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Resting-state abnormalities in amnestic mild cognitive
impairment: a meta-analysis
WKW Lau1,2,6, M-K Leung2,3,6, TMC Lee2,3,4,5 and ACK Law1,4

Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer’s disease (AD). As no effective drug can cure AD, early
diagnosis and intervention for aMCI are urgently needed. The standard diagnostic procedure for aMCI primarily relies on subjective
neuropsychological examinations that require the judgment of experienced clinicians. The development of other objective and
reliable aMCI markers, such as neural markers, is therefore required. Previous neuroimaging findings revealed various abnormalities
in resting-state activity in MCI patients, but the findings have been inconsistent. The current study provides an updated activation
likelihood estimation meta-analysis of resting-state functional magnetic resonance imaging (fMRI) data on aMCI. The authors
searched on the MEDLINE/PubMed databases for whole-brain resting-state fMRI studies on aMCI published until March 2015.
We included 21 whole-brain resting-state fMRI studies that reported a total of 156 distinct foci. Significant regional resting-state
differences were consistently found in aMCI patients relative to controls, including the posterior cingulate cortex, right angular
gyrus, right parahippocampal gyrus, left fusiform gyrus, left supramarginal gyrus and bilateral middle temporal gyri. Our findings
support that abnormalities in resting-state activities of these regions may serve as neuroimaging markers for aMCI.
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INTRODUCTION
Mild cognitive impairment (MCI) refers to an intermediate state
between the cognitive changes of normal aging and the
symptomatic pre-dementia stage.1 The prevalence of MCI is
10–20% in adults aged 65 years or above, and more than 50% of
MCI patients progress to dementia within 5 years.2,3 These figures
draw great attention from clinicians and society at large because
there is currently no effective drug that can cure dementia. MCI
can be subdivided into amnestic (characterized by primarily
memory impairment) and non-amnestic (characterized by execu-
tive function impairment) types based on the neuropsychological
symptom profile. Amnestic MCI (aMCI) is generally regarded as a
prodromal stage of Alzheimer’s disease (AD), with an annual
conversion rate of up to 25%.2,4 This indicates the importance of
early diagnosis and intervention for people with aMCI. Indeed,
delayed MCI diagnosis in people with high education has been
reported to impact mortality.5 According to the National Institute
on Aging–Alzheimer’s Association workgroups,6 the criteria for
MCI include (1) a change in cognition, in comparison with the
person’s prior level; (2) lower performance in one or more
cognitive domains that is greater than what would be expected
for the patient’s age and educational background; (3) indepen-
dence of function in daily life is generally maintained but is less
efficient compared with the past, and minimal aids may be
required; and (4) the person is not demented. The standard
diagnostic procedure of MCI primarily relies on subjective
neuropsychological examinations that require the judgment of
experienced clinicians. The development of other objectives and

reliable MCI markers, such as neural markers,2 is therefore
required.
There is a growing interest in the use of resting-state functional

magnetic resonance imaging (fMRI) to explore the neurophysio-
logical mechanisms associated with aMCI owing to its noninvasive
and task-free nature. The term ‘resting state’ refers to spontaneous
brain activity during a passive (resting) state when one is lying
quietly with the eyes closed or passively viewing a stimulus.7 In
fact, resting-state activity is influenced by self-consciousness,
ongoing thoughts, states of alertness and readiness to process
stimuli from the outside world.8 Previous studies using fMRI have
revealed a highly stereotypical pattern of spontaneous activity in a
number of brain regions, namely the default mode network that
manifests greater activity during passive task states compared
with various active task states.9–11 Numerous studies have
attempted to work out the difference in resting-state activity
between MCI patients and healthy age-matched controls. How-
ever, the findings have been inconsistent, which might be due to
the inclusion of different types of MCI patients, and/or the use of
different methods across studies.
A systemic and quantitative analysis is highly warranted to

delineate the meanings of the existing findings in the field. To our
knowledge, only one meta-analysis has explored the difference in
resting-state activity in MCI and controls.12 In the Supplementary
Materials of this article, the authors reported reduced resting-state
activity in the middle temporal gyrus, middle frontal gyrus, medial
frontal gyrus and precuneus, and increased resting-state activity in
a large cluster spanning the temporo-parietal parts of the brain in
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MCI patients from 17 independent studies. The included MCI
patients were heterogeneous, including subcortical vascular MCI
(svMCI) patients13 who might have a different pathophysiology
compared with aMCI. Such heterogeneity likely impacted on the
consistency of the results, given the small number of included
studies. In particular, reduced resting-state activity was previously
reported in the posterior cingulate cortex (PCC),14 hippocampal
and parahippocampal regions15 in aMCI patients, such that the
decreased PCC activity during resting state was further amplified
in AD compared with aMCI.14 However, these findings were not
confirmed by the previous meta-analysis study.12 Hence, the
present analysis aimed to comprehensively review the abnorm-
alities in resting-state activity in aMCI patients specifically, who
have a high risk of conversion to AD, using activation likelihood
estimation (ALE). An updated ALE analysis focusing on aMCI
patients could provide a reasonable means to resolving discre-
pancies in previously reported findings.

MATERIALS AND METHODS
A comprehensive online literature search on the MEDLINE/PubMed
databases was conducted, focusing on functional neuroimaging studies
on MCI. Keyword searches were conducted using the following search
terms: (1) ‘neuroimaging’ oOR4 ‘fMRI,’ (2) ‘resting state’ OR ‘default
network’ and (3) ‘mild cognitive impairment’ oOR4 ‘MCI.’ These searches
were confined to articles published in English up to March 2015, which
yielded 228 original or review articles. We also searched through the
reference lists of relevant review articles. From these research articles, we
included studies that reported Montreal Neurological Institute (MNI) or
Talairach16 coordinates of whole-brain contrast comparing the amnestic
type of MCI and healthy controls. Two of the authors (WKWL and MKL)
confirmed the inclusions of the identified studies. For included articles that
reported only brain images, we attempted to obtain the MNI or Talairach
coordinates from the corresponding author(s) via email (three out of eight
studies replied). Studies were excluded if (1) only non-amnestic MCI or only
subtypes of aMCI were included; (2) no control group was included; (3)
patients had a history of neurological, psychiatric or any systemic disease
that could affect cognitive functions (for example, stroke, depression,
alcoholism and drug abuse); (4) a priori region of interest analysis or a
seed-based functional connectivity analysis was conducted; or (5) the
effects of medication were tested without reporting fMRI data at baseline.
One study contained multiple independent patient samples; the appro-
priate coordinates were extracted as two separate experiments.17 We did
not intentionally exclude studies that used a modality other than fMRI, nor
focused on a particular analytic approach. As a result, the methods used in
our included studies covered the following approaches: regional homo-
geneity, amplitude of low-frequency fluctuations and independent
component analysis. Overall, 21 fMRI studies (22 experiments) reporting
156 foci were included for the ALE meta-analysis (Table 1). One of them
used the arterial spin labeling perfusion MRI technique to measure resting-
state abnormality in cerebral blood flow in aMCI.
GingerALE version 2.3.2 (The BrainMap Database, www.brainmap.org;

San Antonio, TX, USA) was used to conduct the coordinate-based ALE
analysis, which is a widely used technique for synthesizing neuroimaging
data.36–38 ALE estimates the convergence of significant effects in terms of
foci across different neuroimaging studies. Coordinates in Talairach space
were imported into the software. If coordinates were reported in MNI
space, the ‘icbm2tal’ algorithm was used to transform them into Talairach
space.39 For coordinates that had been transformed to Talairach space by
brett-transformation, they were first ‘un-bretted’ into MNI space before
applying Lancaster’s transformation. Imported foci were modeled as three-
dimensional Gaussian spatial probability distributions using a full-width-
half-maximum kernel estimated based on the corresponding experiment’s
sample size.38 These probability distributions were combined into a
modeled activation map using the ‘non-additive’ method.37 Next, the
union of the modeled activation maps of each experiment was created to
form the ALE image that contains the combined probability distribution of
finding an activation being located at that particular voxel (that is, ALE
scores). The ALE image was then thresholded using uncorrected Po0.001
and a cluster-level inference threshold of Po0.05 with 1000 permutations
of simulated random data based on the characteristics of the imported
data.36 In the cluster-level inference, contiguous voxels (that is, clusters)
that exceed the cluster-forming threshold were compared against the

simulated random clusters. The cluster-inference threshold approach is
considered optimal because it is more stringent than uncorrected voxel-
level thresholds and less conservative than conventional false discovery
rate and family-wise error rate corrections. Clusters contributed by a single
study only were not reported even if they exceeded the cluster-inference
threshold. A total of two ALE analyses were conducted for each contrast
(healthy control4aMCI or healthy controloaMCI) in all aMCI patients.

RESULTS
aMCI patients showed decreases in resting-state activity compared
with healthy controls in the right and medial PCC (Brodmann area/
BA23 and 31), right angular gyrus (BA39, extending to the right
middle temporal gyrus, BA19), right parahippocampal gyrus
(BA35) and left fusiform gyrus (BA37) (Figure 1a and Table 2).
Furthermore, aMCI patients showed increases in resting-state
activity in the left middle temporal gyrus (BA39) and left
supramarginal gyrus (BA40) (Figure 1b and Table 2).

DISCUSSION
The results of the current aggregate analyses demonstrated
reduced resting-state activity in the middle temporal gyrus in
aMCI compared with controls, which is consistent with a previous
meta-analysis report.12 In addition, reduced resting-state activity
was also found in the PCC, right angular gyrus, right parahippo-
campal gyrus and left fusiform gyrus that were not reported in the
previous ALE study.12 Importantly, the absence of reduced resting-
state activity in these regions in the previous ALE study included a
heterogeneous sample of MCI patients (that is, aMCI and svMCI),
suggesting that the two subtypes of MCI may possess distinct
pathophysiological characteristics. In fact, increases in resting-
state activity in the PCC have been reported in patients with
svMCI.13 This further supports our hypothesis that reduced
resting-state activity in the PCC may be unique to aMCI patients
compared with other subtypes such as svMCI.
Episodic memory decline is the most prominent cognitive

impairment marker that is used to differentiate aMCI patients from
age-matched healthy controls.40 Brain regions including the PCC,
parahippocampal gyrus, inferior and middle temporal gyri are
associated with many cognitive processes, including episodic
memory.29,41–44

Decreases in resting-state activity in the PCC were consistently
observed in patients with aMCI compared with controls. Accord-
ing to the literature, metabolic reductions in the PCC are present
in very early AD, even before a definitive clinical diagnosis,45

which corroborates our findings. The PCC is mainly involved in
episodic memory processing.41,42 Abnormal connectivity was
found between the PCC and the hippocampus in early AD.46

Furthermore, positive correlations have been reported between
the resting-state activity of the PCC and mini-mental state
examination scores in MCI and AD, suggesting that resting-state
activity changes in this region are associated with altered
cognitive performance.17,23

Decreased gray matter volume (GMV) in the PCC has been
reported in both MCI and AD compared with controls using MRI
volumetric measurements,47,48 which could lead to a reduction in
resting-state activity. To confirm that the reduction in resting-state
activity of the PCC was not driven by brain atrophy, a small
subgroup analysis was performed using 7 studies (38 foci) that
reported resting-state abnormalities after corrected for GMV or the
reported resting-state abnormalities did not overlap with the
reported GMV reduction (Supplementary eTable 1). The resting-
state hypoactivation in the medial PCC was maintained in aMCI
patients in this subgroup analysis (Supplementary eTable 2). This
finding suggests that the reduction in resting-state activity of the
PCC may be independent of the GMV changes in aMCI patients.
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Table 1. List of included studies on resting state in aMCI

Study Method of analysis N Age, mean (s.d.), years Education, mean (s.d.), years MMSE, mean (s.d.) Contrasts Foci

Xu et al.18 ASL 10 MCI 77.0 (4.5) 13.7 (2.7) 27.8 (1.5) HC4MCI 1
12 HC 70.0 (3.9) 15.6 (2.1) 29.6 (0.8)

Sorg et al.19 ICA 24 MCI 69.3 (8.1) 27.7 (1.1) HC4MCI 21
16 HC 68.1 (3.8) 29.6 (0.5)

Bai et al.20 ReHo 20 MCI 71.3 (3.8) 14.0 (3.1) 27.2 (1.6) HC4MCI 9
20 HC 69.4 (3.8) 13.8 (4.0) 28.3 (1.4) MCI4HC 4

Qi et al.21 ICA 14 MCI 71.8 (7.3) 11.6 (1.0) 26.6 (0.3) HC4MCI 7
14 HC 70.4 (5.8) 10.0 (0.9) 28.5 (0.2) MCI4HC 5

Zhang et al.22 ReHo 48 MCI 72.0 (4.4) 15.5a 27.0a HC4MCI 9
36 HC 71.6 (3.7) 16.0a 29.0a MCI4HC 3

Wang et al.23 ALFF 16 MCI 69.4 (7.0) 10.9 (3.4) 26.5 (1.0) HC4MCI 5
22 HC 66.6 (7.7) 10.0 (3.9) 28.6 (0.6) MCI4HC 4

Bai et al.24 ICA 26 MCI 71.4 (4.3) 13.8 (2.8) 27.2 (1.5)
18 HC 70.3 (4.7) 15.1 (3.1) 28.3 (1.3) MCI4HC 2

Xi et al.15 ALFF 18 MCI 67.3 (7.9) 12.4 (3.2) 24.8 (3.8) HC4MCI 3
20 HC 64.7 (5.6) 12.2 (2.5) 28.2 (1.8) MCI4HC 2

Han et al.25 ALFF 17 MCI 69.7 (7.6) 8.8 (4.0) 25.2 (3.5) HC4MCI 6
18 HC 66.5 (6.2) 8.4 (5.6) 29.2 (0.7) MCI4HC 6

Bai et al.26 ALFF 43 MCI 72.0 (4.8) 13.6 (3.0) 27.1 (1.5) HC4MCI 1
30 HC 73.0 (3.5) 14.9 (2.7) 28.2 (1.4) MCI4HC 1

Wang et al.27 BOLD 8 MCI 66.4 (11.0) 10.6 (3.5) 25.4 (1.3) HC4MCI 2
14 HC 66.1 (5.8) 11.0 (4.5) 28.0 (1.4) MCI4HC 9

Zhuang et al.28 ALFF 47 MCI 72.0 (4.8) 15.9 (11.4) 27.0 (1.5) HC4MCI 1
33 HC 72.8 (3.4) 14.7 (2.9) 28.2 (1.3) MCI4HC 1

Song et al.14 ICA 18 MCI 70.2 (7.9) 9.4 (4.8) 21.9 (5.0) HC4MCI 1
21 HC 65.0 (8.1) 11.0 (4.4) 28.5 (1.4)

Xi et al.29 ALFF 18 MCI 67.4 (7.7) 12.3 (3.2) 25.2 (3.4) HC4MCI 3
18 HC 65.4 (5.8) 12.3 (2.4) 28.1 (1.8) MCI4HC 2

Zhou et al.30 ALFF 17 MCI 67.0 (7.9) 11.1 (3.3) 26.4 (2.1) HC4MCI 3
17 HC 63.8 (5.8) 11.7 (3.0) 28.6 (1.1) MCI4HC 4

Zhao et al.2 ALFF 20 MCI 65.1 (9.9) 11.8 (3.3) 25.2 (2.2) HC4MCI 7
18 HC 66.8 (7.4) 12.0 (2.9) 29.3 (1.2) MCI4HC 3

Liang et al.17 BOLD 24 MCI 72.8 (6.6) 28.1 (1.5) HC4MCI 2
35 HC 74.3 (5.9) 28.9 (1.6)

Liang et al.17 BOLD 29 MCI 73.2 (7.3) 27.1 (2.3) HC4MCI 7
35 HC 74.3 (5.9) 28.9 (1.6)

Liu et al.31 ALFF 46 MCI 71.9 (4.9) 13.8 (2.6)a 27.1 (1.4)a HC4MCI 1
32 HC 72.8 (3.5) 14.2 (2.5)a 28.3 (1.1)a MCI4HC 1

Liu et al.32 ReHo 12 MCI 59.3 (3.3) 10.5 (1.8) 26.4 (0.9) HC4MCI 4
12 HC 60.6 (5.8) 10.6 (2.1) 29.8 (0.4) MCI4HC 4

Wang et al.33 ReHo 30 MCI 69.1 (5.8) 26.2 (2.2) HC4MCI 5
32 HC 70.1 (5.5) 28.1 (1.5) MCI4HC 6

Zhou et al.34 fALFF 17 MCI 76.7 (5.5) 26.1 (0.7) HC4MCI 1
14 HC 76.3 (8.3) 29.2 (0.4)

Abbreviations: ALFF, amplitude of low-frequency fluctuations; aMCI, amnestic mild cognitive impairment; ASL, arterial spin labeling; BOLD, blood oxygen level
dependent; fALFF, fractional AlFF; HC, healthy control; ICA, independent component analysis; MCI, mild cognitive impairment; MMSE, mini-mental state
examination; ReHo, regional homogeneity. aMean and s.d. were estimated from median or calculated according to the formulas published by Hozo et al.35

Resting-state fMRI data on aMCI
WKW Lau et al

3

Translational Psychiatry (2016), 1 – 6



Whether the atrophy of the PCC in MCI or AD patients is driven by
an early change in brain functional activity requires further study.
Reduced resting-state activity in fusiform gyrus and parahippo-

campal gyrus may also contribute to memory deficits in aMCI
patients. For instance, the fusiform gyrus connects with the medial
temporal lobe, including the parahippocampal gyrus,49 which has
an accessory role in memory processes in healthy elderly
people.21,50 In addition, the previously reported positive associa-
tion between the resting state of the parahippocampal gyrus and
mini-mental state examination scores15 suggests a functional role
of the resting-state activity of the parahippocampal gyrus in
episodic memory.51

On the other hand, lower resting-state activity in the angular
gyrus in the inferior parietal lobule of aMCI patients may be
related to their poorer verbal working memory performance that
involves short-term storage and retrieval of phonological
representations.52,53 Taken together, hypoactivation of the above-
mentioned regions is a consistent physiological change in aMCI
patients, which may serve as a potential neuroimaging biomarker
for aMCI.
Decreases in resting-state activity of the medial frontal gyrus

and left middle frontal gyrus have been reported in a previous ALE
study that included different types of MCI patients.12 Indeed, a
previous study that reported a similar resting-state hypoactivity in
the medial frontal gyrus was conducted in svMCI patients
compared with controls,13 and the study was also included in
the previous ALE meta-analysis. We did not, however, observe any
significant hypoactivity in these regions in aMCI. One possible
explanation for the discrepancy is that the hypoactivity of these
prefrontal regions is not a defining feature of aMCI. Nevertheless,
more primary studies are needed to generate a clearer picture.
Increases in resting-state activity were found in the left middle

temporal gyrus and left supramarginal gyrus in aMCI patients

compared with controls, which is consistent with the previous ALE
study of MCI.12 One interpretation is that these regions are
activated to compensate for the reduction in function of other
brain regions. However, whether such hyperactivation of the brain
is truly a compensatory response or indicates other pathological
changes, such as excitotoxicity that triggers neuronal cell death,
requires more empirical studies to confirm.
Five studies that compared the spontaneous brain activity

between aMCI and controls were not included in the current
meta-analysis due to the unavailability of the resultant coordi-
nates. Consistent with our findings, hypoactivity in the PCC and/or
precuneus was commonly reported in aMCI patients compared
with controls in four out of the five studies.54–57 In contrast to our
findings, one study reported increased resting-state activity in the
orbitofrontal gyrus, anterior cingulate cortex, parahippocampal
gyrus, hippocampus and fusiform gyrus in multiple-domain aMCI
patients, which was interpreted as a compensatory mechanism for
the recruitment of cognitive resources in the patients.55 It is
possible that multiple impairments (in memory and at least one
other cognitive domain) in multiple-domain aMCI patients may
trigger such compensatory responses for cognitive resources that
were not present in our included aMCI patients. Another study
reported increased resting-state activity of the left inferior parietal
lobule in aMCI patients compared with controls, which was also
interpreted as a compensatory recruitment in aMCI patients.58 A
compensatory response may be sensitive to the stage of an illness,
and in fact, the inferior parietal lobule abnormality was regarded
as a sensitive marker for the transition from MCI to early stages of
AD.58 To further understand this difference between their result
and our meta-analytic findings, more information relating to the
disease severity is needed.
There are several limitations in the current meta-analysis. First,

although we tried to include studies that used similar diagnostic

Table 2. Resting-state abnormalities in aMCI patients compared with controls in 21 studies

Side Brain region BA Coordinates (Talairach) Volume (mm3) Extrema value

x y z

HC4MCI Right 23 12 − 56 18 0.0150
Medial Posterior cingulate 23 0 − 52 16 1472 0.0135
Right 31 4 − 52 24 0.0118

Angular gyrus 39 46 − 66 28 0.0189
Right Middle temporal gyrus 19 42 − 74 22 664 0.0139
Right Parahippocampal gyrus 35 22 − 20 − 26 312 0.0190
Left Fusiform gyrus 37 − 30 − 44 − 12 304 0.0155

MCI4HC Left Middle temporal gyrus 39 − 50 − 64 28 1280 0.0260
Supramarginal gyrus 40 − 54 −54 28 0.0192

Abbreviations: aMCI, amnestic mild cognitive impairment; BA, Brodmann area; HC, healthy control; MCI, mild cognitive impairment.

Figure 1. (a) Resting-state hypoactivation in patients with amnestic mild cognitive impairment (aMCI) compared with matched control
subjects (in blue). (b) Resting-state hyperactivation in patients with aMCI compared with matched control subjects (in red). AG, angular gyrus;
FG, fusiform gyrus; MTG, middle temporal gyrus; ParaHG, parahippocampal gyrus; PCC, posterior cingulate cortex; R, right; SupraMG,
supramarginal gyrus.
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criteria for aMCI,4,59 subject heterogeneity, such as subtypes of
aMCI that could influence neuroimaging results,60 cannot be ruled
out. Second, the significance level of the contributing results was
not taken into consideration by the current ALE technique.
Nonetheless, our study did adjust for the effect of different sample
sizes. Third, different analytic approaches and imaging modalities
could reveal different aspects of resting-state abnormalities in the
brain.61 For instance, regional homogeneity and amplitude of low-
frequency fluctuations measure the local synchrony and power
spectrum of low-frequency signals, respectively, whereas inde-
pendent component analysis separates linearly mixed low-
frequency signals, which are all indirect measures of neural
activity. In addition, arterial spin labeling perfusion MRI can
indirectly reflect the regional brain metabolism and neural activity
during resting state by measuring regional cerebral blood flow
during task-free condition. Nonetheless, different analytic
approaches and modalities could be complementary to each
other and provide a more complete picture of the field.61 Given
that the number of studies using each individual method is not
sufficient for conducting independent ALE studies, our results
represent a common pattern of resting-state abnormalities that
could be revealed across imaging methodologies and have high
generalizability toward understanding the neuropathology of
aMCI. As shown by our findings, different analytic approaches or
modalities could generate similar results, such that reduced
resting-state activity was found in PCC in most of our included
studies regardless of their analytic approaches or imaging
modality. Finally, other confounds such as mini-mental state
examination scores, age, gender and education levels that could
influence resting-state activity in aMCI could not be controlled for
in the current ALE analysis due to the limitation of the current
analysis technique. Future studies that incorporate these variables
as covariates would provide more conclusive findings on resting-
state abnormality in aMCI.

CONCLUSIONS
The current meta-analysis supports that abnormalities in resting-
state activity in the PCC, right angular gyrus (extending to middle
temporal gyrus), right parahippocampal gyrus, left fusiform gyrus,
left middle temporal gyrus and left supramarginal gyrus are
commonly found in aMCI patients. These regional abnormalities in
resting-state activity may serve as neuroimaging markers for the
early detection of aMCI.
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