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Abstract: Bearing fault diagnosis of a rotating machine plays an important role in reliable operation.
A novel intelligent fault diagnosis method for roller bearings has been developed based on a proposed
hybrid classifier ensemble approach and the improved Dempster-Shafer theory. The improved
Dempster-Shafer theory well considered the combination of unreliable evidence sources, the
uncertainty information of basic probability assignment, and the relative credibility of the evidence
on the weights in the process of decision making under the framework of fuzzy preference relations,
which can effectively deal with conflicts of the evidences and then well improve the diagnostic
accuracy for the hybrid classifier ensemble. The effectiveness of the improved Dempster-Shafer theory
has been verified via a numerical example. In addition, deep neural networks, a support vector
machine, and extreme learning machine techniques have been utilized in the single-stage classification
based on singular spectrum entropy, power spectrum entropy, time-frequency entropy, and wavelet
packet energy spectrum entropy in this work. Performances of the proposed hybrid ensemble
classifier has been demonstrated on a bearing test-rig, compared with the original Dempster-Shafer
theory. It can be found that the overall error rate can be greatly reduced with the hybrid ensemble
classifier and the improved Dempster-Shafer theory.

Keywords: rolling element bearing; hybrid classifier ensemble; Dempster-Shafer evidence theory;
fuzzy preference relations

1. Introduction

Rolling element bearings are the key components widely used in rotating machines. A sudden
breakdown of the mechanical system or even a severe catastrophe, may be caused due to an unexpected
failure of the rolling element bearings. Therefore, many bearing fault diagnosis methods have been
developed based on vibration signal analysis and feature extraction [1–3]. However, some of them are
performed manually with low efficiency by means of knowledge and experiences of experts, which
are not practical in real applications. Thus, there is still growing attention towards the development
of bearing intelligent fault diagnosis techniques. For example, a novel intelligent fault diagnosis
method has been proposed based on the affinity propagation clustering algorithm and the adaptive
feature selection technique [4]. Qin et al. [5] proposed a model for fault diagnosis of gearboxes in
wind turbines based on deep belief networks (DBNs), using improved logistic sigmoid units and the
impulsive signatures. In addition, a three-stage intelligent fault diagnosis clustering technique has
been proposed for the industrial process monitoring [6]. Generally, the diagnosis results achieved by
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using a single-stage classifier may still be precarious [7–10]. According to Wolpert’s theorem, there is
not a single classifier approach that can be successfully applied for all pattern recognition tasks since
each has its own domain of competence [11].

Nowadays, many different combinations of several different learning algorithms, such as the
hybrid or ensemble systems, have been highlighted as a hot topic and promising trend in the fields of
pattern recognition. The hybrid intelligent systems offer many alternatives for unorthodox handling of
realistic increasingly complex problems, involving ambiguity, uncertainty, and high-dimensionality of
data [12]. Nevertheless, the accuracy of the existing techniques needs to be further improved, since the
structure of rotating machinery becomes increasingly complicated. Therefore, a novel hybrid classifier
ensemble (HCE) algorithm has been developed in this work, which can perform fault diagnosis under
an improved framework of information fusion.

Actually, there are various strategies for information fusion, such as the simple voting
procedure [13]. The Dempster-Shafer theory (DST) has been also widely used as a combining
decision method due to its uncertainty processing ability [14]. In recent years, DST has attracted lots of
attention and has been used in fault diagnosis for different industrial equipment. For example, a fusion
approach was proposed for fault diagnosis of roller bearing in the aeroengine based on n-dimensional
characteristic parameter distance [15]. Since a hybrid technique can substantially increase the accuracy
of fault detection, DST combined with Support Vector Machine (SVM) has been applied for bearing
multi-fault diagnosis [16]. A fault diagnosis method was proposed for the reactor coolant system of
a nuclear power plant based on DST and fuzzy function in reference [17]. DST is well suitable for
information fusion, but it may generate counter-intuitive results for highly conflicting and unreliable
pieces of evidence [18,19]. Thus, conflict management has always been an unavoidable problem in
information fusion using DST, which is also the main limitation of DST. To solve this issue, many
improved versions of DST have been proposed, such as the average approach in reference [20], the
weighted average based on the evidence distance in reference [21], and the vector space introduced in
reference [22]. Most of the available methods employed distance of the evidences as a critical factor to
determine the weights, such as the Jousselme distance [23] and the MaxDiff distance [24]. Then, the
support degrees of the evidences can be adjusted and be used to generate the appropriate weights
with regard to the evidences. It can be found that a bigger weight is set to the reliable evidence and a
smaller weight is set to the unreliable evidence. Although these techniques can reduce the influence of
the unreliable evidence, they rarely consider the effects of the uncertain information of the evidences.

Many fuzzy modeling approaches have been successfully utilized in various applications in the
past decades, since fuzzy sets technique also plays an important role in the decision-making process
and can deal well with uncertain information. Qian etc. [25] successfully utilized the advantages of
group decision making via fuzzy preference. The fuzzy preference relations (FPR) has been constructed
for multiple pieces of evidence based on the variance of information entropy. However, according
to reference [23], there are three drawbacks of this approach. (i) It does not satisfy the property of
the additive consistency and the order consistency; (ii) It cannot calculate the preference values in
some situations; (iii) The preference values in the consistency matrix are not always between zero and
one. Therefore, a new improved DST approach is proposed in this paper inspired by reference [26],
which well considers the combination of unreliable evidence in the group decision making under the
framework of FPR.

Two major contributions have been made in this work. First, a new hybrid classifier ensemble
(HCE) method is proposed based on entropy features to improve the performance and accuracy of fault
diagnosis. Second, an improved DST has been proposed to perform information fusion of classification
decisions obtained by HCE, which considers the combination of unreliable and conflictive evidence
sources, the uncertainty information of basic probability assignment (BPA) and the relative credibility
of the evidence on the weights under the framework of FPR. The novel HCE model combined with
the improved DST technique has been utilized to automatically identify bearing faults in a rotating
machine. Results have demonstrated well the effectiveness of the proposed method.
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This work is organized as follows. Theories of entropy feature extraction and single-stage
classifier have been briefly reviewed in Section 2. The improved DST for dealing with conflicting
evidence has been given in Section 3, where the performance of the proposed approaches has also been
demonstrated using two examples. The HCE approach combined with the improved DST is adopted
to identify bearing fault automatically, whose effectiveness was demonstrated on a test-rig in Section 4.
Conclusions are drawn in Section 5.

2. Methodologies

The techniques of entropy feature extraction and the classifiers mentioned in HCE have been
briefly introduced in this section.

2.1. Entropy Feature Extraction

Feature extraction is crucial in pattern recognition and mechanical fault diagnosis. However,
traditional signal processing methods, like Fourier transform, are not suitable for analyzing the
non-linear and non-stationary bearing vibration signals. It seems that time-frequency analysis
techniques are much more suitable for extracting bearing fault features. Several advanced
time-frequency signal processing techniques have been adopted in feature extraction. For example,
variational mode decomposition (VMD) [27] is as a self-adaptive decomposition method lately proposed
with a solid theory [28].

Moreover, traditional statistical properties and frequency-domain signatures cannot meet the
requirements because of the non-linear and non-stationary characteristics of the decomposed
components [29]. Many non-linear parameter estimation methods have been proved to get the
feature information, such as entropy theory introduced in reference [30] to estimate the complexity
and stationarity of the signal. Entropy features can be also applied to quantify the malfunction
and reflect the uncertainty of vibration signals. In addition, different entropy features obtained in
different domains can be used to fully describe a vibration signal. Thus, singular spectrum entropy
(SSE) [31], power spectrum entropy (PSE) [32], time-frequency entropy (TFE) [33], and wavelet packet
energy spectrum entropy (WPESE) [34] have been used to calculate the feature sets in this work,
which are associated with singular spectrum in time domain, power spectrum in frequency domain,
time-frequency spectrum, and wavelet packet energy spectrum in time-frequency domain, respectively.
These four entropy features will be indicated as follows.

2.1.1. Singular Spectrum Entropy

SSE indicates the uncertainty degree of the signal energy divided by singular spectrum analysis,
which can effectively represent the signal energy change in the time domain [31]. Based on the delay
embedding technique, an arbitrary signal {xi}(i = 1, 2, . . . , N) was mapped to an embedded space
represented by the M × N matrix U, i.e., As explained in reference [31], the calculation of U is shown as

U =


x1 x2 . . . xM

x2 x3 . . . xM+1
...

... . . .
...

xN−M xN−M+1 . . . xN

 (1)

where M is the length of the embedded space, N is the number of samples. The singular values {λi}
of the matrix U are achieved based on the singular value decomposition (SVD). Thus, the SSE of the
signal via information entropy theory is defined as

HS = −
M∑

i=1

pi log pi (2)
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in which

pi = λi/(
M∑

i=1

λi) (3)

and pi is the ratio of the ith singular spectrum to the whole spectrum.

2.1.2. Power Spectrum Entropy

PSE can reflect the complexity and stability of a signal, which is also used to indicate the distribution
of signal energy in frequency domain [32]. The proportional distribution of different frequencies is
defined as a probability distribution. When X(ω) is obtained by using the discrete Fourier transform
for a signal {xt}, as explained in reference [32], the calculation of the power spectrum is shown as

S(ω) =
1
N

∣∣∣Xi(ω)
∣∣∣2. (4)

where S = {S1, S2, . . . , SN} can be regarded as the partition of a signal {xt}. Hence the PSE can be defined
as follows:

HP = −
N∑

i=1

qi log qi. (5)

where qi = Si/(
∑N

i=1 Si), and qi is the ratio of the ith power spectrum to the whole spectrum.

2.1.3. Time-Frequency Entropy

TFE is used to quantitatively measure the time-frequency representation [33]. Let a time-frequency
plot have L equal blocks, where the information source for the entire plane is η and for each block
is γi(i = 1, 2, . . . , L). As explained in reference [33], the calculation of the time-frequency entropy is
shown as

HT = −
N∑

i=1

δi log δi. (6)

where δi = γi/η, δi the ratio of the i-th energy to the whole energy.

2.1.4. Wavelet Packet Energy Spectrum Entropy

A sequence
{
J j
k, k = 0, 1, 2, . . . , 2 j

− 1
}

represents the decomposition result using j-layer wavelet
package transform. The sum of squares of signals in each frequency band after wavelet packet
transform (WPT) is selected as wavelet packet energy. As explained in reference [34], the calculation of
energy value corresponding to the i-th band is given below

Ei =
2 j∑

k=1

∣∣∣Wi(k)
∣∣∣2. (7)

where Wi(k) is the reconstructed coefficients for each node. Thus, WPESE can be defined by

HW = −
2 j∑

i=1

ri log ri . (8)

2.2. Classification Models

The difference between classifiers in HCE should be increased to enhance the complementarity
between classification methods, which can comprehensively describe the diagnostic object.
Three supervised classification models are selected, that is, the traditional Deep Neural Networks
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(DNN), the shallow learning algorithm Support Vector Machine (SVM), and Extreme Learning
Machine (ELM).

DNN is one of the most widely used intelligent methods in pattern recognition, fault diagnosis
and classification. DNN is a kind of deep learning technique, which is comprised of unsupervised
layer-by-layer greedy training and global parameter tuning using the back propagation algorithm.
DNN can not only solve complex nonlinear problems but also extract features in a high-dimensional
space. Presently, many different models of DNN have been developed. For example, a DNN-based
model was used to identify the fault condition of roller bearing [35]. The Deep Boltzmann machine
combined with multi-grained scanning forest ensemble was developed for the fault diagnosis of
industrial big data [7]. Thus, DNN will be adopted as single-stage classifier in HCE in this work.

SVM is a well-known shallow learning method in classification and regression applications.
SVM has good generalization capability for classification of a small sample [36], which have been
widely used in fault diagnosis and prognostics. To improve the performance of SVM, PSO is adopted
to optimize the parameters in SVM.

ELM is considered as a single hidden layer feed forward neural networks [37,38]. The input
weights are set randomly, then the network is expressed as a linear system, and the output weights
can be calculated analytically [38]. The weight between the hidden layer and the output layer of
ELM does not need to be adjusted iteratively, which is obtained by generalized inverse of a matrix.
The performance of ELM depends on the randomly input weights and thresholds. In this work, the
fruit fly optimization algorithm (FOA) is used to improve the performance of traditional ELM. Both
SVM and ELM are utilized in HCE in this work.

2.3. Dempster-Shafer Theory

DST is one of the most powerful tools for the ensemble of multiple classifiers system, which can
deal with incomplete, uncertain, and unclear information in the multi-sensor information fusion [39].
DST was initially developed by Shafer in 1976. Assume Θ = {D1, D2, . . . , Dn} is a set of mutually
exclusive and collectively exhaustive events, which is called the frame of discernment (FOD). A basic
probability assignment (BPA) is a map of m from 2Θ to [0, 1], as explained in reference [40], the
calculation of the BPA function is shown below,

∑
A⊂2Θ

m(A) = 1

m(∅) = 0
. (9)

Based on the belief function theory, two independent BPAs can be combined by Dempster’s rule,
denoted as m = m1 ⊕m2, which is defined as follows.

m(A) =


1

1−K
∑

B∩C=A
m1(B)m2(C), A , ∅

0, A = ∅
(10)

where K =
∑

B∩C=∅ m1(B)m2(C). The conflict coefficient K is used to measure the conflict between two
pieces of evidences. The larger the value of K is, the larger conflict between evidences gets.

It should be noted that there may exist conflict between the evidence in the fusion of HCE. To solve
this issue, a new weighted average approach is proposed, which considers not only the support degree
between the pieces of evidence but also the uncertainty information of BPA. This improved version of
DST is given in the following subsection.

3. The Improved Dempster-Shafer Theory Approach

It is crucial to detect the relatively reliable evidence in the process of information fusion. In the
multiple classifier systems, the conflict problem caused by the result of the classifier cannot be
ignored. Thus, an improved DST approach is developed in this work and will be introduced in
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detail subsequently. First, since cosine similarity reflects the confidence degree of the evidence itself,
the cosine similarity is employed to indicate the support degree between the pieces of evidence.
In addition, DST can be considered as a generalized probability theory, entropy can be used to measure
the quantitative uncertainty in BPA. Therefore, entropy based on FPR is applied to indicate the relative
reliability preference between the bodies of evidence (BOE). Considering the above two aspects, it can
be found that the improved DST will be much more reasonable in dealing with conflicts compared
with the original DST. The proposed technique includes three parts: The measurement of the degree of
support between evidence using the cosine similarity, the calculation of the weight of BPA, and the
improved fusion for BPAs, as shown in Figure 1.
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3.1. The Cosine Similarity

The cosine similarity is used to measure the confidence degree of evidence [41]. Let Θ be a
frame of discernment and Θ = {θ1,θ2, . . . ,θn}. Employ the cosine similarity function, as explained in
reference [41], the calculation of similarity degree between evidence mi, m j is given below,

Si j =
mi ·mT

j

‖ mi ‖ · ‖ m j ‖
. (11)

where mi ·m j is inner product of mi and m j. And ‖ · ‖ represents the norm of vector. For the n-sources
fusion system, the similarity measure matrix is defined as follow.

S =



1 · · · S1i · · · S1k
...

...
...

...
...

Si1 · · · 1 · · · Sik
...

...
...

...
...

Sk1 · · · Ski · · · 1


. (12)
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The Support degree of the evidence mi can be defined as follows.

sup(mi) =
n∑

j=1

Si j . (13)

Thus, the credibility degree of the evidence mi is denoted below.

crdi =
sup(mi)

max(sup(mi))
. (14)

3.2. The Uncertainty Measurement of the Weights

Deng entropy [42], which is used to measure the quantitative uncertainty of BPA in this work.
Assume m(·) is a mass function defined on the frame of discernment, as explained in reference [42], the
calculation of Deng entropy Ed(m) of the BPA is shown as

Ed(m) = −
∑
A⊆Θ

m(A) log2
m(A)

2|A| − 1
. (15)

where A is the focal element of m, |A| is the cardinality of A.
The FPR analysis based on the Deng entropy is adopted to denote the relative reliability preference

between bodies of evidence. Fuzzy sets have been widely used in various applications and play an
important role in the decision-making process [43]. The concepts of FPR and the additive consistency
of FPR are introduced briefly.

The fuzzy preference matrix is construct by the variance of entropy. If the system has more than
two pieces of evidence, as explained in reference [25], the calculation of variance of entropy is shown as

Vi = eEd(mi), 1 ≤ i ≤ k (16)

Vari = Var
({

V1, V2, . . . , Vi−1, Vi+1, . . . , Vk
})

. (17)

where Vi = Vi/
∑k

i=1 Vi, and Vari denotes the variance. Then, the off-diagonal elements ρi j and ρ ji of
the fuzzy preference matrix can be computed by.

ρi j =
Vari

Vari + Var j
, ρ ji =

Var j

Vari + Var j
. (18)

Let P be a fuzzy preference matrix for the setM of alternativesM = {M1,M2, . . .Mn}, as explained
in reference [43], the defined of P is shown as

P =
(
ρi j

)
n×n

=


0.5 ρ12 · · · ρ1n
ρ21

...

0.5
...

· · ·

. . .

ρ2n
...

ρn1 ρn2 · · · 0.5

. (19)

where ρi j denotes the degree of preference of alternativeMi over alternativeM j. Let P be a fuzzy
preference relation P =

(
ρi j

)
n×n

, if P is a complete FPR as explained in reference [44], which satisfies
the following additive consistency properties for all i, j and k.

ρi j + ρ ji = 1,
ρii = 0.5,

Pik = Pi j + P jk − 0.5
. (20)
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where 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ k ≤ n, then P is called an additive consistent FPR. Based on the
complete fuzzy preference relation P, as explained in reference [26], a consistency matrix P which
satisfies the additive consistency is shown as

P =
(
ρik

)
n×n

=

 1
2n

n∑
j=1

(
ρi j − ρ ji + ρ jk − ρkj

)
+ 0.5


n×n

. (21)

And then, as explained in reference [26], the calculation of the boundary constant ξ and the
consistency degree ς are shown as

χi =
1
n

n∑
j=1

ρi j

ε = max(χi|1 ≤ i ≤ n )
µ = min(χi|1 ≤ i ≤ n )
ξ = 1

2·max(0.5, (ε−µ))

ς = 1− 2
n(n−1)

n∑
i=1

n∑
k=1,k,i

∣∣∣ρik − ρik

∣∣∣
. (22)

where χi is the average value of preference values of alternative, ε is the maximum value of all χi, µ is
the minimum value of all χi, ξ is the boundary constant to let the preference values in the consistency
matrix P is between zero and one, ς represents the consistency degree between P and P. The larger the
value of ς, the more the consistency of the fuzzy preference relation. If the value of ς is close to one, then
the information of fuzzy preference relation is more consistent ξ ∈ [0, 1], ς ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ k ≤ n.
As explained in reference [26], the calculation of the modified consistency matrix P̃ is shown as

P̃ = (ρ̃ik)n×n =
(
ρik × κ+

1
2
(1− κ)

)
n×n

. (23)

where κ denotes the modified constant. And κ = ξ × ζ, κ ∈ [0, 1]. The ranking value Ri of the
alternativeMi in the setM is calculation as follows

Ri =
2

n2 − n

n∑
j=1, j,i

ρ̃i j . (24)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n and
∑n

i=1 Ri = 1.

3.3. The Improved Fusion Algorithm

With the credibility degree crdi and the ranking value of alternative BPAs Ri, the support degree
of the BPA is denoted as PSupi ,

PSupi = crdi ×Ri . (25)

Based on the weight PSupi , the weighted average of the evidence (WAE) is given as follow.

WAE(m) =
k∑

i=1

(
PSupi ×mi

)
. (26)

where PSupi = PSupi /
∑k

i=1 PSupi . Therefore, the modified mass function obtained by Equation (26) will
be fused with Dempster’s rule of combination n-1 times when there are n pieces of evidence.
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3.4. Numerical Verification

A numerical example obtained from reference [21] is illustrated to verify the effectiveness of the
improved method in dealing with conflict evidences. Suppose the recognition target is A based on
multiple sensor data given in Table 1. It showed five different types of sensors, and the FOD is given
by Θ = {A, B, C}. The results using different combination rules are shown in Table 2.

Table 1. Basic probability assignment (BPA) of the sensor data.

BPA {A} {B} {C} {A,C}

m1 0.41 0.29 0.30 0.00
m2 0.00 0.90 0.10 0.00
m3 0.58 0.07 0.00 0.35
m4 0.55 0.10 0.00 0.35
m5 0.60 0.10 0.00 0.30

Table 2. Results of the evidence using different fusion methods.

Evidence Method {A} {B} {C} {A,C}

m1, m2, m3

Dempster 0 0.6350 0.3650 0
Murphy [20] 0.4939 0.4180 0.0792 0.0090

Deng et al. [21] 0.4974 0.4054 0.0888 0.0084
Zhang et al. [22] 0.5681 0.3319 0.0929 0.0084

The proposed method 0.8308 0.0532 0.1046 0.0115

m1, m2, m3, m4

Dempster 0 0.3321 0.6679 0
Murphy [20] 0.8362 0.1147 0.0410 0.0081

Deng et al. [21] 0.9089 0.0444 0.0379 0.0089
Zhang et al. [22] 0.9142 0.0395 0.0399 0.0083

The proposed method 0.9535 0.0046 0.0334 0.0085

m1, m2, m3, m4, m5

Dempster 0 0.1422 0.8578 0
Murphy [20] 0.9620 0.0210 0.0138 0.0032

Deng et al. [21] 0.9820 0.0039 0.0107 0.0034
Zhang et al. [22] 0.9820 0.0034 0.0115 0.0032

The proposed method 0.9886 0.0004 0.0091 0.0032

As can be seen in Table 2, although more evidence supports target A, a wrong decision was still
achieved with Dempster’s method. When the number of evidence were not adequate, the performance
of Murphy’s method was not satisfactory. Obviously, the simple averaging and other weight averaging
can provide reasonable results, but the proposed method in this work is much better in dealing with
conflicting evidence.

3.5. An Example of Fault Diagnosis Application

Another example given in reference [45] has been utilized to further demonstrate the effectiveness
of the improved DST in fault diagnosis. The BPAs of the sensor data are directly adopted from
reference [46]. Suppose the frame of discernment is F, which have three types of fault in a motor rotor,
denoted as F1 = {Rotor unbalance}, F2 =

{
Rotor misalignment

}
, and F3 = {Pedestal looseness}, respectively.

Three vibration accelerometer sensors are installed in different positions to collect the vibration signals,
denoted by S = {S1, S2, S3}. The frequency of vibration signal locating at 1×, 2× and 3× (× denotes
rotor rotating frequency) are considered as the fault features, as are shown in Table 3.
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Table 3. The obtained BPAs.

Freq1 Freq2 Freq3

{F2} {F3} {F1,F2} {F1,F2,F3} {F2} {F1,F2,F3} {F1} {F2} {F1,F2} {F1,F2,F3}

S1 : m1 0.8176 0.0003 0.1553 0.0268 0.6229 0.3771 0.3666 0.4563 0.1185 0.0586
S2 : m2 0.5658 0.0009 0.0646 0.3687 0.7660 0.2341 0.2793 0.4151 0.2652 0.0404
S3 : m3 0.2403 0.0004 0.0141 0.7452 0.8598 0.1402 0.2897 0.4331 0.2470 0.0302

The modified mass function could also be calculated with the proposed method. The weighted
average of the evidence shown in the Table 4 can be obtained by Equation (26). It can be seen that the
probability of F2 is the largest, which can be preliminarily judged as the fault type. The modified mass
function will be fused with Dempster’s rule of combination. The fusion results given in reference [46]
were obtained by Equation (10) using the Dempster’s rule 2 times, which is also shown in Tables 5–7.
The corresponding Target column represents the fault type for fusion diagnosis.

Table 4. The modified BPAs.

Freq1 Freq2 Freq3

{F2} {F3} {F1,F2} {F1,F2,F3} {F2} {F1,F2,F3} {F1} {F2} {F1,F2} {F1,F2,F3}

mW 0.5836 0.0006 0.0870 0.3288 0.7576 0.2424 0.3109 0.4345 0.2118 0.0428

Table 5. Fusion results of different methods for motor rotor fault diagnosis at 1X frequency.

Method {F2} {F3} {F1,F2} {F1,F2,F3} Target

Jiang et al. [46] 0.8861 0.0002 0.0582 0.0555 F2
The proposed method 0.9277 0.0002 0.0364 0.0356 F2

Table 6. Fusion results of different methods for motor rotor fault diagnosis at 2X frequency.

Method {F2} {F1,F2,F3} Target

Jiang et al. [46] 0.9621 0.0371 F2
The proposed method 0.9858 0.0142 F2

Table 7. Fusion results of different methods for motor rotor fault diagnosis at 3X frequency.

Method {F1} {F2} {F1,F2} {F1,F2,F3} Target

Jiang et al. [46] 0.3384 0.5904 0.0651 0.0061 F2
The proposed method 0.3343 0.6321 0.0334 0.0002 F2

The improved DST is used to solve the fusion issue in the fault diagnosis mentioned above.
According to the results shown in Tables 5–7, the conflict of sensor reports has been solved with the
proposed method. We can notice that the proposed method can successfully detect the fault type F2,
which is consistent with those given in reference [46]. Thus, both the two methods can conduct the
conflictive pieces of evidence and identify the fault type F2 well. Moreover, it can be seen in Figures 2–4
that the proposed method can deal well with the conflictive pieces of evidence. The belief degrees
assigned to the target F2 at 1× frequency, 2× frequency and 3× frequency using the proposed method
were separately 0.9277, 0.9858, and 0.6321, which are all higher than the method in reference [46].
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4. Experimental Analysis

The effectiveness of the improved Dempster-Shafer (D-S) evidence theory in dealing with
conflicting evidence has been verified in the previous section. The proposed HCE framework in roller
bearing fault diagnosis and the robustness of improved DST in information fusion will be illustrated in
this section. The present technique is then applied for the rolling bearing fault diagnosis experiments
on the Machinery Fault Simulator Magnum (MFS-MG) test-rig. The flowchart of the fault diagnosis
using the proposed procedure is shown as Figure 5.
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4.1. The Experimental Set-Up

As shown in Figure 6, the vibration data set were acquired on the MFS-MG test rig, and the
defective bearing of the type ER-12K was installed on the left side of the shaft. Accelerometer sensors
were installed in vertical and horizontal on bearing seats. Sampling frequency was set to 25,600 Hz,
and the rotating frequency of the motor was 29.87 Hz (about 1792 rpm). The fault types: Ball (B), cage
(C), inner race (IR) and outer race (OR), as well as a normal (N) condition were used in the experiments.
Each segment of the collected original vibration signal had 10,240 data points. The original vibration
data and their frequency spectra are shown in Figure 7.
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4.2. Entropy Feature Sets

We could obtain four entropy features, the features of vibration signals. The original vibration
signal was decomposed with the VMD method, and the decomposed intrinsic mode function (IMF)
were achieved. The key parameters used in VMD should be selected based on the empirical value,
interested readers can refer to reference [47]. Assume IMFi = {x1, x2, . . . , xK}, where K is the number of
data points of IMFi. The SSE, PSE, and TFE of each IMFi were extracted using Equations (2), (5), and
(6), respectively. Moreover, the WPESE of each original segment was also obtained using Equation (8).
Here, a 3-level decomposition was used in WPT with the selected mother wavelet Db10. Since there
were 112 samples for each experimental condition, the numbers of rows and columns in the feature
matrix were 560 and 4, respectively. Figure 8 shows the entropy feature sets. The datasets were
divided into two parts, and the former 75% of each class of data was randomly selected as training
data, while the remaining 25% was testing data. The training data and the testing data was defined as
a 420(row)–5(column) matrix and a 140(row)–5(column) matrix, respectively. The desirable classes
were labeled with 1, 2, 3, 4, and 5. For example, outputs 1 and 3 were separately related to the first and
the third class. In this way, three supervised classifiers could be used to identify the bearing faults.
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Figure 8. Four kinds of entropy features. (a) SSE (b) PSE (c) TFE (d) WPESE.

4.3. Classification Using Single-Stage Classifier

DNN, SVM, and ELM were separately adopted in the single-stage classification based on the
above achieved entropy signatures. In this work, a large number of neurons were tested to find
an optimal structure of DNN. The number of hidden layer neurons which resulted in the highest
classification accuracy was selected as the optimum number. Then, the optimum DNN structure was
constructed based on the obtained number of hidden layer neurons. Figure 9 shows the classification
accuracies of DNN based on the different numbers of hidden layer neurons and mini-batch gradient
descent (MBGD) algorithm. It can be seen in Figure 10 that the determined optimal number of hidden
layer neurons is set to 13.

Sensors 2019, 19, x 13 of 19 

 

labeled with 1, 2, 3, 4, and 5. For example, outputs 1 and 3 were separately related to the first and the 
third class. In this way, three supervised classifiers could be used to identify the bearing faults. 

 
Figure 8. Four kinds of entropy features. (a) SSE (b) PSE (c) TFE (d) WPESE. 

4.3. Classification Using Single-Stage Classifier 

DNN, SVM, and ELM were separately adopted in the single-stage classification based on the 
above achieved entropy signatures. In this work, a large number of neurons were tested to find an 
optimal structure of DNN. The number of hidden layer neurons which resulted in the highest 
classification accuracy was selected as the optimum number. Then, the optimum DNN structure was 
constructed based on the obtained number of hidden layer neurons. Figure 9 shows the classification 
accuracies of DNN based on the different numbers of hidden layer neurons and mini-batch gradient 
descent (MBGD) algorithm. It can be seen in Figure 10 that the determined optimal number of hidden 
layer neurons is set to 13.  

In the SVM technique, the Gaussian radial basis function (RBF) was selected as the kernel 
function, and the particle swarm optimization (PSO) was used to determine the optimized 
parameters in the SVM. The population size (pop), maximum number of iterations (maxgen), two 
acceleration constants (𝑐 , 𝑐 ), and the inertia weight (𝜓) were set to 𝑐 = 1.5,  𝑐 = 1.7 and 𝜓 = 1, pop 
= 20, maxgen = 100, respectively. In addition, the parameters of FOA used in ELM, such as the 
population size (pop) and maximum number of iterations (maxgen) were set to 20, 100, while the 
initial positions were set randomly. 

 
Figure 9. Classification accuracy using deep neural networks (DNN). 

E
n

tr
o

p
y

8

8.5

9

9.5
a

0

1

2
b

Samples

0 112 224 336 448 560

E
n

tr
o

p
y

4

5

6

7
c

Samples

0 112 224 336 448 560
1

2

3

NNB BC CIR IROR OR

d

0.5

0.6

0.7

0.8

0.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

Number of hidden layer neurons

mini-batch 5 mini-batch 10

Figure 9. Classification accuracy using deep neural networks (DNN).

In the SVM technique, the Gaussian radial basis function (RBF) was selected as the kernel function,
and the particle swarm optimization (PSO) was used to determine the optimized parameters in the
SVM. The population size (pop), maximum number of iterations (maxgen), two acceleration constants
(c1, c2), and the inertia weight (ψ) were set to c1 = 1.5, c2 = 1.7 and ψ = 1, pop = 20, maxgen = 100,
respectively. In addition, the parameters of FOA used in ELM, such as the population size (pop)
and maximum number of iterations (maxgen) were set to 20, 100, while the initial positions were
set randomly.
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Figure 10. Preliminary diagnosis of DNN (a) Recognition results. (b) Absolute error of the proposed 
approach output with respect to the desired output. 

Figure 10a shows the desired output and the output of the trained DNN. Figure 10b shows the 
absolute error of the DNN output with respect to the desired output, where a sample is misclassified 
when the absolute error is large. As can be seen from Table 8, the average classification accuracy of 
DNN is 88.57%. Figure 11a illustrates the desired output and the output of the trained ELM, while 
Figure 11b shows the absolute error of the ELM output with respect to the desired output. As can be 
seen from Table 9, the average classification accuracy of the testing data set using the ELM approach 
is about 80.81%. Similarly, Figure 12a shows the desired output and the output of the trained SVM, 
and Figure 12b shows the absolute error of the SVM output with respect to the desired output. As 
can be seen from Table 10, the average classification accuracy of the testing data set using the SVM 
approach is only 77.14%. 
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It can be found that the classification rates separately using these three techniques were not good 
enough. Among them, DNN achieved the best classification results based on the deep learning 
technique as well as its optimal structures, compared with SVM and the ELM. The accuracy using 
single-stage classifier was still not good enough. Therefore, the data fusion method is necessary to be 
employed to increase the classification accuracy. 

Figure 10. Preliminary diagnosis of DNN (a) Recognition results. (b) Absolute error of the proposed
approach output with respect to the desired output.

After data training using each classifier, the testing data set was used to validate the accuracy
of each classifier model for bearing fault diagnosis. The aim of classification was to assign an input
pattern to one of the 5 classes concerned in the present study and represented by the classification
labels. The classification results of the testing data set obtained by preliminary diagnosis are shown in
Figures 10–12. The performances of DNN, ELM, and SVM are illustrated in Tables 8–10, respectively.
The meaning of Y-axis in Figure 10a, Figure 11a, and Figure 12a represents five bearing conditions,
denoted by four fault types B, C, IR, OR as well as a normal condition (N).
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Figure 11. Preliminary diagnosis of extreme learning machine (ELM). (a) Recognition results. (b)
Absolute error of the proposed approach output with respect to the desired output.
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Figure 12. Preliminary diagnosis of support vector machine (SVM). (a) Recognition results. (b) Absolute
error of the proposed approach output with respect to the desired output.

Table 8. Classification accuracy of DNN (%).

Bearing Condition B C IR N OR Average

B 89.29 3.57 7.14 0 0

88.57
C 0 89.29 10.71 0 0
IR 7.14 7.14 85.71 0 0
N 0 0 3.57 96.43 0

OR 10.71 0 3.57 3.57 82.14

Table 9. Classification accuracy of ELM (%).

Bearing Condition B C IR N OR Average

B 57.14 10.71 41.43 3.57 7.14

80.81
C 7.14 82.14 10.71 0 0
IR 7.14 0 82.14 10.71 0
N 7.14 0 0 92.86 0

OR 3.57 0 7.14 0 89.29

Table 10. Classification accuracy of SVM (%).

Bearing Condition B C IR N OR Average

B 25 3.57 53.57 0 14.29

77.14
C 3.57 85.71 10.71 0 0
IR 10.71 0 75 14.29 0
N 0 0 0 100 0

OR 7.14 0 0 0 92.86

Figure 10a shows the desired output and the output of the trained DNN. Figure 10b shows the
absolute error of the DNN output with respect to the desired output, where a sample is misclassified
when the absolute error is large. As can be seen from Table 8, the average classification accuracy of
DNN is 88.57%. Figure 11a illustrates the desired output and the output of the trained ELM, while
Figure 11b shows the absolute error of the ELM output with respect to the desired output. As can be
seen from Table 9, the average classification accuracy of the testing data set using the ELM approach is
about 80.81%. Similarly, Figure 12a shows the desired output and the output of the trained SVM, and
Figure 12b shows the absolute error of the SVM output with respect to the desired output. As can be
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seen from Table 10, the average classification accuracy of the testing data set using the SVM approach
is only 77.14%.

It can be found that the classification rates separately using these three techniques were not
good enough. Among them, DNN achieved the best classification results based on the deep learning
technique as well as its optimal structures, compared with SVM and the ELM. The accuracy using
single-stage classifier was still not good enough. Therefore, the data fusion method is necessary to be
employed to increase the classification accuracy.

4.4. Results Using the HCE Algorithm and the Improved DST

Since the classification results were separately obtained using a single classifier, their results can
be syncretized further. In this work, the fusion of the primary classification results was carried out
using the improved DST method. First, three types of evidence were introduced as follows. E1, E2, and
E3 were the classification results using the supervised classifiers DNN, ELM, and SVM, respectively.
The original Dempster’s rule and the proposed method were both used to achieve the fusion results.
In fact, the counter-intuitive results are often obtained when Dempster’s rule of combination is utilized
in some cases, especially, when the BOEs to be combined are highly conflicting.

In order to improve the diagnostic accuracy, DST and the proposed DST were used to fuse the
preliminary diagnosis of HCE. The results of different methods are given in Table 11. In the fusion
stage, each testing sample corresponded to a probabilistic output, which was the body of evidence.
The meaning of X-axis in Figures 13–15 represents 140 bodies of evidence, while the meaning of Y-axis
in Figures 13–15 represents fusion results of evidence using different methods. The fusion result of
HCE by the proposed DST is shown in Figure 13, while the fusion result using HCE and the original
DST is shown in Figure 14. A sample is misclassified when its fusion result is smaller than or equal to
0.5. It can be seen in Figures 13 and 14 that the classification accuracy using the proposed HCE and the
improved DST is the highest, about 97.86%. In addition, the accuracy using the original DST is about
92.86%, which is also better than those using a single-stage classifier. Figure 15 illustrates the results
using the technique given in reference [25]. We can find the result is better than those achieved using
original DST, but it is still worse compared with our proposed methods. This well demonstrated that
the proposed HCE approach combined with the improved DST can reliably be automatically used for
roller bearing fault detection. It means that the fault detection accuracy can significantly be improved
by applying HCE approach.

Table 11. Results of classification methods.

Method Classification Rate (%)

HCE with improved DST 97.86
HCE with DST in [25] 96.43

HCE with DST 92.86
DNN 88.57
SVM 77.14
ELM 80.81
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5. Conclusions

It is crucial to detect the relatively reliable evidence with the collected multi-source evidence in
the process of information fusion. The HCE approach combined with the improved DST has been
proposed for the fault diagnosis of roller bearings. The effects of support degree among the pieces
of evidence, the uncertainty information of BPA, and the relative credibility of the evidence on the
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weights are all considered in this improved DST. The improved DST can effectively deal with conflicts
between the evidences and then improve the diagnostic accuracy. The cosine similarity is employed to
indicate the confidence degree between the pieces of evidence. Entropy features are used to measure
the quantitative uncertainty of BPA in the improved DST. In addition, entropy based FPR is employed
to indicate the relative reliability preference between BOEs. Thus, the improved DST is much more
reasonable in dealing with conflicts compared with the original DST. The effectiveness of the improved
Dempster-Shafer theory has been verified via two examples.

In addition, SSE, PSE, TFE, and WPESE features have been utilized in the single-stage classification
with DNN, SVM, and ELM in this work. Performances of the proposed HCE approach combined with
the improved DST has been demonstrated on a bearing test-rig, compared with the original DST. It can
be found that the overall error rate of the HCE approach can be greatly reduced using the improved
DST, while the accuracy of the rolling element bearings diagnosis is successfully raised. Since there is
not enough (complete) fault data for a rotating machine in practice, it is usually difficult dealing with a
small sample and incomplete data in the process of decision-making. The proposed technique will be
further investigated under these cases in the future.
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