al., 2021a, b, 
c, d; Balsalobre-Lorente et al. 2019). Poor environmental 
quality is responsible for the deaths of 4.6 million people per 
year. More specifically, lousy air quality has been linked to 
25% from obstructive lung disease, 26% of deaths from res-
piratory infections, and about 17% from stroke and ischemic 
heart disease (WHO, 2020).

Epidemics and pandemics have been associated with 
historically low greenhouse gas emissions, even during the 
industrial revolution (Wang and Hou, 2020; Jakovljević 
et al., 2021). The plague epidemic spread in Europe in the 
fourteenth century and the smallpox epidemic that the Span-
ish invaders transferred to Latin America in the sixteenth 
century, leaving slight effects on carbon dioxide levels in 
the atmosphere. It is also evident from the analysis of the 
small bubbles trapped in the old ice core (Bastos et al., 
2020). Continuous urbanization and manufacturing practices 
have led to rising air pollution in recent decades (Nathaniel 
et al. 2021; Agboola et al. 2021). However, the pandemics 
have caused numerous sudden changes in consumption and 
production, working conditions, social interactions, travel 
patterns, and many other aspects, which have resulted in 
improved environmental quality by minimizing ecological 
footprint (EF) and GHG emissions (Zambrano-Monserrate 
& Ruano, 2020).

A significant aspect of the current COVID-19 is the wide-
spread usage of germicides to combat viral transmissions. 
Among these substances, chlorine is widely utilized as the 
most cost-effective method of preventing viral transmission 
(García-Ávila et al. 2020). Concerns have also been raised 
about the increased plastic pollution caused by the usage of 
personal protective equipments (PPEs), for example gloves 
and face masks (Abbasi et al. 2020). There is a need for more 
sustainable substitutes, such as bio-based plastic products 
(Silva et al. 2020). The usage of PPEs is causing plastic 
contamination, particularly in aquatic situations. Plastic con-
tamination in water and sea habitats is easily consumed by 
bigger organisms such as fish, penetrating the food chain and 
possibly causing chronic health issues in people (Zambrano-
Monserrate & Ruano, 2020).

There are 38 countries in East-Asia and Pacific (EAP) 
region. Due to trade openness, industrial output in EAP 
countries is growing, resulting in increased energy con-
sumption and natural resources, which leads to increased 
pollution (Bekun et al., 2021). The EAP region was chosen 
for this study since it is one of the world’s highest emitting 

regions. EAP countries emit 6.5 metric tons of  CO2 per cap-
ita, compared to the 4.7 metric tons of world average (World 
Bank, 2019). This region includes the world’s top emitters, 
including China (first), Japan (fifth), South Korea (eighth), 
Indonesia (tenth), and Australia (sixteenth). China accounts 
for 28% of world  CO2 emissions, with Japan accounting for 
3%, Indonesia accounting for 2%, and Australia and South 
Korea accounting for 1% each (World Bank, 2019). This 
region also has the world’s most polluting countries in 
terms of EF, including China (first), Japan (fifth), Indonesia 
(seventh), South Korea (tenth), and Vietnam (seventeenth) 
(Global Footprint Network, 2019). EAP countries have a 
3.8 global hectares (gha) of per capita EF, compared to 
the world’s average of 2.8 gha (Global Footprint Network, 
2019). The first case of the COVID-19 pandemic was dis-
covered in December 2019 in China. Thailand, South Korea, 
Taiwan, Japan, and Vietnam were the first EAP nations to 
report COVID-19 cases following China. Following then, 
the COVID-19 expanded to the majority of EAP countries 
and other regions of the world. As of 12 December 2021, 
there are 17.8 million confirmed COVID-19 cases in the 
EAP region.3 The EAP region was on the front lines dur-
ing the battle against the SARS in 2003, and it was also 
mobilized during the pandemics of H1N1 (2009) and MERS 
(2012). Dengue fever has become a battleground in South-
east Asia. In recent times, the EAP countries have been sup-
pressing the COVID-19 pandemic using various means such 
as vaccination programs and public awareness.

The international society is deeply concerned about 
environmental sustainability in the light of the pandemics 
(Gherheș et al., 2021). The EAP countries have opposed 
increased constraints on health and environmental preser-
vation and now face an urgency to address this unexpected 
problem. The governments of developing countries and aca-
demics have known from the present COVID-19  and are 
planning a transition to a more resilient and greener environ-
ment. The major goal of these reforms is to gather timely, 
classified, and high-quality data analysis that will assist 
governments in developing effective and equitable measures 
and policies (Chiat et al., 2020; Li et al., 2021; Quan et al., 
2021; Myllyvirta (2020).

The rigorous investigation of pandemic uncertainty and 
environmental quality is crucial in this context. The study 
of the pandemic-environment nexus in the EAP countries 
has some typical value. We should investigate the current 
state of research in chosen nations, which is crucial for 
limiting the dissemination of the current COVID-19 and 
developing a more environmentally resilient and greener 
world (Mohsin et al., 2021; Mimmi, 2021). This study 

3 See worldometer COVID-19 dashboard on https:// www. world 
omete rs. info/ coron avirus/.
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supports to the current knowledge in these ways. (i) Many 
studies have analyzed the factors that determine the quality 
of environment. Some researchers have also looked into 
the pandemics-environmental quality nexus. There has 
been no empirical study on whether there is a connection 
between pandemic-related uncertainty and environmental 
quality. The pandemic uncertainty is the cause of the range 
of changes in society, but its impact on environmental qual-
ity is unclear. Understanding how extreme disruptions in 
behavior due to pandemic uncertainty affect air pollution 
will provide vital information about its relationship with 
environmental quality. It also has important consequences 
for a country’s ability to meet environmental control tar-
gets in a more realistic institutional framework. (ii) As 
we know, this is the first research that utilizes the novel 
World Pandemic Uncertainty Index (WPUI) of Ahir et al. 
(2018) to analyze the pandemic uncertainty-environmental 
quality nexus. Instead of considering overall or aggregate 
uncertainty generated by all economic, social, and political 
events, only uncertainty associated with health pandemics 
is utilized to determine its influence on environmental qual-
ity. So, separating the impact of pandemic uncertainty on 
environmental quality from overall uncertainty may have 
substantial policy consequences for recovering economi-
cally after health-related pandemics such as COVID-19. 
Few studies have used the impact of WPUI on different 
macroeconomic variables, such as Demiessie (2020) for 
economic stability, Fang et al. (2020) for exports, and Ho 
and Gan (2021) for FDI. As we know, no research has 
looked into the effects of pandemic uncertainty on envi-
ronmental quality using WPUI. (iii) Previous studies used a 
single proxy like  CO2 emissions to measure environmental 
quality, which is an inadequate tool to apprehend environ-
mental consequences. We use more inclusive environmen-
tal proxies to resolve environmental challenges and obtain 
robust outcomes. This study considers four environmental 
indicators, in which three are GHG emissions  (CO2,  N2O, 
and  CH4), and the fourth is EF. (iv) In past studies, multiple 
panel data approaches such as GMM, AMG, and random 
and fixed effects are applied. However, these traditional 
approaches ignored  heterogeneity and cross-sectional 
dependence (CSD) and provided biased outcomes. On the 
other hand, a novel method, “dynamic common correlated 
effects (DCCE),” is applied in this research, which can deal 
with different econometric issues like CSD and heterogene-
ity. (v) The consideration of EAP economies is relevant to 
policymakers, researchers, and governments as these coun-
tries account for one-fourth of the global population and is 
accountable for higher levels of emissions than non-EAP 
countries. (vi) In the last, the outcomes of this study will 
give valuable suggestions, which would pave the way for 
future studies on pandemic-environmental quality nexus 
and its consequences in EAP economies.

Literature review

Since climate change is a critical issue in many economies of 
the world, many studies investigating the factors that influ-
ence GHG emissions have emerged. However, past empirical 
works have ignored the role of pandemic uncertainty, which 
is closely linked to environmental quality.

Zscheischler et al. (2017) observed that people adopted 
new habits that may accompany them even after the pan-
demic recedes, such as reducing food waste due to limited 
stock and reducing travel which had reduced  CO2 emissions 
in the air. NASA’s earth observatory discovered that  N2O 
concentrations in Central and Eastern China were 10 to 30% 
smaller in early 2020 than in same periods in 2019. Anser 
et al. (2021) explored the role of policy uncertainty and geo-
political risk in EF for selected emerging economies. After 
applying dynamic OLS, fully modified OLS, and augmented 
mean group estimators, it was found that policy uncertainty 
and non-renewable energy escalated the EF, while geopoliti-
cal risk and the renewable energy plunged the EF.

Different studies reported the reduction in  N2O levels 
in different countries during COVID-19, which could be 
helpful for people to get fresh air. For example, accord-
ing to Myllyvirta (2020),  CO2 and  N2O emissions during 
COVID-19 have been minimized in China by 29% and 24%, 
respectively. Watts and Kommenda (2020) have also found 
a similar effect in different regions due to industrial closure 
and temporary reductions in GHG emissions. Muhammad 
et al. (2020) assessed the effects of the COVID-19 on the 
natural atmosphere by analyzing the data published by the 
ESA4 and NASA,5 which demonstrated that the air quality of 
Italy, Wuhan, Spain, and the USA has improved up to 30%. 
Similarly, Menut et al. (2020) also observed the negative 
impact of the pandemic on  N2O emission and particulate 
matter (PM) concentrations in Western Europe. In other 
study, Tobias et al. (2020) realized a decrease in pollution 
in the times of COVID-19 in Spain; however, substantial 
disparities were found among the pollutants. The highest 
reduction was found in  N2O and black carbon, while a less 
reduction occurred in PM10.6

Zambrano-Monserrate et al. (2020) found a direct rela-
tionship between COVID-19 measurements and the envi-
ronmental quality. It was also seen that contingency meas-
ures reduced noise pollution and provided cleaner beaches. 
In another study, Tahir and Batool (2020) observed that 
the COVID-19 reduced 0.3% of  CO2 emissions due to 
the closure of the aviation sector and transportation. 
Severo et al. (2021) analyzed the pandemic-environmental 

4 European Space Agency.
5 National Aeronautics and Space Administration.
6 The particulate matter with a diameter of 10 µm or less.
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awareness-social responsibility nexus in Portugal and Brazil. 
The outcomes of structural equation modeling revealed that 
the COVID-19 pandemic was a crucial vector for the change 
of people’s behavior, which resulted in social responsibility 
and environmental sustainability. Tian et al. (2021) found 
that  CO2 emissions decreased due to COVID-19 in Canada 
while COVID-19 had an insignificant impact on  SO2 emis-
sions. Moreover, an increase in the ozone level has also been 
reported. Similarly, Gherheș et al. (2021) also observed the 
improvement in environment in the times ofe COVID-19  in 
various economies.

On the other hand, some empirical research found det-
rimental impacts of pandemic outbreaks on environmental 
quality. For instance, Cheval et al. (2020) affirmed that not 
all the environmental consequences were positive. Pandemic 
outbreaks harmed the environment by increasing the volume 
of non-recyclable garbage, producing enormous amounts of 
biological waste due to lower levels of exports of agricul-
tural products and fish, and challenges to maintain and moni-
tor natural ecosystems. Zuo (2020) has examined the effect 
of COVID-19 on medical waste pollution amid the peak of 
COVID-19 in China. It was realized that due to increased 
medical activities, about 240 tons of hospital waste was 
generated daily, which was 600% greater than the normal 
value. According to Robert (2020), plastic-based face masks 
were another source of environmental degradation because 
these masks caused waste pollution and marine pollution 
and could not get lost in nature. Zambrano-Monserrate and 
Ruano (2020) discovered several negative secondary effects 
of COVID-19 on environmental quality, such as a decrease 
in recycling and an increase in waste, impeding the pollution 
problems of physical spaces, where the highest disposal and 
a decrease in recycling are adverse effects.

Besides pandemics, many empirical studies used other 
factors as a determinant of environmental quality. Lin (2017) 
observed a direct or positive association between GDP per 
capita and pollution. Mrabet and Alsamara (2017) analyzed 
the trade-pollution nexus by utilizing  CO2 emissions and 
EF in Qatar for the years 1980 to 2012. After utilizing the 
ARDL method, it was observed that openness was posi-
tively correlated with both  CO2 emissions and EF. Uddin 
et al. (2017) found the relationship between  growth, open-
ness, and EF by using DOLS methodology and observed a 
positive impact of economic growth and inverse impact of 
trade openness on EF. In another work, Dogan and Turkekul 
(2016) examined the relationship between energy usage, 
trade openness, and GDP on  CO2  in the USA for the years 
1960–2010. It was observed that energy use was positively 
while trade openness was inversely correlated with  CO2 .

To summarize, the current literature has given a wealth of 
information on the effects of different pandemic outbreaks 
like SARS, MERS-Cov, Ebola, and COVID-19 on environ-
mental quality. Not a single study has examined the effect of 

pandemic uncertainty on environment. The previous stud-
ies found that pandemic uncertainty has a critical effect on 
economic growth (Song & Zhou, 2020), the stock market 
(Sharif et al. 2020), investment (Sharma et al., 2020), and 
energy consumption (Qin et al., 2020), but the impact of 
pandemic uncertainty on environment has been ignored. In 
this case, this study will pave the gap in empirical literature 
by checking the aforementioned relationship.

Data and methodology

To analyze the pandemic uncertainty-environmental qual-
ity nexus in EAP economies, we use three GHG emissions 
 (CO2,  N2O, and  CH4) along with EF. The main motivation 
for selecting these pollutants as environmental proxies is 
that they have a huge proportion of total GHG emissions. 
 CO2 accounts for the greatest proportion of GHG emissions, 
accompanied by  CH4 and  N2O. The main causes of  CO2 
emissions are consumption of energy, industrial output, and 
transportation (Bilgili et al., 2016).  N2O is generated dur-
ing agricultural activities (Chen et al., 2021; Miao et al., 
2022; Aneja et al., 2019).  CH4 is generated during extract-
ing and transporting coal, oil, and natural gas (Yusuf et al. 
2020). The EF is considered one of the key indicators of 
the environment that indicate the biological and ecological 
capabilities of an economy (Destek et al., 2018). World Pan-
demic Uncertainty Index (WPUI), trade openness, GDP per 
capita, population density, and energy consumption are our 
independent variables.

Pandemic uncertainty is estimated through the World 
Pandemic Uncertainty Index (WPUI) on the basis of the 
World Uncertainty Index (WUI) of Ahir et al. (2018) to ana-
lyze the impact of pandemic uncertainty on environmental 
quality. The WPUI is different from the WUI in terms of 
theoretical ground and meaning. Although both indices were 
produced for 143 countries worldwide from 1996, the WUI 
assesses aggregate uncertainty or political and economic 
uncertainty, while the WPUI estimates the uncertainty asso-
ciated with pandemics. The WPUI measures the frequency 
of the word “uncertainty” related to only pandemics in the 
official reports of the Economist Intelligence Unit (EIU) 
(Ahir et al. 2018). Specifically, the WPUI assesses the level 
of uncertainty created by worldwide pandemics like Swine 
flu, Avian flu, Ebola, SARS, and COVID-19. In Fig. 1, the 
trend of WPUI is shown during the 1996Q1–2021Q3 period. 
The trend line shows that WPUI varies with different periods 
and reaches its highest value in 2021Q1 due to the COVID-
19 pandemic outbreak.

Out of 38 EAP countries, 30 are chosen according to the data 
availability. With the exception of WPUI, data for the variables 
after 2018 is not available as of August 2021. As a result, a 
panel data set from 1996 to 2018 is employed for the study. The 
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World Bank has classified countries into four income groups: 
low-income, lower-middle-income, upper-middle-income, and 
high-income economies. For our research, we split EAP coun-
tries into three categories based on the work of Farooq et al. 
(2020). We have placed all EAP economies, hereafter called the 
Overall-EAP group (EAP-Overall), in the first group. The sec-
ond group contains both lower-middle-income and low-income 
EAP economies, henceforth referred to as lower-income EAP 
group (EAP-LIG). High-income and upper-middle-income 
EAP economies, hereinafter termed as higher-income EAP 
group (EAP-HIG), have been included in the third group (see 
Table 11). The nomenclature for the abbreviations and symbols 
used in this research is listed in Table 1.

For panel data estimation in previous studies, multiple 
approaches such as GMM, AMG, and random and fixed effects 
models are applied. However, these traditional approaches 

overlook the issues of cross-sectional dependence (CSD) and 
heterogeneity by assuming homogeneity and cross-sectional 
independence in data. In present times, there is now a greater 
need to concentrate on the above-mentioned issues.

The whole procedure of panel data estimation involves 
various steps like checking CSD among cross-sectional 
units and unit root tests which direct us to follow the con-
cerned methodology, cointegration test to see the associa-
tion between dependent and independent variables, check-
ing slope homogeneity/heterogeneity of the coefficients, and 
then move toward the suitable estimation methodology.

Cross‑sectional dependence tests

There are several reasons for cross-sectional dependence 
(CSD), such as similar economic or social networks as well 

Fig. 1  Pandemics and uncer-
tainty (1996Q1–2021Q3).  
Source: Author’s own calcula-
tion based on WPUI (2020) 
and Ahir (2018). WPUI is the 
simple average of WPUI of 143 
countries

Table 1  The nomenclature of the symbols and the abbreviations

Symbols or 
abbreviations

Explanation Symbols or 
abbreviations

Explanation

EAP East-Asia and Pacific Countries WUI World Uncertainty Index
DCCE Dynamic common correlated effects WPUI World Pandemic Uncertainty Index
CIPS-test Cross-sectional Im, Pesaran, and Shin test PUN Pandemic uncertainty
CSD Cross-sectional dependence Δ Homogeneity test
PMG Pooled mean group TO Trade openness
MG Mean group ENC Energy consumption
CCE Common correlated effects GDP GDP per capita
GMM Generalized method of moments POD Population density
EAP-Overall Overall East-Asia and Pacific economies Xit Set of independent variables
EAP-LIG Lower-income group of East-Asia and Pacific countries PT Lag of cross-sectional averages
EAP-HIG Higher-income group of East-Asia and Pacific countries Δadj

Bias-adjusted version of homogeneity test
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as space effects, unobserved factors, and so forth (Chudik 
& Pesaran, 2015). It is claimed that without addressing this 
CSD, panel data provides inconsistent and biased estimators 
(Meo et al. 2020). We can use different tests to verify the 
existence of CSD, like the LM test, scaled LM test, CD test, 
and bias-adjusted scaled LM test.

The widely used Breusch and Pagan (1980) LM test can 
be represented as follows:

Here, �̂2
ij
 indicates the the pairwise correlation coefficients. 

LM test is adequate for small cross-sections (N) and compara-
tively large time period (T). This test cannot perform well when 
the average pairwise correlation’s mean value approaches zero 
(Pesaran, 2004). To deal with this issue, Pesaran (2004) intro-
duced the scaled version for the LM test.

According to Pesaran (2004), one of the major drawbacks 
of the scaled LM test is that it reveals significant size dis-
tortions when N > T. Later on, Pesaran (2004) introduced 
the CD test, which can be utilized in both cases of T < N or 
N < T.

The CD test encompasses several structural breaks of 
slope coefficients and gives resilient outcomes in the situa-
tion of heterogenouspanel data.

After that, the CD test is modified by Baltagi et al. (2012) 
by applying the mean of the LM statistics and variance.

Here, μTij and  v2
Tij indicate the accurate mean and vari-

ance of (T − k)
⌢
𝜌
2

ij
 illustrated by Baltagi et al. (2012).

CIPS‑test (second‑generation panel cointegration 
test)

The conventional cointegration tests of Levin et al. (2002) 
and Im et al. (2003) are based on the first-generation unit 
root test, which assumes CSD and homogeneity. These 
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√
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traditional tests give inadequate outcomes when the data is 
suffered from heterogeneity and/or CSD. To cover this draw-
back, Pesaran (2007) developed CIPS-test which is a second-
generation unit root test. This test gives more robust results 
due to its ability to control both heterogeneity and CSD.

Westerlund panel cointegration test

The traditional  unit root tests such as Pedroni (1999) give biased 
findings as they overlook some crucial issues like CSD, hetero-
scedasticity, and autocorrelation (Meo et al., 2020). In contrast, 
Westerlund (2007) develops a second-generation test for cointe-
gration, which can deal with all the above-mentioned problems 
and provide more authentic outcomes even in the situation of 
structural breaks and/or small size of data  (Persyn & West-
erlund, 2008). The panel-based statistics of this test (Panel-Ʈ 
and Panel-α) estimate the error-correction terms for the overall 
panel, whereas the mean or average-based statistics (Group-Ʈ 
and Group-α) compute the weighted-sums of the error-cor-
rection terms. Using the error-correction mechanism, these 
statistics verify the long-run association among the integrated 
variables for the individual cross-sections as well as the entire 
panel. The significant values of two panel-based tests verify the 
concept that the overall panel is cointegrated, whiles the other 
two group-mean based tests  validate the hypothesis that at least 
a single cross-sectional unit is cointegrated.

Heterogeneity/slope homogeneity test

For the estimation of panel data, a heterogeneity or slope homo-
geneity test is utilized to identify the heterogeneity/homogeneity 
in the panel data. It compares the null hypothesis of homogene-
ous slope coefficient against the alternative hypothesis of hetero-
geneous slope coefficient. Primarily, Swamy (1970) initiated a 
heterogeneity test that required a fixed amount of cross-section 
(N) in relation to time (T). Later on, the new heterogeneity test 
was presented by Pesaran and Yamagata (2008), which is ade-
quate in the case of T, N → ∞. It assumes a normal distribution 
of error terms. Equation (3) can be utilized to get the standard 
dispersion statistic for the heterogeneity test ( Δ):

Based on a null hypothesis of 
√

N∕T → ∞ and (T, 
N) → ∞, the heterogeneity test ( Δ ) includes asymptoti-
cally normal and standard distribution. Pesaran and Yama-
gata (2008) also consider the following bias-adjusted form 
of the heterogeneity test.

(5)Δ =

√

N

�

N−1S̃ − k
√

2k

�
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Here, the mean and variance are represented by 
E(zit) = k and var(zit) = 2k(T − k − 1)∕T + 1 , respectively. 
The bias-adjusted version of the heterogeneity test ( Δadj ) 
follows the crucial assumption that the error term is cross-
sectionally and serially independent. The heterogeneity 
test is useful for determining whether long-run cross-
section coefficients are homogenous or heterogeneous. 
For heterogeneous panel data, the presumption of slope 
homogeneity causes biased outcomes (Meo et al., 2020).

Dynamic common correlated effects estimation

The study uses panel data analysis due to its many superior 
attributes. Panel data merges the time-series observations and 
horizontal-cross-section and also allow analysis with more 
observations. Panel data take into consideration more sample 
variations and degree of freedom compared to time series mod-
els (Meo et al., 2020). Dynamic panel data have an advantage 
over the static models as it can analyze both short-run and long-
run results (Sadorsky, 2014). On the contrary, panel data has 
some disadvantages if we are not able to consider heterogeneity 
and CSD. The prior studies tremendously used the estimation 
methods that are not able to consider the cross-sectional effect 
and they have only entertained the homogenous slopes (Meo 
et al., 2020). Many well-known statistical techniques are com-
monly used in the literature related to homogenous slope for 
time series as well as the panel data, i.e., OLS, random and 
fixed effects models, and GMM, which show a higher degree 
of homogeneity as intercept changes between cross-sectional 
units. There is no other opinion that this assumption is wrong 
and directed to misleading results (Ditzen, 2019).

To this end, Chudik and Pesaran (2015) developed the dynamic 
common correlated effects (DCCE) estimation method that has the 
ability to tackle the aforementioned problems of CSD and heteroge-
neity. Basically, this estimation technique supports common corre-
lated effect (CCE) estimation, mean group (MG) model, and pooled 
mean group (PMG) modeln. Although PMG treats the intercepts, 
short-run coefficients, and adjustment speed as heterogeneous factors 
among cross-sections, it applies a condition that slope coefficients 
across countries should be homogeneous in the long run (Ditzen, 
2019). So, PMG is not capable of tackling the problem of CSD 
among countries (Chudik and Pesaran 2015). Although the CCE 
technique is persistent to (structural) breaks and serial correlations, it 
is inappropriate for the models of dynamic nature because it does not 
consider a dependent variable as purely exogenous (Ditzen, 2019).

The DCCE approach, on the other hand, can consider differ-
ent critical issues that other conventional methodologies can-
not tackle. (i) This technique solves the issues of heterogene-
ity and CSD by extracting averages and lags of cross-sectional 

(6)Δadj =

√

N

�

N−1S̃ − E(zit)
√

var(zit)

� units. (ii) This technique addresses the problem of parameter 
heterogeneity by using the properties of MG estimation. (iii) 
It estimates dynamic common correlated effects by presuming 
that the regression variables may all be described by a single 
factor. (iv) It is resilient to endogenous regression coefficients 
in static and dynamic panel data modeland enhances the small 
sample qualities of the estimation irrespective of the fact that 
the regressors in the model are weakly or strictly exogenous or 
endogenous. The application of instrumental variables is simi-
larly resilient to CSD and slope heterogeneity. The ivreg2 com-
mand introduced by Baum et al. (2007) allows DCCE estimation 
to tackle instrumental variable regression. (v) This method is 
applicable in small data size by applying the Jackknife7 cor-
rection command (Chudik & Pesaran, 2015). (vi) It  produces 
reliable results whether there are structural breaks or uneven 
panel data (Ditzen, 2019).

On the basis of the aforementioned specifications, the 
DCCE equation can be stated as below:

where t and i depict time and cross-sectional dimensions, 
respectively. The dependent variable is represented by Yit, 
while Yit−1 is its lag, which is treated here as an independent 
variable. Xit denotes the set of other explanatory variables. 
The unobserved common factors of the regression are rep-
resented by �xip and �yip . PT and μit denote the lag of cross-
sectional average and the residual term, respectively.

Model specification

The empirical models of our study are based on the works 
of Muhammad et al. (2020) and Cheval et al. (2020), who 
acknowledge the contribution of pandemics while analyz-
ing environmental quality. Other significant variables that 
can affect environmental quality, like trade openness, energy 
consumption, per capita GDP, and population density, have 
been included in models in addition to pandemic uncertainty 
for the prevention of omitted variable bias.

The basic model of DCCE, which is defined in Eq. (7), 
can be further extended into the four models by adding the 
variables of our models. Four proxies of environmental qual-
ity are utilized here as dependent variables in these mod-
els, following the previous works of Mrabet and Alsamara 
(2017) and Uddin et al. (2017).

(7)Yit = �iYit−1 + �iXit +

pT
∑

p=0

�xipXt−p+

pT
∑

p=0

�yipYt−p+�it

7 In STATA, the jackknife command is used to estimate robust stand-
ard error and variance. This command is also beneficial for small data 
size.
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(Model A)

(Model B)

(Model C)

(Model D)
LNCO2,  LNN2O,  LNCH4, and LNEF are dependent vari-

ables, in which  LNCO2,  LNN2O, and  LNCH4 represent GHG 
emissions, log of carbon dioxide, log of nitrous oxide, and log 
of methane, respectively. LNEF represents the log of ecological 
footprint. The set of independent variables, pandemic uncer-
tainty, GDP per capita, trade openness, energy consumption, 
and population density (all are taken in the log), is denoted by 
 Xit. �it , eit , �it , and �it show the residual terms.

Based on previous studies and theoretical background, 
we have selected different independent variables that affect 
environmental quality. These variables are selected due to 
their relevant importance. Pandemic uncertainty (PUN) 
is our core variable which affects environmental quality. 
The majority of studies believe that pandemic uncertainty 
improves environmental quality (Myllyvirta, 2020). Trade 

LNCO
2it = �iLNCO2it−1 + �iXit +

PT
∑

p=0

�xipXt−p +

PT
∑

p=0

�yipYt−p + �it

LNN
2
Oit = �iLNN2

Oit−1 + �iXit +

PT
∑

p=0

�xipXt−p +

PT
∑

p=0

�yipYt−p + eit

LNCH
4
= �iLNCH4it−1 + �iXit +

PT
∑

p=0

�xipXt−p +

PT
∑

p=0

�yipYt−p + �it

LNEFit = �iLNEFit−1 + �iXit +

PT
∑

p=0

�xipXt−p +

PT
∑

p=0

�yipYt−p + vit

openness is another major variable which affects environ-
mental quality positively (Wang et al., 2013) or negatively 
(Lin, 2017). Energy consumption is another important deter-
minant of environmental quality (Bekun et al., 2019). It has 
a commonly negative association with environmental qual-
ity through the scale effect (Bekun et al., 2021). Population 
density affects environmental quality through the depletion 
of natural resources (Han & Sun, 2019).

A detailed variables description of our models and data 
sources are given in Table 2.

Results and discussion

The descriptive statistics of our variables is given in Table 3, 
which summarizes the significant characteristics of the data. 
PUN, POD, ENC, GDP, TO,  CO2, EF,  N2O, and  CH4 repre-
sent pandemic uncertainty, population density, consumption of 
energy, GDP per capita, trade openness,  CO2 emissions, ecologi-
cal footprint, nitrous oxide emissions, and methane emissions, 
respectively.

To verify the existence of CSD among countries, we have 
applied various tests, as demonstrated in Table 4. The findings 
verify the existence of CSD between countries. The values of 
these CSD tests are not only helpful to decide the appropriate 
method but also essential to choose the application of the CIPS-
test that is most appropriate in the situation of CSD Table 5.

 Table 5 indicates the outcome of the unit root tests of second-
generation, commonly called the CIPS-test. All of the variables 
are found stationary at their levels and first differences, and no 
one is stationary at the second difference. The outcomes of the 
test confirm that LNTO and  LNCO2 are stationary at the first 
difference, while the rest of the variables are found stationary 
at level.

Table 2  List of variables with their description and sources

The World Pandemic Uncertainty Index (WPUI) shows the frequency of the word “uncertainty” related to health pandemics in the Economist 
Intelligence Unit (EIU) country reports (Ahir et  al. 2018; WPUI, 2020). On the other hand, the World Uncertainty Index (WUI) is built on 
counting the word “uncertainty” related to all economic events (such as terrorist attacks, wars, financial crises, debt crises, health outbreaks, 
trade tensions, Brexit, and the United States presidential elections) in the EIU country reports and thus considered aggregate uncertainty (Ahir 
et al., 2018).

Variables Description Unit of measurement Sources

LNPUN Log of pandemic uncertainty World Pandemic Uncertainty Index (WPUI) (country level, 
four-quarter average)

World Pandemic Uncer-
tainty Index (WPUI)

LNCO2 Log of  CO2 emissions Metric tons per capita World Bank
LNEF Log of ecological footprint Global hectares (gha) Global Footprint Network
LNCH4 Log of methane emissions kt of  CO2 equivalent World Bank
LNN2O Log of nitrous oxide emissions Thousands metric tons of  CO2 equivalent World Bank
LNPOD Log of population density People per square km of land area World Bank
LNENC Log of energy consumption Thousand metric tons of oil equivalent World Bank
LNTO Log of trade openness Exports plus imports divided by GDP (constant 2010 US$) World Bank
LNGDP Log of GDP per capita Constant 2010 US$ World Bank
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Table 6 gives the findings of the Westerlund (2007) test. The 
values of all test statistics are determined to be significant. The 
null hypothesis for the absence of cointegration is refused, and 
the alternate hypothesis is accepted, confirming a long-run rela-
tionship among the variables.

The result of the heterogeneity test is given in Table 7. The 
null hypothesises of the models state that slope coefficients are 

not heterogeneous (homogenous), while the alternate hypoth-
esises show heterogeneity (no homogeneity). In each of our four 
models, the t-statistics of the heterogeneity test ( Δ ) along its 
bias-adjusted form ( Δ adj) give adequate indications to refuse 
the null hypothesises and approve the alternate hypothesises 
that explain the presence of cross-country heterogeneity in all 
models.

Tables 8 and 9 show the outcomes of DCCE estimation 
in which  the explanatory variables of all the models demon-
strate significant associations with the lags of their explained 
variables (L.LNCO2, L.LNCH4, and L.LNN2O). The short-and 
long-run DCCE estimations indicate a significant and negative 
influence of pandemic uncertainty on  CO2,  CH4, and EF in the 
overall EAP group of countries (EAP-Overall) and a lower-
income group of EAP countries (EAP-LIG). It demonstrates 
that pandemic uncertainty reduces pollution in these countries 
in terms of  CO2,  N2O, and EF. The finding is in line with the 
work of Lokhandwala and Gautam (2020), who also observed 
that environmental quality improved during pandemics. Lim-
ited social freedom or social distance policies resulted in lower 
energy consumption and industrial output, lowering environ-
mental quality. Social distancing and the reduction of various 
activities like tourism business, manufacturing, railway, and 
road transportation are anticipated to boost biodiversity and the 

Table 3  Descriptive statistics of variables

PUN POD ENC GDP TO CO2 EF N2O CH4

Mean 3.17 197.15 1,234,397 7246.17 0.75 5.39 57,886,498 13,535.26 37,837.57
Median 1.09 64.18 12,017.61 2746.83 0.69 2.61 22,253,592 4478.44 12,691.30
Minimum 0.00 2.86 1210.80 339.14 0.08 0.08 1,245,639 71.75 945.68
Maximum 20.06 2012.10 37,712,280 72,444.08 4.44 44.64 389,000,000 369,900.3 912,858
Skewness 2.49 2.68 4.89 2.65 2.08 2.14 1.97 6.08 5.78
Std. dev 4.71 356.37 6,041,469 10,000.18 0.41 7.51 72,409,720 29,192.30 68,507.20
Kurtosis 9.76 9.77 25.36 11.79 13.54 7.35 6.96 54.86 57.20
Observations 1081 1081 1081 1081 1081 1081 1081 1081 1081

Table 4  Results of CSD tests

*Level of significance at 1%
**Level of significance at 5%

Variables CD test Scaled LM test Bias-adjusted scaled LM

Statistic Probability Statistic Probability Statistic Probability

LNPUN 16.02 0.00* 80.17 0.00* 78.29 0.00*
LNPOD 143.57 0.00* 531.52 0.00* 530.64 0.00*
LNENC 70.44 0.01* 141.25 0.00* 140.39 0.00*
LNGDP 27.69 0.02** 104.02 0.00* 102.12 0.00*
LNTO
LNCO2

60.76
31.76

0.00*
0.00*

269.48
129.48

0.00*
0.00*

267.63
128.63

0.00*
0.00*

LNEF 80.99 0.00* 220.57 0.00* 219.67 0.00*
LNN2O 27.85 0.00* 130.30 0.00* 129.21 0.00*
LNCH4 80.71 0.00* 221.23 0.00* 220.16 0.00*

Table 5  Result of CIPS unit root test

*Level of significance at 1%
**Level of significance at 5%

b First difference

LNPUN  − 2.89*  − 5.16*
LNPOD  − 2.57*  − 5.18*
LNENC  − 2.95*  − 5.46*
LNGDP  − 2.21*  − 4.02*
LNTO  − 1.91  − 5.66*
LNCO2  − 1.79  − 5.22*
LNEF  − 2.95*  − 4.50*
LNN2O  − 3.05*  − 5.10*
LNCH4  − 2.90*  − 5.20*
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regenerating capacity of the fishing ground (marine habitats) 
and forest reserves. Reduced pollution levels may help nature to 
repair itself and allow people to breathe cleaner air than before. 
Our findings are consistent with those of Myllyvirta (2020), who 
says that due to industrial closure and a temporary halt in air 
pollutants,  CO2 and nitrogen dioxide  (NO2) levels have been 
lowered by 25% and 30%, respectively. Cadotte (2020) reports 
similar effects, claiming that  PM2.5 levels in South Korea were 
lowered by 54% during the shutdown compared to the same 
time the prior year.

Moreover, pandemic uncertainty (PUN) has a negative 
relationship with all proxies of the environment in the higher-
income EAP group (EAP-HIG). The potential explanation for 
the reductions in environmental indicators in these countries is 
the reduction of various activities like road transportation, indus-
trial output, educational, and other activities due to pandemic 
uncertainties. From an anthropocentric standpoint, pandemic 
uncertainty may result in a more sustainable future, such as 
shorter supply chains or enhanced resilience of the socio-eco-
logical systems, resulting in better environmental quality. PUN 
is positively and significantly interlinked with  N2O in EAP-
Overall and EAP-LIG. It demonstrates that pandemic uncer-
tainty increases pollution in terms of  N2O in Overall-EAP and 
EAP-LIG. Most EAP economies (particularly those with lower 
incomes) rely on the agriculture sector, which is the primary 
source of  N2O (Aneja et al., 2019). According to Duan et al. 
(2021), the services and manufacturing sectors are more affected 
by pandemic outbreaks than the agriculture sector. The possible 
reason for a positive association between PUN and  N2O is that 
the economies of EAP countries concentrate more on agriculture 
than other sectors in response to PUN. So, due to the dominance 
of the agriculture sector in these EAP countries,  N2O increases 
due to pandemic-related uncertainty.

In our analysis, we discovered that the effect of pandemic 
uncertainty on environmental quality is reported to be larger 
in the EAP-LIG compared to EAP-HIG. This condition is also 
consistent with the works of Ahir et al. (2018), who found that 
pandemic-related uncertainty was higher in poor nations due to 
its powerful link to market volatility as well as economic and 
social uncertainty. The short- and long-run DCCE outcomes 
show a significant and positive linkage of per capita GDP with 
all proxies of environment, with the exception of model B, in 
which GDP is inversely and significantly interlinked with  N2O in 
EAP-LIG and EAP-Overall. However, in model B, GDP is posi-
tively associated with  N2O in EAP-HIG. The direct link between 
GDP and the indicators of the environment (EF,  CO2, and  CH4) 
is aligned with the work of Jebli and Youssef (2015). As already 
mentioned, the positive effect of GDP on environmental indica-
tors is due to the scale effect, which causes the deterioration of 
the environment due to the consumption of energy  and eco-
nomic activity (industrial production, transport, and disforesta-
tion). Because countries prioritize growth over environmental 
quality, the environment worsens when per capita GDP rises 
due to increased economic activities, i.e., energy consumption, 
deforestation, transportation, and industrial production (Bekun 
& Agboola, 2019). However, for EAP-Overall and EAP-LIG, 
GDP and  N2O have a significant and negative association in 
both the long run and short run. One of the potential causes of 
this negative association is that  N2O is generally produced dur-
ing agricultural activities.8 When the people’s income in these 
countries increases, they use advanced methods in cultivation, 
which lead to a reduction in  N2O. The negative impact of GDP 
on  N2O is supported by the findings of Bilgili et al. (2016).

All four environmental indicators are inversely and signifi-
cantly connected with trade openness (TO) in EAP-Overall 
and EAP-HIG, demonstrating that TO has a favorable impact 
on the quality of environment. The outcome is in line with 
Destek et al. (2018) and Onifade et al. (2021). The scale effect 
relates to an enhancement in economic activities due to TO, 
including deforestation, transportation, energy use, and industri-
alization, causing environmental deterioration (Antweiler et al., 
2001). On the contrary, when people’s income increases, they 

Table 6  Result of Westerlund cointegration test

*Level of significance at 1%
**Level of significance at 5%

H0: no cointegration Model A Model B Model C Model D

Stat Robust p-value Stat Robust p-value Stat Robust p-value Stat Robust p-value

Group-Ʈ  − 3.10* 0.00  − 3.62* 0.00  − 3.85 0.00  − 4.22* 0.00
Group-α  − 3.08* 0.01  − 3.33* 0.00  − 3.39* 0.00  − 4.28* 0.00
Panel-Ʈ  − 7.40* 0.00  − 5.81* 0.00  − 8.14* 0.00  − 3.58** 0.02
Panel-α  − 3.30* 0.00  − 3.71** 0.02  − 3.32* 0.00  − 3.94* 0.00

Table 7  Results of 
heterogeneity test

*Level of significance at 1%

Δ Δ adj

Model A 4.97* 5.85*
Model B 6.17* 7.18*
Model C 6.43* 7.82*
Model D 5.40* 6.11*

8 See Aneja et al. (2019).
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demand a healthy environment to enhance their standard of liv-
ing, known as the technique or technology effect. Dirty produc-
tion techniques are being interchanged with environmentally 
friendly/cleaner production or the services sector, carrying out 
a composition effect that improves environmental quality. TO 
can enhance environmental quality when the technique effect 
overcomes the scale effect and composition effect (Antweiler 
et al., 2001). The Pollution Halo Hypothesis also supports this 
negative trade openness-GHG emissions nexus by stating that 
overseas enterprises transfer cleaner and more advanced tech-
nologies to the host economies resulting in a reduction of pollu-
tion (Wang et al., 2013). However, in EAP-LIG, TO is positively 
related to GHG emissions and EF, indicating that environmental 
quality is deteriorating. This observation is in compliance with 
the study of Lin (2017). The positive impact of TO on envi-
ronmental indicators in EAP-LIG is aligning with the pollution 

haven hypothesis (PHH), which asserts that developing econo-
mies have lax environment legislations, which leads to deteriora-
tion of the environment in these economies as a result of exces-
sive industrialization due to trade openness (Baek & Koo, 2009).

All environmental indicators are positively and significantly 
linked to energy consumption (ENC) in the short run and long 
run, which shows that extensive ENC worsens environmen-
tal quality. This outcome supports the results of Dogan and 
Turkekul (2016). It is true that EAP economies are emphasiz-
ing on conventional energies, which emit a greater amount of 
emissions due to higher human activities and industrialization. 
Moreover, it also damages the ecological capacities of these 
countries (Farooq et al., 2020). However, in EAP-Overall coun-
tries, ENC is positively but insignificantly linked with EF in  
long run and short-run. In all groups of EAP, population density 
(POD) has a significant and positive linkage with  CO2,  CH4, 

Table 8  DCCE estimation (EAP-Overall)

*Level of significance at 1%
**Level of significance at 5%
***Level of significance at 10%
Numbers in parenthesis are probability values.

Short-run Estimates Model A  (LNCO2) Model B  (LNN2O) Model C  (LNCH4) Model D (LNEF)
Regressors Coefficients Coefficients Coefficients Coefficients

D.LNPUN  − 0.170*
(0.01)

0.085
(0.12)

 − 0.140*
(0.01)

 − 0.120*
(0.00)

D.LNGDP 0.345**
(0.03)

 − 0.153**
(0.02)

0.324*
(0.01)

0.285**
(0.02)

D.LNTO  − 0.300*
(0.01)

 − 0.246*
(0.00)

 − 0.350
(0.14)

 − 0.222**
(0.03)

D.LNENC 0.265**
(0.03)

0.166**
(0.02)

0.240*
(0.00)

0.350
(0.11)

D.LNPOD 0.745*
(0.01)

0.210
(0.11)

0.345*
(0.01)

1.145*
(0.00)

Long-run Estimates L.LNCO2  − 0.550**
(0.04)

— —

L.LNN2O —  − 0.500*
(0.00)

—

L.LNCH4 — —  − 0.420*
(0.01)

L.LNEF — — —  − 0.60*
(0,01)

LNPUN  − 0.164*
(0.00)

0.065**
(0.04)

 − 0.130*
(0.01)

 − 0.109*
(0.00)

LNGDP 0.320*
(0.01)

 − 0.160**
(0.03)

0.315**
(0.02)

0.268***
(0.07)

LNTO  − 0.280**
(0.02)

 − 0.260*
(0.01)

 − 0.185*
(0.00)

 − 0.209*
(0.00)

LNENC 0.245**
(0.02)

0.150**
(0.02)

0.235*
(0.00)

0.400
(0.14)

LNPOD 0.765*
(0.01)

0.260
(0.15)

0.365*
(0.01)

1.135*
(0.00)
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and EF, while insignificantly linked with  N2O. It demonstrates 
that a population burden will decrease environmental quality in 
terms of environmental indicators except for  N2O. This result is 
consistent with the works of Bekun et al., (2021).

Conclusion and policy recommendations

The pandemic uncertainty is the cause of the range of changes 
in society, but its impact on environmental quality is unclear. 
The literature shows that there is no empirical study on whether 
there is a connection between pandemic-related uncertainty and 
environmental quality. In this research, we have observed the 
relationship between PUN and environmental quality in EAP 
economies. The traditional econometric approaches ignore CSD 
and heterogeneity and provide biased outcomes. So, we have 

employed a new method, “DCCE,” which can excellently deal 
with the problems mentioned above. Most previous studies have 
relied solely on  CO2 emissions as a proxy for environmental 
quality. In addition to  CO2, we employed other GHG emissions 
such as  CH4 and  N2O as well as another significant indicator 
EF. The short- and long-run DCCE estimations show a signifi-
cant and negative influence of PUN on  CO2,  CH4, and EF in 
EAP-Overall and EAP-LIG. Moreover, for EAP-HIG, PUN 
has a negative relationship with all environmental indicators. 
Pandemic-related uncertainty has curtailed movement and con-
fined individuals mostly to their homes, reducing industrial and 
commercial energy use as well as waste generation. This fall in 
demand has resulted in considerable reductions in GHG emis-
sions and ecological footprint, as well as a significant improve-
ment in environmental quality. Our research has shown that pan-
demic-related uncertainty is closely related to environmentally 

Table 9  DCCE estimation (EAP-HIG and EAP-LIG)

*Level of significance at 1%
**Level of significance at 5%
***Level of significance at 10%
Numbers in parenthesis are probability values.

Higher-income EAP group (EAP-HIG) Lower-income EAP group (EAP-LIG)

Model A 
 (LNCO2)

Model B 
 (LNN2O)

Model C 
 (LNCH4)

Model D 
(LNEF)

Model A 
 (LNCO2)

Model B 
 (LNN2O)

Model C 
 (LNCH4)

Model D 
(LNEF)

Regressors Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients
Short-run 

estimates
D.LNPUN  − 0.100*

(0.01)
 − 0.055**
(0.03)

 − 0.080*
(0.01)

 − 0.080*
(0.00)

 − 0.150*
(0.00)

0.070***
(0.06)

 − 0.115*
(0.00)

 − 0.105*
(0.00)

D.LNGDP 0.370**
(0.02)

0.125
(0.13)

0.360*
(0.01)

0.292**
(0.02)

0.300**
(0.03)

 − 0.120**
(0.02)

0.273*
(0.01)

0.240**
(0.02)

D.LNTO  − 0.320*
(0.01)

 − 0.290*
(0.00)

 − 0.255
(0.13)

 − 0.245**
(0.03)

0.200*
(0.01)

0.150*
(0.00)

0.215
(0.15)

0.200**
(0.02)

D.LNENC 0.260**
(0.02)

0.120**
(0.02)

0.283*
(0.00)

0.340
(0.11)

0.205**
(0.02)

0.126**
(0.02)

0.226*
(0.00)

0.300
(0.11)

D.LNPOD 0.940**
(0.04)

0.221
(0.17)

0.468*
(0.01)

1.585*
(0.00)

0.635*
(0.01)

0.285
(0.12)

0.311*
(0.01)

0.875*
(0.00)

Long-run 
estimates

L.LNCO2  − 0.850**
(0.02)

— — —  − 0.800**
(0.04)

— — —

L.LNN2O —  − 0.800*
(0.01)

— — —  − 0.750*
(0.01)

— —

L.LNCH4 — —  − 0.720*
(0.00)

— — —  − 0.651*
(0.00)

—

L.LNEF — — —  − 0.700*
(0.01)

— — —  − 0.600*
(0.01)

LNPUN  − 0.090*
(0.00)

 − 0.058**
(0.03)

 − 0.075*
(0.00)

 − 0.085*
(0.00)

 − 0.143*
(0.00)

0.065**
(0.04)

 − 0.107*
(0.00)

 − 0.092*
(0.00)

LNGDP 0.359*
(0.01)

0.200**
(0.02)

0.348**
(0.02)

0.284**
(0.03)

0.285*
(0.01)

 − 0.135*
(0.01)

0.255**
(0.02)

0.227**
(0.03)

LNTO  − 0.305**
(0.02)

 − 0.275*
(0.00)

 − 0.209*
(0.00)

 − 0.227*
(0.00)

0.190**
(0.02)

0.160*
(0.00)

0.177*
(0.00)

0.188*
(0.01)

LNENC 0.280*
(0.01)

0.130*
(0.01)

0.268*
(0.00)

0.150**
(0.04)

0.188**
(0.02)

0.115*
(0.01)

0.218*
(0.00)

0.090***
(0.06)

LNPOD 0.950**
(0.04)

0.230
(0.14)

0.485*
(0.00)

1.550*
(0.00)

0.640*
(0.00)

0.249
(0.15)

0.315*
(0.01)

0.850**
(0.02)
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sustainable behaviors. It is also possible that the uncertainty 
caused by the pandemic may increase consumer concerns about 
the environment, increasing their choice for green consumption 
and environmental sustainability in EAP countries. Overall, our 
research gives new insights into the potential for PUN to posi-
tively influence environmental quality concerns.

Our research has many implications for EAP countries. As 
a policy recommendation, EAP policymakers should pay more 
attention to environmental pollution and develop pandemic 
response strategies to reduce the ecological footprint and GHG 
emissions. We recommend that EAP economies learn from the 
COVID-19 outbreaks and focus on implementing long-term 
pollution management strategies. Our research findings give 
firms with insights into the brand building in the aftermath of 
the pandemic. Given the ongoing uncertainty surrounding the 
recent COVID-19, the dread of the coronavirus persists. Hence, 
we recommend that entrepreneurs develop or strengthen their 
brands’ green image, as the findings of this study show that the 
fear of coronavirus will increase the people’s faith in green prod-
uct brands and further increase their willingness to pay more 
and even make sacrifices for environmental sustainability. For 
example, entrepreneurs can use numerous practices to enhance 
their green image, such as decreasing solid waste, conserving 
water and energy, and recycling and reusing durable service 
products. Second, governments in EAP economies can create 
effective public awareness initiatives that affect people’s envi-
ronmental concerns. The uncertainty surrounding the pandemic 
has compelled governments to enact stringent measures to limit 
the number of affected individuals and deaths. Such techniques, 
on the other hand, have a favorable impact on the atmosphere, 
lowering pollution and enhancing ecological quality. Under-
standing how extreme disruptions in behavior due to pandemic 
uncertainty affect air pollution will provide vital information 
about its relationship with environmental quality.

This global crisis has eloquently proved that uncertainty-
related research, ecosystem services, and climate change diplo-
macy must reevaluate their integrated and strategic development 
to account for even the most unlikely events. Finally, pandemics 
such as COVID-19 will cause dramatic changes in economic 
and social behavior on a global scale, and our study has high-
lighted the environmental dimensions of the subsequent reper-
cussions caused by the uncertainties of pandemic outbreaks. 
The aftermath of the COVID-19 pandemic will have long-term 
social impacts on workspaces, public places, and social gather-
ings, which indirectly/directly affects economic activities. As 
a result of the potential trade-off effects, governmental efforts 
across EAP countries are bound to establish a balance between 
sustained economic development and environmental sustainabil-
ity. Climate change is frequently viewed as a global risk driver, 
and pandemic outbreaks such as COVID-19 have provided a 
good illustration of how underestimated dangers can jeopard-
ize global security, democratic governance, economic stability, 
and thus environmental quality. If countries of the world fail 

to execute the nationally defined contributions adopted by the 
Paris Agreement, the world’s carbon reduction efforts will cost 
between 149.8 and 792.0 trillion US$ until 2100 (WHO., 2020). 
The COVID-19 dilemma also threatens recent agreements made 
by local governments to pursue climate change adaptation and 
mitigation measures. The 2030 Agenda consists of various 
SDGs aimed at eradicating poverty and achieving sustainable 
development by 2030. We contend that the COVID-19 pan-
demic will have an immediate effect on the majority of these 
aims, which are directly related to urban regions and population 
health, but longer-term repercussions are also expected. So, it is 
needed to implement the Paris Agreement and the SDGs related 
to environmental sustainability according to vulnerabilities and 
resilience to global pandemic uncertainty.

As of 19 January 2022, only 3.92 billion (50.3%) of the world 
population is fully vaccinated against COVID-19 (WHO, 2022). 
Slower and delayed vaccination deployment has left low and 
middle-income economies vulnerable to COVID-19 variants 
and slower recovery from the epidemic. Most developing coun-
tries of the EAP region have not been able to procure enough 
viable vaccines to cover their entire population in comparison to 
wealthier countries. To properly defeat COVID-19, widespread 
vaccination will be required. Notably, this must occur not only 
across countries (taking equality features between developed and 
developing nations) but also importantly inside countries (con-
sidering equity dimensions between different groups of people 
and existing barriers to healthcare access). We must ensure that 
everyone has equitable access to vaccination. We must make 
certain that no one is left behind. Only then will EAP countries 
be able to recover and defeat this pandemic.

Trade openness policies, according to our findings, should be 
maintained since they enhance environmental quality in EAP-
HIG and EAP-Overall, and they are also beneficial for gaining 
comparative advantages as well as composition effects. These 
economies can implement suitable policy frameworks to channel 
trade-induced technical advances and FDI inflows for a sustain-
able environment. As trade openness degrades the environment 
in EAP-LIG, rigorous environmental norms and regulations are 
required to ensure environmental sustainability. Those human 
and industrial  activities that are harmful to ecological capabil-
ity should be minimized. EAP economies should enact rigorous 
environment regulations to control emissions from industries. 
Fines should be levied on those industries that pollute the envi-
ronment the most, and revenue from these fines can be utilized in 
public activities to control pollution. EAP-LIG should enact reg-
ulations to limit  N2O emissions in the agriculture sector through 
various means, like minimum usage of nitrogen fertilizers, less 
crop tillage, and the utilization of nitrification inhibitors.

It is found that energy consumption in EAP countries also 
increases pollution. Energy consumption through its composi-
tion effect is deemed as one of the main factors of environmental 
deterioration. Energy sector reforms are required, and EAP gov-
ernments should prioritize renewable and nuclear energy above 
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conventional energy sources. Various initiatives, such as energy 
performance, fuel-switching, material recycling, and renewable 
energy use, can help reduce industrial GHG emissions. EF and 
GHG emissions can be minimized by slowing deforestation, 
conserving forest carbon stocks, implementing sustainable forest 
management, and ecological diversity. EAP economies should 
invest in renewable energy sources, encourage effective and effi-
cient consumption of energy, and upgrade outdated manufactur-
ing techniques. Green and environmentally friendly energies like 
biomass, solar, wind, ocean/tidal, and other energy initiatives 
can be used to replace old climate-wrecking energy sources.

Finally, this study has some limitations that will point the way 
forward for future studies in this area. Due to the missing data 
set, we have excluded several GHG emissions such as sulfur 
hexafluoride, sulfur dioxide, perfluorocarbons, and hydrofluoro-
carbons. Future research can utilize these proxies to observe 
how the results change across different environmental indicators. 
To increase the generalizability of our outcomes, the replica-
tion of this research in other groups of economies is encour-
aged. Moreover, in future research, the impact of other kinds of 
uncertainties like overall uncertainty and trade uncertainty on 
environmental quality can also be assessed.

Table 10  EAP countries with environmental indicators and World Pandemic Uncertainty Index (WPUI)

Data represented for GHG emissions and ecological footprint is obtained from World Bank (2019) and Global Footprint Network (2019), respec-
tively. The country-wise WPUI is representing the average values of the index for the period 1996 to 2018 and obtained from WPUI (2020).

Countries CO2 emis-
sions (kilo-
ton)

N2O emissions (thousand 
metric tons of  CO2 equiva-
lent)

CH4 emissions (kilo-
ton of  CO2 equivalent

Ecological foot-
print (million gha)

World Pandemic 
Uncertainty Index 
(WPUI)

China 989,3038 587,166.4 1752,290 5,352,997,272 21.9
Thailand 283,763.5 30,832.95 106,499.2 177,937,521 18.6
Australia 375,907.8 54,247.48 125,588.2 177,820,594 10.6
Japan 1135,886 24,911.49 38,956.54 592,954,518 9.3
Macau (SAR, China) 2068.18 11.65 150.57 10,673,181 35.7
Hong Kong (SAR, China) 43,644.63 476.45 3147.40 21,658,654 41.2
Singapore 37,535.41 1908.56 2385.8 33,502,179 14.9
Korea rep 620,302.4 32,624.7 14,979.34 314,848,507 9.7
Malaysia 248,288.9 15,310.25 34,270.67 123,598,043 10.7
Indonesia 563,324.5 93,138.92 223,315.7 438,646,077 15.8
New Zealand 34,381.79 11,879.94 28,657.66 77,820,594 3.1
Philippines 122,287.1 12,762.02 57,169.78 140,245,710 1.5
Cambodia 9919.23 16,685.37 35,914.91 11,219,656.8 37.3
Fiji 2046.18 343.84 714.60 2,539,966 6.8
Myanmar 25,280.3 26,782.71 80,636.51 91,186,689 5.3
Lao PDR 17,762.95 8986.91 15,011.34 13,694,039 39
Vanuatu 146.68 108.66 254.15 109,552 8.7
Mongolia 25,368.31 3547.86 6257.10 24,747,313 11.1
Brunei 7664.03 342.37 4539.36 2,571,307 15.7
Vietnam 192,667.8 34,494.26 113,563.7 214,272,393 20.4
Solomon Islands 168.68 2656.01 1449.15 2,6784,049 5.7
Timor-Leste 495.04 225.54 732.07 550,508 7.9
French Polynesia 770.07 37.41 99.05 856,346.66
Micronesia, Fed. Sts 142.01 11.07 31.37 — —
Korea, Dem. People’s Rep 28,283.57 3306.06 18,983.42 20,105.076 6.8
Papua New Guinea 7535.68 1234.08 2142.86 5356.65 0.9
Tonga 128.34 22.15 61.44 90.98 1.2
Samoa 245.68 40.28 132.87 174.76 1.3
Kiribati 80 20 10 56.81 1.0
Guam 75 17 9 50.76 0.9
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