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Abstract

Background: One of the goals of neuropsychology is to understand the brain mechanisms underlying aspects of attention and cogni-
tive control. Several tasks have been developed as a part of this body of research, however their results are not always consistent. A
reliable comparison of the data and a synthesis of study conclusions has been precluded by multiple methodological differences. Here,
we describe a publicly available, high-density electroencephalography (EEG) dataset obtained from 42 healthy young adults while they
performed 3 cognitive tasks: (i) an extended multi-source interference task; (ii) a 3-stimuli oddball task; (iii) a control, simple reaction
task; and (iv) a resting-state protocol. Demographic and psychometric information are included within the dataset.

Dataset Validation: First, data validation confirmed acceptable quality of the obtained EEG signals. Typical event-related potential (ERP)
waveforms were obtained, as expected for attention and cognitive control tasks (i.e., N200, P300, N450). Behavioral results showed the
expected progression of reaction times and error rates, which confirmed the effectiveness of the applied paradigms.

Conclusions: This dataset is well suited for neuropsychological research regarding common and distinct mechanisms involved in
different cognitive tasks. Using this dataset, researchers can compare a wide range of classical EEG/ERP features across tasks for any
selected subset of electrodes. At the same time, 128-channel EEG recording allows for source localization and detailed connectivity
studies. Neurophysiological measures can be correlated with additional psychometric data obtained from the same participants.
This dataset can also be used to develop and verify novel analytical and classification approaches that can advance the field of
deep/machine learning algorithms, recognition of single-trial ERP responses to different task conditions, and detection of EEG/ERP
features for use in brain-computer interface applications.

Data Description
Background and purpose
Here, we describe a dataset of electroencephalography
(EEG)/event-related potential (ERP) signals and metadata that
may be useful in ≥3 domains: (i) in-depth neuroscience inves-
tigations related to attention and cognitive control; (ii) testing
machine and deep learning algorithms suited for neuroimage
data, with a particular emphasis on attention and cognitive
control aspects; and (iii) new approaches for brain-computer
interface (BCI) development.

There is a tremendous need for neuroscience datasets to be
available to the wider scientific community, which may help to
overcome the reproducibility crisis and improve the quality of re-
search (e.g., larger sample sizes, more reproducible findings). Open
access to data may also increase the speed of research and reduce
the need to collect multiple redundant datasets, such as in com-
putational neuroscience [1–4].

Research concerning conflict processing and attentional cog-
nitive control is well established in the neuroscience literature.

Such research has focused primarily on characterizing conflict
processing and attentional cognitive control using behavioral [5,
6, 7] and neuroimaging [8, 9, 10] approaches. This work has
demonstrated 2 primary sources of cognitive conflict: (i) stimulus-
stimulus interference, which arises from flanking stimuli that
are similar to each other but differ from the target stimulus;
and (ii) stimulus-response interference, which arises from spatial
(in)compatibility between the target stimulus and the response
button positions. Both sources of conflict may be examined us-
ing different sensory domains, also tactile and auditory ones [11].
The most common tasks used to study these conflict types in-
clude the Flanker task, which evokes the “Flanker effect” [12],
and the Simon task, which evokes the “Simon effect” [13]. Both
the Flanker and Simon effects are included in the multi-source
interference task (MSIT) [14, 15], which was designed to maxi-
mize conflict effects and strongly engage conflict-specific brain
areas, including the dorsal anterior cingulate cortex. The popular-
ity of the MSIT task has increased rapidly over the past 17 years
(Fig. 1).
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Figure 1: Number of publications per year that use the multi-source
interference task (MSIT), over the past 17 years. This summary includes
both original and theoretical works with comments addressing MSIT
published in Google Scholar using the keyword “multi-source
interference task.” Of note, patents are excluded, and citations are
included. In total, 868 papers were mentioning MSIT as of 16 August
2021.

There are still open questions related to conflict processing
studies, including (i) the exact definition of conflict, (ii) how con-
flict influences reaction times, and (iii) how conflict is resolved by
brain mechanisms. Furthermore, it is unclear whether the global
phenomenon of “conflict” actually exists. If yes, it is also unclear
whether conflict is resolved by a single, dedicated brain mecha-
nism, regardless of the specific details of the conflicting events.
In contrast, conflict may be detected and resolved by different
neural mechanisms, depending on the type of conflicting stim-
uli. A reliable comparison of the data and a synthesis of study
conclusions is precluded by multiple methodological differences.
To our knowledge, only 2 MSIT-based datasets are publicly avail-
able: (i) a dataset that includes intracranial EEG with and with-
out brain stimulation collected from 21 patients with epilepsy [16,
17] and (ii) a dataset of EEG/deep brain stimulation with affective
MSIT collected from 14 patients with obsessive-compulsive disor-
der and 14 patients with major depressive disorder [18, 19]. How-
ever, these datasets are relatively limited in sample size (N < 25).
To our knowledge, there are no publicly available MSIT datasets
collected in healthy individuals. This precludes the ability to re-
solve and clarify ongoing and past studies.

Here, we describe an extended MSIT (MSIT+) dataset collected
in healthy individuals. This database is well suited to address the
aforementioned questions because it includes an MSIT+ task. In
addition to non-conflict and multi-source conflict conditions, our
task includes 2 single-conflict conditions (i.e., Simon and Flanker).
The same participants performed the classical 3-stimuli visual
oddball task with 2 rare stimuli: a target and a distractor. A simple
reaction time task (SRT) was also included as a no-conflict, no-
attention, control situation. Prior to completing tasks, EEG data
were recorded during a 10 min resting-state (REST) condition.
Resting-state paradigms are commonly used in neuroimaging and
neurophysiology research to examine spontaneous functional ac-
tivity of the brain at an individual level.

The included tasks initiate multiple cognitive processes, in-
cluding attention, attentional control, working memory, and ac-
tion selection. These tasks are of interest from the perspective of
basic science and are also helpful for understanding how their
dysfunctions induce various mental and medical conditions. The
selected tasks are well suited to answer many related questions
regarding the brain processes underlying conflict and attentional
control. Indeed, we selected 2 attentional tasks (i.e., MSIT+ and
oddball) and the SRT task, which provides information regarding
processing speed of each participant regardless of attentional re-

Table 1 : Demographic and neuropsychological data for 42
participants

Parameter Mean ± SD Mode Median

Demographic and health
characteristics
Age (years) 2462 ± 4.12
Medication use at the time of the
experiment (%)

119

Caffeine use prior to the
experiment (%)

4048

Emotional functioning
Subjective stress level (1–5)1 276 ± 1.08 2 3
Subjective rest level (1–5)1 345 ± 0.99 4 4
UMACL/UWIST HT (10–40)2 31.50 ± 5.77 36 34
UMACL/UWIST EA (9–36)3 29.43 ± 5.56 30 30
UMACL/UWIST TA (10–40)4 14.72 ± 4.75 11 14

15-point Likert-type scale: 1 = “low level of stress” and “poor rest”; 5 = “high
level of stress” and “well slept and rested,” respectively.
2Hedonic tone scale: 10: low, 40: high.
3Energetic arousal scale: 9: low, 36: high.
4Tense arousal scale: 10: low, 40: high.

sources and effort/conflict. The additional REST procedure is well
suited to evaluate task-independent (i.e., spontaneous) activity of
the brain, while psychometric questionnaires allow correlation of
EEG/ERP results with participants’ individual characteristics. An
in-depth analysis of such a database (i.e., same participants, same
experimental conditions, N = 42) may also lead to new clinical ap-
plications.

Experimental design
Participants and psychometric measures
Forty-two healthy, right-handed young adults (aged 20–34 years,
22 females (Table 1)) completed the described experiment. The
experimental group was highly homogeneous in regard to the
education and social status—the majority of the participants
were students. Participants were provided with detailed informa-
tion about the study and a list of exclusionary criteria, includ-
ing contraindications for EEG/ERP: pregnancy, chronic diseases
(e.g., epilepsy, chronic headaches, chronic sleep disorders), skin
diseases and allergies (especially head-related), diagnosed mental
and neurodevelopmental disorders, head injury, medication use
(particularly those that may influence nervous system function-
ing), alcohol use, and psychoactive substance abuse.

Each participant took psychometric tests directly related to the
EEG recording session. Handedness was verified with the Edin-
burgh Handedness Inventory [20]. Additionally, each participant
was required to get sufficient sleep and come to the study visit
well rested.

Questions about their subjective rest and stress levels were
included in the questionnaire completed before the EEG session
along with demographic (age, sex) and basic health information
(medication use, type of medication, caffeine uptake, phase of the
menstrual cycle). Additionally, mood was measured with the Pol-
ish version [21] of the UWIST Mood Adjective Check List (UMACL)
[22], which measures hedonic tone (HT) and energetic arousal (EA)
subscales, which are related to subjective feeling of pleasantness
and energy needed for any activity, and the tense arousal (TA) sub-
scale, which is associated with fear and tension (Table 1).

The Amsterdam Resting-State Questionnaire (ARSQ) [23] was
completed immediately following the resting-state recording. The
ARSQ 1.0 version, which was applied, is a 50-item self-report ques-
tionnaire that tracks participants’ ongoing thoughts and feelings
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and is used to structure measurements of resting-state cognition.
All items were scored on a 5-point Likert scale, where 1 = “com-
pletely disagree,” 2 = “disagree,” 3 = “neither agree nor disagree,”
4 = “agree,” and 5 = “completely agree.” The ARSQ 1.0 has demon-
strated good validity and reliability [22]. For the purposes of this
project, we prepared the Polish version of the questionnaire. All
items have been translated and back-translated. The translation
was assessed by 3 judges for compliance with the original version
(Polish version available on request). Internal consistency (Cron-
bach α) for the total scale comprising all items (50) reached ac-
ceptable value (.760). According to the model comprising 27 items
of ARSQ 1.0 [22], Cronbach α were also calculated, separately, for
7 dimensions: Discontinuity of Mind (.773), Theory of Mind (.642),
Self (.632), Planning (.773), Sleepiness (.806), Comfort (.849), and
Somatic Awareness (.602). Internal consistency for the total scale
was .800 for the 27-item model. Note the item “I had my thoughts
under control” was reverse coded (for details see [23]).

Recording software and devices
EEG data were recorded using an actiCHamp amplifier sys-
tem (Brain Products GmbH, Munich, Germany) and Brain Vision
Recorder. High-density actiCAPs with 128 active electrodes were
used (actiCAP, Brain Products, Munich, Germany). A standard
128-channel electrode configuration was used (files are available
through the manufacturer website, brainproducts.com). The on-
line reference was set to FCz, which can be recalculated to any off-
line reference type, including single or averaged earlobes (chan-
nel TP9 recorded from left earlobe and TP10 from right earlobe).
At the end of each session, real electrode locations were mea-
sured with a handheld CapTrak (Brain Products GmbH, Munich,
Germany) 3D scanner. Impedance was reduced to ∼5 k� (Table 4)
by careful gel application (Supervisc, extra viscous gel) and skin
rubbing. Sampling rate was set to 1,000 Hz, low-pass filter was
set to 280 Hz, and no high-pass or Notch filters were used during
recording.

Environment
The EEG experiments were conducted in the Nencki Institute of
Experimental Biology PAS, in the EEG laboratory, and started ei-
ther in the morning (9 AM) or early afternoon (1 PM). The par-
ticipants had the possibility to choose the most convenient time
session and to get enough sleep to be well rested for the record-
ing time. Each EEG session took ∼3 hours, which included sign-
ing documents, participant preparation, and task execution (Ta-
ble 2). To reduce testing time, the 128-electrode cap was prepared
before the participant arrived in the laboratory. All EEG sessions
were conducted in a quiet, comfortable room with a dim light.
The participant was seated in a chair with armrests, and the chair
was facing the front of a monitor. The researcher supervised the
study from an adjacent room via remote desktop connection to
the recording computer and a LAN camera overlooking the EEG
laboratory.

Experiment and datasets
Experiment procedures, including the duration and number of
recorded data files, are listed in Table 2.

Participants were given printed instructions before each task
and the experimenter answered all related questions. Training
for MSIT+ and oddball tasks was performed by each participant
before the main task. In both ∼45–50 stimuli were presented.
The MSIT+ training lasted for ∼2.5 min, whereas oddball training
lasted ∼1.3 min. The participant went through the training until

Table 2: Experimental procedure details

No. Task
Recorder
runs (No.)

Saved files
(No.)

Duration
(min)

1. Consent and additional
documents (including
UMACL/UWIST Mood
Adjective Check List and a
questionnaire measuring the
level of stress and relaxation)

10–15

2. EEG preparation 60–90
3. Resting-state instruction and

recording
2 1 10

4. Resting-state questionnaire ∼5
5. Simple reaction time

instruction and recording
2 1 7

6. MSIT+ instruction and
training

∼5

7. MSIT+ recording 4 1 22
8. Oddball instruction and

training
∼5

9. Oddball recording 4 1 22
10. CapTrak session 1 1 15

the instructions were completely understood, which usually took
one session.

In all tasks, stimuli were presented using Presentation® soft-
ware (Version 20.2, Neurobehavioral Systems, Inc., Berkeley, CA).
Distance from the screen was maintained for all participants:
55 cm (∼21.6 in) so that stimuli size in SRT and MSIT tests was
∼1◦ of visual angle vertically (as indicated in the MSIT recommen-
dations [15]). Vertical visual angle in oddball was ∼1.07◦ for stan-
dard/distractor stimuli and ∼1.22◦ for target ones. Stimuli were
presented on a dark screen (RGB: 48, 48, 48) with gray font color
(RGB: 226, 226, 226).

Task details
Extended multi-source interference task (MSIT+)

The extended MSIT contains 4 conditions: 00 (no interference,
non-conflict), S0 (Simon effect), F0 (Flanker effect), and FS (double-
conflict, Simon and Flanker effects combined) [14, 15, 24]. Three
digits are displayed in the center of the screen, including 2 dig-
its that are always identical and 1 deviant. Participants are in-
structed to indicate the deviant digit in each set. Possible stim-
uli were as follows: 00 (100, 020, 003), S0 (010, 001, 200, 002, 300,
030), F0 (122, 133, 121, 323, 113, 223), FS (212, 313, 221, 331, 112,
211, 332, 233, 311, 322, 131, 232). Responses were made with the
right (dominant) hand on the numeric keyboard: response 1—“1”
key pressed with right index finger; response 2—“2” key pressed
with right middle finger; response 3—“3” pressed with right ring
finger. The task was presented in a mini-block design format. In
each trial, the stimulus was presented for 900 ms and followed
an interstimulus interval (ISI) that ranged from 800 to 1,300 ms
(in steps of 100 ms) (Fig. 2). Stimuli were separated by a blank
screen. Three or 4 stimuli of the same condition were presented
consecutively with inter-mini-block intervals (IMI) that ranged
from 2.5 to 4.4 s (ISI duration included), between another set of
3–4 stimuli of another condition. Between 30–40 stimuli, a 10 s
rest with a white fixation cross centered on the screen was pre-
sented. A mean of 399 (SD 6) trials were presented to each par-
ticipant (mean number of trials for each condition: 00: 102 [SD
7], S0: 105 [SD 7], F0: 94 [SD 9], FS: 98 [SD 9]). Task duration with

http://brainproducts.com
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Figure 2: MSIT+ task design. ISI: interstimulus interval; IMI: inter-mini-block interval.

Table 3: Markers used in EEG files for 4 types of task

Marker
Task

SRT Oddball MSIT+ REST

S1 Response Response Response “1”
S2 Response “2”
S3 Response “3”
S5 Stimulus Standard

stimulus
F0 stimuli

S6 Target
stimulus

FS stimuli

S7 Deviant
stimulus

00 stimuli

S8 S0 stimuli
S10 Break Break Break Break
S11 End of a

mini-block
End of a break

S12 Beginning of
the run

Beginning of
the run

Beginning of
the run

Beginning of
the run

breaks was set to ∼22 min. Marker denotation is presented in
Table 3.

Oddball task

The oddball paradigm provides data with well-known ERP com-
ponents such as P3, which is frequently used in BCI approaches.
In this paradigm, 3 stimuli (rare target—þ, rare distractor—Þ, fre-
quent standard—p) were presented in a pseudorandom order with
the restriction that 2 rare stimuli could not appear in a row (Fig. 3).
Participants were instructed to respond to the target stimulus
(press key “2” on numerical keyboard with right middle finger) and
inhibit responses to other stimuli. The session contained 660 stim-
uli, which included ∼12% targets, 12% deviant, and 76% standard
stimuli. For 5 participants (i.e., sub_13, sub_23, sub_24, sub_37,
sub_38), the number of stimuli in the EEG files (and corresponding
∗_events.tsv files) is slightly different (from 659 to 775), owing to
technical acquisition errors that were solved during the recording.
Task duration with breaks was set to ∼22 min. Each stimulus was
presented for 200 ms with a 1,200–1,600 ms ISI, and stimuli were
separated by a blank screen. Four breaks of 15 s duration were in-
troduced during the task, with a white fixation cross centered on
the screen. Marker denotation is presented in Table 3.

Simple reaction time task

SRT task data can be easily compared to the results of other tasks
and provide a measure of the basic motor and processing speed
capabilities of the participants. In particular, the SRT gauges par-
ticipants’ “average” reaction time in response to visual stimuli,
which is considered the most basic measure of processing speed.
A simple stimulus (“000”) was displayed (900 ms) centrally on the
screen (RGB colors as described above) with 700–1,200 ms ISIs (in
steps of 100 ms). The participant was instructed to respond with
an index finger (pressing “2” on a numerical keyboard) as fast as
possible. On average, 129 trials were presented to each participant.
Marker denotation is presented in Table 3.

Resting-state session

The REST task is widely used to monitor spontaneous brain activ-
ity. In particular, the REST task measures an initial, task-negative
state during which no task is given to the participant. REST record-
ing lasted for 10 minutes and was performed in an eyes-open con-
dition. A plus sign was displayed (RGB colors as described above)
centrally on a dark screen for gaze fixation. Marker denotation is
presented in Table 3.

Data format and structure
The data structure was prepared in accordance with BIDS (Brain
Imaging Data Structure) rules [25, 26] with the use of EEGLAB
[27] to correct and standardize the files. This approach al-
lows for coherent data organization, reduces errors, and makes
it possible for different researchers to reuse the datasets for
their own purposes and develop automated tools for data anal-
ysis. The main folder contains the data for all participants,
each in a separate directory named with an arbitrary num-
ber (sub-01, sub-02, …, sub-42), and metadata in ∗.tsv and
∗.json files. Participants’ “.tsv” and “.json” files describe demo-
graphic, psychometric, and health information. Metadata file-
names are constructed according to the following rule: “task-
[msit/oddball/res/srt]_eeg.json” files describe task along with EEG
parameters and “task-[msit/oddball/res/srt]_events.json” files de-
scribe event details.

EEG data are provided in Brain Vision Recorder native format
(“.eeg,” “.vhdr,” “.vmrk”). Raw behavioral log files are saved in Pre-
sentation software’s native format (“.log”) and separate event ta-
bles based on EEG files are prepared in tab-separated documents
(“.tsv”) for each participant/task. The raw, original exact electrode
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Figure 3: Odball task design. ISI: interstimulus interval.

location data are saved in CapTrak format (“.bvct”). Data available
in “participants.tsv” file:

� Demographic characteristics: age, sex.
� Health: medication use on the day of experiment, type of

medication used, caffeine uptake, phase of the menstrual cy-
cle (for women).

� Subjective stress level, subjective rest level.
� The ARSQ [22] results for each question.
� UMACL/UWIST (Mood Adjective Check List) [21, 22] raw re-

sults for each question and recalculated HT, EA, and TA
scales.

Additional notes
Additional markers of the type “boundary” can be found in all de-
scribed tasks and files. Events of such type are added automat-
ically by EEGLAB when some portions of the data were deleted,
or when portions of continuous datasets are concatenated. Of
note, this occurs at the beginning of each run after uploading
the data from Brain Products format to EEGLAB. Some raw files
were concatenated because of technical errors during recordings,
which required saving >1 file for each task. In these files, when a
new portion of data was introduced, an additional marker with
the code “New Segment” was created. Files that were prepared
that way are as follows: sub-17 (MSIT), sub-21 (MSIT), sub-23
(MSIT), sub-25 (REST), sub-37 (oddball), sub38 (oddball, MSIT). Fur-
thermore, 1 participant did not complete the SRT task correctly
(sub_29).

Reliability
Methods
Behavioral data for the SRT and oddball task were calculated from
EEG files (i.e., “∗_events.tsv”) and MSIT+ data were calculated from
original Presentation (∗.log) files. The raw files were used because
these provide more precise information about individual stimuli.
Trials that were missed (i.e., no responses), anticipation (faster
than 100 ms for SRT/oddball task and 200 ms for MSIT task), and
longer than the time of stimulus plus the shortest used ITI were
coded as errors for all tasks. Additionally, multiple responses to 1
stimulus were also coded as an error in the MSIT+ task. One par-
ticipant was excluded in the calculation of behavioral data for the
SRT task because his/her responses were not recorded correctly
(sub_29).

Statistical analysis of reaction times was performed in JASP
(version 0.14.1.0) [28]. Repeated-measures ANOVA was conducted
with task conditions as repeated-measures factors, and the
Shapiro-Wilk test was used to test normal distribution. The as-
sumption of sphericity was violated and Greenhouse-Geisser cor-
rection was used.

Signal artifacts (eye movements, cardiac, muscle artifacts) were
corrected for the purpose of ERP plotting (Fig. 5) using Indepen-
dent Component Analysis (ICA [29]). Remaining artifacts were re-
moved during semi-automatic visual inspection. Data was band-
pass filtered (0.5–40 Hz), re-averaged to average reference, and
segmented into segments from 200 ms before stimulus presen-
tation to 1,000 ms after stimulus presentation. Clean segments
with correct responses were averaged separately for every con-
dition and task. Baseline correction was applied for visualization
purposes.

Dataset quality
We placed great emphasis on obtaining clean EEG data. Electrode-
skin impedance was kept as low as possible (Table 4, mean
impedance for MSIT task: 4.66 k� [SD 2.36]), and participants were
informed about the deteriorating influence of their movements
on the EEG quality. We observed recorded EEG signals via remote
desktop connection and intervened when necessary. Unavoidably,
there are eye-blink artifacts on frontal electrodes, and often mus-
cle artifacts on temporal and occipital poles. A large signal drift is
also observed for some participants/electrodes because no high-
pass filters were used (this step was omitted to ensure the possibil-
ity of further data modifications/filtering according to analytical
needs).

Data preprocessing for the purpose of our own analyses (not
included in the database) indicated relatively good quality of EEG
signal. Indeed, on average, in the most restrictive and conservative
approach, we excluded 22.1% (SD 14) of trials.

Dataset basic results
The basic behavioral and ERP results also confirm the quality of
this dataset. Indeed, reaction times and accuracy corresponded
with the increasing difficulty of task conditions, as expected. Fur-
thermore, typical ERP waves were obtained, as expected, for at-
tention and cognitive control tasks (e.g., N200, P300, N450).

Responses in SRTs are usually faster than responses in any
choice reaction tasks. As expected, our mean SRT latencies were
fast (Table 5 and Fig. 4), and were faster than observed in the 00 (no
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Table 4: Mean impedance levels for each task and each participant

Subject ID
Mean impedance level (k�)

SRT Oddball MSIT+ REST

sub-01 4.21 3.64 4.21 4.52
sub-02 3.60 3.57 3.63 3.84
sub-03 4.77 4.71 4.95 5.05
sub-04 3.81 3.84 3.70 3.78
sub-05 6.09 6.09 6.09 6.09
sub-06 4.87 4.73 5.56
sub-07 3.98 3.23 3.98 4.53
sub-08 4.78 4.78 4.78 4.78
sub-09 3.72 3.60 3.93 4.16
sub-10 5.07 5.07 5.50
sub-11 5.79 5.94 6.00 6.20
sub-12 5.20 5.15 5.19 5.16
sub-13 5.43 5.88
sub-14 2.02 2.02 2.64 3.62
sub-15 3.95 4.07 4.20 4.53
sub-16 2.19 2.16 2.50 2.76
sub-17 3.25 3.43 3.42 3.53
sub-18 3.60 3.60 3.93 4.53
sub-19 2.26 2.49 2.18 2.53
sub-20 2.98 2.75 3.48 4.60
sub-21 2.67 2.58 3.09 3.77
sub-22 4.47 4.47 4.47 5.09
sub-23 8.27 7.87 8.71 9.43
sub-24 10.96 10.88 11.49 11.50
sub-25 3.48 2.94 3.48 4.18
sub-26 2.34 2.13 2.57 3.17
sub-27 4.80 4.79 4.61 5.02
sub-28 2.54 2.45 3.03 3.98
sub-29 6.66 6.23 5.52
sub-30 4.05 3.53 5.04 5.83
sub-31 3.29 3.11 3.80 4.23
sub-32 14.74 14.66 15.01
sub-33 4.48 4.33 5.12 5.91
sub-34 4.13 4.09 4.89 4.72
sub-35 4.32 3.69 4.24 4.34
sub-36 3.94 3.68 4.13 4.47
sub-37 2.85 2.74 2.92 3.14
sub-38 3.81 3.67 3.97
sub-39 2.96 2.75 2.92 3.22
sub-40 6.27 6.27 6.27 6.27
sub-41 3.57 3.60 3.89 3.95
sub-42 3.16 3.26 2.91 2.96

conflict) MSIT condition, and as compared to oddball responses.
In addition, participants made few errors: 4.23%, including 2.12%
related to response failures and only 1.9% related to premature
responses (i.e., faster than 100 ms). The rest of the errors corre-
sponded with late/long responses.

Table 5 summarizes the behavioral data. Three participants
most likely misunderstood or forgot the oddball instructions and
frequently responded to distractor/deviant stimuli (sub_02–false
alarm to distractors = 98.77%; sub_14–false alarm to distractors
= 97.53%; sub_17–false alarm to distractors = 76.54%). These 3
participants were excluded from the behavioral summary of the
oddball task provided in Table 5. Stimuli similarity in the odd-
ball paradigm made the task quite difficult for participants, as
they committed a mean of 9.52% (SD 8.90) of errors towards
distractors.

Table 5: Summary of behavioral results

Parameter Mean ± SD

SRT
Reaction time to stimulus (ms) 294.69 ± 43.28
Oddball
Reaction time to targets (ms) 542.13 ± 65.50
Target omission (%) 5.60 ± 8.33
False alarm (%)

To distractors 9.52 ± 8.90
To standards 0.24 ± 0.46

MSIT+
Reaction time (ms)

To 00 537.29 ± 62.11
To S0 592.61 ± 54.48
To F0 678.71 ± 69.80
To FS 746.82 ± 85.87

Response errors (%)
00 0.90 ± 2.85
S0 0.69 ± 2.22
F0 1.23 ± 3.55
FS 1.55 ± 3.83

Participants for SRT: N = 41; Oddball: N = 39; MSIT: N = 42..

Figure 4: Reaction time data for SRT, MSIT, and oddball tasks. Symbols:
∗∗∗ < 0.001.

The gradual increase of the conflict over the 4 conditions of
the MSIT+ is clearly seen in reaction times (00 < S0 < F0 < FS,
Fig. 4; F(1.76, 72.02) = 391.15, P < 0.001; all post hoc pairwise com-
parisons significant with P < 0.001 and Bonferroni correction). As
expected, more response errors were observed for the most de-
manding conditions, e.g., more errors were observed for F0 (mean
1.23% [SD 3.55]) and FS (mean 1.55% [SD 3.83]) as compared with
00 (0.90% [SD 2.85]) and S0 (0.69% [SD 2.22]) conditions. However,
16 of 42 participants (38%) did not commit any errors, and an-
other 19 committed 1–3 errors during the entire task. Therefore, a
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total of 83% of participants did not commit >3 errors during the
whole task. Only 4 participants committed substantially more er-
rors during the task (>17). Given these observations, more elabo-
rate error-rate analyses are neither possible nor recommended.

Dataset ERP results
The aim of this section was to show basic characteristics of the
obtained signal. During both the MSIT+ and oddball tasks, the pri-
mary ERPs are clearly visible (Fig. 5).

The most studied component in healthy and clinical popula-
tions is P3, which peaks between 300 and 600 ms after stimulus
onset [30]. P3 closely reflects attentional and memory processes
in the human brain [30] and is often studied in the context of an
oddball task. In our odball task results, much higher amplitude of
P3 was visible for target in comparison to distractor and standard
stimuli, especially for electrodes placed in parietal areas (such
as Pz), which agrees with the current literature [31]. Addition-
ally, there is a clear distinction between 2 P3 subcomponents—
namely, P3a and P3b—in our 3-stimulus oddball task. The P3a is
more likely to be evoked during tasks with novelty, whereas P3b is
considered to reflect attention [31]. Another well-studied compo-
nent related to cognitive control, attention, and conflict resolution
is the frontocentral negative peak (N2). The N2 is commonly ob-
served between 200 and 350 ms after stimulus onset [32]. A clear
frontocentral N2 is observed in our data collected during the odd-
ball task (Fig. 5). In MSIT+ ERPs, a later conflict-related negativity
(i.e., the N450) is observed on frontocentral electrodes (Fig. 5). Of
note, the N450 extends more posteriorly as a negative deflection
within the P3. The P3b and N450 clearly discriminate between the
4 conditions of MSIT task. In particular, the P3 shows higher am-
plitudes for faster responses (00 > S0 > F0 > FS) whereas the N450
amplitude increases with increasing levels of conflict (00 < S0 <

F0 < FS). Yet another conflict-related wave is clearly visible in our
MSIT data: the slow potential (SP). The SP is commonly observed
after a crossover point on the descending slope of a waveform [33].
The conflict SP amplitude increases with increasing levels of con-
flict (00 < S0 < F0 < FS), as expected from earlier literature [34].
These basic results show that the tasks were designed correctly.

Additionally, we used MSIT and SRT single-trial EEG data to de-
tect and discriminate between attentive brain states with use of
machine learning methods [35]. We have used multisource inter-
ference trials (FS) from MSIT as a condition with high attentional
load, and SRT trials as a low attentional load. Classification ac-
curacy between high-attention and low-attention conditions was
up to 100% for individual participants, with 89% average classifi-
cation accuracy for all participants [35], which validates the tasks
used and proves high quality of the obtained data and their gen-
eral usefulness in different analytic approaches.

Summary and Perspectives
It is essential to integrate and reuse data to improve the reliabil-
ity of results in neuroscience. Our Nencki-Symfonia EEG dataset
is well suited for neuropsychological research regarding common
and distinct mechanisms involved in different cognitive tasks. A
wide range of classical EEG/ERP features can be compared across
tasks for any chosen subset of electrodes. At the same time, full
high-density EEG recording allows for source localization and de-
tailed connectivity studies. Neurophysiological measures can be
also correlated with the psychometric data. This dataset can also
be used to develop and verify novel analytical and classifica-
tion approaches, including advances in the field of deep/machine
learning algorithms, recognition of single-trial ERP responses to

different task conditions, and detection of particular EEG/ERP fea-
tures for use in BCI applications. BCI as a discipline could be
placed between neuroscience and computer science, and brings
new solutions for the disabled or ill, as well as for healthy indi-
viduals. Most studies tend to focus on 2 main solutions: (i) BCIs
based on movement control for preparation of robotic limbs with
need of motor imagery tasks and (ii) attentional-based BCIs used
to create direct communication systems, which are often based on
steady-state visual evoked potential. However, these paradigms
may not always work for all patients, especially those in com-
plete locked-in syndrome (i.e., individuals who do not exhibit eye
movements). Furthermore, there is a need to modernize our ap-
proach to BCIs and develop gaze-independent approaches. Active
eye movements are not necessary when stimuli are presented se-
quentially. For example, the P300 component is elicited by stimuli
that draw participant attention and is frequently used for BCI con-
trol [36, 37]. The development of improved BCI requires a deeper
understanding of the basics of EEG signals, functioning of brain
areas, and the connections between them, with a strong empha-
sis on attention control. Some approaches have attempted to use
conflict tasks (e.g., semantically congruent and incongruent stim-
uli) to first, evaluate performance, and then, build BCI systems
for patients with disorders of consciousness [37]. As seen above,
BCIs still have many challenges that could be addressed with a
more robust system training that would allow better accuracy. A
more robust system would also improve the ability of the system
to learn to “read” real brain signals between nonstationary noises
and artifacts.

Deep/machine learning approaches are widely used to detect
specific patterns of EEG activity and improve understanding of
brain functions [38, 39, 40, 41, 42]. These approaches are promising
for developing new medical methodologies for early intervention
and treatment of various brain dysfunctions, such as depression,
stress-induced conditions, Alzheimer disease, autism spectrum
disorder, attention deficit hyperactivity, and more [43]. Neural at-
tention models are the most recent state-of-the-art deep learn-
ing approaches that show promise in this area [44]. There is also
a critical need to improve feature extraction, i.e., the process of
analyzing signals to distinguish signal features from extraneous
content. The proposed dataset could serve as a benchmark and
help to evaluate the performance of several novel classifiers in
an off-line scenario. Such a process is frequently used to evaluate
new approaches (cf. [45]).

Advances in the ability to decode mental and cognitive states
is a vital branch of neuroscience and computer science that has
gained new attention in recent years [46, 47, 48, 49]. Approaches
based on machine learning can decode task engagement, perfor-
mance, and attention from MSIT and oddball tasks, which can
be vital for BCI and novel systems that could detect early men-
tal fatigue. This could be used as a biomarker of fatigue, espe-
cially in professions where there is a need for constant atten-
tion (e.g., air traffic controllers, professional drivers). Resting-state
brain dynamics have been shown to predict the effects of oddball
paradigms. For example, rest regional power of a few brainwaves
has been shown to correlate with the latency and amplitude of
P300, N3, P2, and N1 components [50].

All the tasks included in this dataset can also be used for
the in-depth study of the so-called “time-on-task” (time spent
to solve the task) problem [51]. The “time-on-task” concept, in
part, appears to oppose the results of conflict processing stud-
ies. For example, it has been asserted that the dorsal medial
frontal cortex is more sensitive to time-on-task rather than
conflict itself.
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Figure 5: Grand averaged ERP (with shading indicating SD) for oddball (top) and MSIT+ (bottom) tasks, shown for 2 distinct midline electrodes Fz
(more frontal) and Pz (parietal).

Summary of the Advantages of This Dataset
� Localizer data of individual electrode locations, which can

greatly improve the reliability of EEG source analysis given
that real electrode localization can slightly vary from stan-
dard templates and across participants owing to differences
in head geometry;

� recorded A1 and A2, which enables the off-line possibility of
using classical ear-referenced montages;

� high-density recording, which allows for in-depth connectiv-
ity and source localization studies;

� 3 different tasks (and additional resting-state protocol) com-
pleted by the same participants;

� the first publicly available dataset that includes the MSIT in
healthy participants;

� corresponding resting-state questionnaire along with EEG
resting-state data;

� relatively large sample size (N = 42);
� 2-fold verification of the data via behavioral and simple ERP

investigation;
� detailed health data about participants (menstrual cycle

phase, medication, and caffeine use).

Summary of the Limitations of This Dataset
� Relatively short durations of stimuli and ISIs may not be op-

timal to study induced oscillatory effects, which may be of
interest to some researchers, as shown previously [52, 53].

� Lack of an open access to fMRI dataset from the same task
and participants is a limitation, compromising the cross-
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methodological comparison of MSIT+ results. However, such
dataset will be made public with the upcoming fMRI results
article from our research partners.

Data Availability
All the data underlying this article, including EEG datasets, behav-
ioral, and basic questionnaire data, are available in the Nencki-
Symfonia EEG/ERP GigaScience repository, GigaDB [54].
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