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A B S T R A C T   

Background and Purpose: As “time is brain” in acute stroke triage, the need for automated prognostication tools 
continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated 
prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA 
radiomics. 
Methods: We automatically extracted 1116 radiomics features from the anterior circulation territory on admis-
sion CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers. 
We trained, optimized, validated, and compared different machine-learning models to predict favorable outcome 
(modified Rankin Scale ≤ 2) at discharge and 3-month follow-up using four different input sets: “Radiomics”, 
“Radiomics + Treatment” (radiomics, post-thrombectomy reperfusion grade, and intravenous thrombolysis), 
“Clinical + Treatment” (baseline clinical variables and treatment), and “Combined” (radiomics, treatment, and 
baseline clinical variables). 
Results: For discharge outcome prediction, models were optimized/trained on n = 494 and tested on an inde-
pendent cohort of n = 100 patients from Yale. Receiver operating characteristic analysis of the independent 
cohort showed no significant difference between best-performing Combined input models (area under the curve, 
AUC = 0.77) versus Radiomics + Treatment (AUC = 0.78, p = 0.78), Radiomics (AUC = 0.78, p = 0.55), or 
Clinical + Treatment (AUC = 0.77, p = 0.87) models. For 3-month outcome prediction, models were optimized/ 
trained on n = 373 and tested on an independent cohort from Yale (n = 72), and an external cohort from 
Geisinger Medical Center (n = 232). In the independent cohort, there was no significant difference between 
Combined input models (AUC = 0.76) versus Radiomics + Treatment (AUC = 0.72, p = 0.39), Radiomics (AUC 
= 0.72, p = 0.39), or Clinical + Treatment (AUC = 76, p = 0.90) models; however, in the external cohort, the 
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Combined model (AUC = 0.74) outperformed Radiomics + Treatment (AUC = 0.66, p < 0.001) and Radiomics 
(AUC = 0.68, p = 0.005) models for 3-month prediction. 
Conclusion: Machine-learning signatures of admission CTA radiomics can provide prognostic information in acute 
LVO stroke candidates for mechanical thrombectomy. Such objective and time-sensitive risk stratification can 
guide treatment decisions and facilitate tele-stroke assessment of patients. Particularly in the absence of reliable 
clinical information at the time of admission, models solely using radiomics features can provide a useful 
prognostication tool.   

1. Introduction 

Stroke is the leading cause of severe disability and the fifth leading 
cause of death in the United States (Benjamin et al., 2017; Xu et al., 
2020), with large vessel occlusion (LVO) strokes accounting for 30% of 
all ischemic strokes but 90% of stroke-related mortality and severe 
disability (Malhotra et al., 2017). Efforts to combat such devastating 
outcomes in LVO stroke have led to the rise of endovascular therapies, 
particularly mechanical thrombectomy in the last decade. Landmark 
trials have shown significant benefit of endovascular thrombectomy 
(ET) in LVO stroke outcome, even when performed up to 24 h after onset 
(Albers et al., 2018; Nogueira et al., 2018). 

However, it remains difficult to determine which patients will 
benefit from ET. For patients presenting more than six hours after stroke 
onset, current eligibility criteria ascribed by the American Heart Asso-
ciation (AHA) (Powers, 2019) rely on the mismatch between the volume 
of at-risk territory and the infarct core, as indicated by CT or MRI 
perfusion scans, which add cost and infrastructure requirements. 
Despite the overwhelming efficacy of ET, up to 50% of acute LVO pa-
tients have poor long-term outcomes after successful reperfusion – i.e. 
futile recanalization (Meinel et al., 2020). Conversely, of the 30% of 
acute ischemic stroke patients with intracranial LVO (Lakomkin et al., 
2019), only 7–8% are eligible for ET according to current AHA guide-
lines (Desai et al., 2019), and, under those guidelines, the “number 
needed to treat” with ET is only 2–2.6 to achieve a 1-point improvement 
of 90-day modified Rankin Scale (mRS) score (Haussen et al., 2018; 
Weber et al., 2019). These statistics highlight a great proportion of pa-
tients who may potentially benefit from ET but who do not fulfill current 
restrictive eligibility guidelines. 

Non-contrast CT, followed by CTA, are the mainstay of acute 
ischemic stroke imaging workflow and LVO treatment triage (Martinez 
et al., 2020). CTA source images have higher sensitivity in the detection 
of acute ischemic changes compared to CT (Camargo et al., 2007), and 
areas of CTA hypoattenuation better correlate with depressed cerebral 
blood flow (CBF) rather than volume (CBV) in arterial phase images 
obtained with multidetector scanners (Pulli et al., 2012; Sharma et al., 
2011). Thus, quantitative features of admission CTAs may provide better 
prognostication and treatment triage for acute LVO stroke patients 

beyond estimation of infarct volume. This can be done by utilizing 
radiomics, which enables automated extraction of a large number of 
quantitative features from medical images representing shape, intensity, 
and texture characteristics. Machine-learning models using radiomics 
have already demonstrated utility in prediction of clinically relevant 
information based on radiomics features (Haider et al., 2020a), 
including in LVO (Regenhardt et al., 2022). 

With the goal of assisting treatment decisions and improving base-
line risk stratification, we hypothesized that radiomics features extrac-
ted from admission CTAs could predict post-thrombectomy outcome. 
From a database of over 800 patients from two comprehensive stroke 
centers, we devised and automated a platform for extraction of radio-
mics features from the anterior circulation territory of admission CTAs. 
Then, using different combinations of feature selection and machine- 
learning classifiers, we trained, optimized, validated, and compared 
different models for prediction of outcome at discharge and 3-month 
follow-up. 

2. Materials and methods 

2.1. Clinical and imaging data acquisition 

The subjects for training, validation, and independent testing of 
models were identified from the Yale New Haven Hospital stroke center 
registry between 1/1/2014 and 10/31/2020. In addition, a cohort of 
232 subjects from Geisinger Medical Center who presented between 1/ 
1/2016 and 12/31/2019 was used for external testing of models pre-
dicting long-term functional outcome at 3-month follow-up. Patients 
were included if they (1) suffered an anterior circulation LVO stroke 
(ICA, M1, or M2), (2) had CTA source images with slice thickness ≤ 1 
mm, (3) underwent ET, and (4) had modified Rankin Scale (mRS) 
assessment of functional outcome recorded at discharge or long-term (at 
3-month follow-up). Functional outcome was dichotomized as favorable 
(mRS ≤ 2) versus poor (mRS > 2), and patients were excluded from 
discharge or long-term analysis groups if they were missing mRS data for 
that timepoint. Post-thrombectomy reperfusion was assessed using the 
modified Thrombolysis in Cerebral Infarction (mTICI) system, reported 
by the treating neurointerventionalist. Patients were excluded if they 
had (a) any simultaneous posterior circulation LVO, (b) poor quality 
CTA not amenable to analysis (due to motion, metal artifact, or scanner- 

Nomenclature 

Non-standard Abbreviations and Acronyms 
AUC Area under the curve 
ET endovascular mechanical thrombectomy 
ElNet elastic net 
HClust hierarchical clustering 
ICA internal carotid artery 
IQR interquartile range 
LVO large vessel occlusion 
RIDGE logistic regression with RIDGE regularization 
MCA middle cerebral artery 
MRMR minimum redundancy maximum relevance filter 

mRS modified Rankin Scale 
mTICI modified treatment in cerebral ischemia 
NIHSS National Institutes of Health Stroke Scale 
NBayes native Bayes 
noFS no feature selection 
pMIM Pearson correlation-based redundancy reduction with 

mutual information filter 
PCA principal component analysis 
RF random forest 
ROC receiver operating characteristic 
rt-PA recombinant tissue plasminogen activator 
SVM support vector machine 
XGB XGBoost  
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based artifacts), or (c) missing admission clinical information. In the 
external dataset, no patient was aged ≥ 90. Institutional review board 
approval was obtained for retrospective data collection with informed 
consent waived at respective institutes. All procedures followed were in 
accordance with institutional guidelines. 

2.2. Image pre-processing and feature extraction 

Using the FSL software FLIRT tool (https://www.fmrib.ox.ac.uk/), 
baseline CTA images were skull-stripped and co-registered to the Mon-
treal Neurological Institute-152 brain space. Preset middle cerebral ar-
tery (MCA) territory masks, from the brain stroke atlas (Wang et al., 
2019), were then reverse registered to native CTAs (Fig. 1). All CTA 
images and MCA masks were resampled to an isotropic 1x1x1 mm voxel 
spacing using trilinear interpolation to ensures rotational invariance of 
texture features (Haider et al., 2020b; Haider et al., 2020c; Haider et al., 
2020d). To compensate for differences in intravenous bolus timing 
among different CTA scans, only voxels within a 1–500 Hounsfield unit 
(HU) range were included in analysis, and all images were normalized 
by centering voxel values at the mean with standard deviation from the 
image. After applying high- and low-pass filters in each spatial direction 
(“coif-1” wavelet transform (Pyradiomics-community, 2018)) and the 
“edge-enhancement” Laplacian of Gaussian (LoG) filter (with “sigma” 
settings of 2, 4, and 6 mm (Pyradiomics-community, 2018)), one set of 
1116 “first-order” and “texture-matrix” radiomics feature were extrac-
ted from the single VOI combining right and left MCA territories (Pyr-
adiomics-community, 2018). These steps of preprocessing, derivative 

image generation, and feature extraction were executed using a custom 
Pyradiomics version 2.1.2 pipeline (Pyradiomics-community, 2018). 
The first-order and texture-based features are listed in Supplementary 
Table 1. 

2.3. Data allocation 

To develop predictive models for favorable outcome (mRS ≤ 2) at 
discharge and long-term follow-up, we randomly allocated separate 
datasets for training/cross-validation, independent testing, and external 
testing. The training cohort was used for hyperparameter optimization 
and selection of optimal models through a repeated 5-fold cross- 
validation scheme. Independent internal and external cohorts were 
used for testing the optimized models. For both discharge and long-term 
outcome prognostic models, four different input sets were used 
(Table 1): (1) “Radiomics” (MCA territory radiomics features only), (2) 
“Radiomics + Treatment” (radiomics, reperfusion mTICI score, and 
intravenous thrombolysis)”, (3) Clinical + Treatment (baseline clinical 
variables and treatment), and (4) “Combined” input (radiomics, treat-
ment, and baseline clinical variables). In our machine-learning pipeline, 
reperfusion mTICI score was a 0-to-4 ordinal variable, intravenous 
thrombolysis was a binary variable, and clinical variables included sex 
(binary), age (numeric), and admission NIHSS (numeric) (Table 1). 

2.4. Cross-validation and Bayesian hyperparameter optimization 

Using a framework devised by Haider et al. (Haider et al., 2020b; 

Fig. 1. Processing pipeline from admission CTAs to machine-learning prediction of functional outcome.  

E.W. Avery et al.                                                                                                                                                                                                                                

https://www.fmrib.ox.ac.uk/


NeuroImage: Clinical 34 (2022) 103034

4

Haider et al., 2020c; Haider et al., 2020d), we applied 20 rounds of 5- 
fold cross-validation for hyperparameter optimization and internal 
performance validation of candidate models, each of which combined 
one of 6 feature selection strategies and one of 6 machine-learning 
classifiers (36 pairs, Table 1). A brief description of feature selection 
methods and machine-learning models is provided in the supplementary 
methods and detailed previously (Haider et al., 2020b; Haider et al., 
2020c; Haider et al., 2020d). Using the “rBayesianOptimization” pack-
age in R (Yan, 2016), we applied Bayesian Optimization for iterative 
optimization of model performance in the cross-validation framework. 
The machine-learning classifiers’ hyperparameters, their ranges, and 
tuning repetition counts are provided in Supplementary Table 2. We 
applied 20 rounds of 5-fold cross-validation with optimized hyper-
parameters to measure the cross-validation performance of each 
candidate model. In each round of cross-validation, feature selection and 
training of machine-learning classifiers were performed on the training 
fold and assessed in validation folds to avoid data leakage from training 
to validation samples and reduce overfitting. This approach enabled 
accurate estimation of final model performance based on averaged 
receiver operating characteristic (ROC) area under the curve (AUC) in 
validation folds across all 100 permutations. 

2.5. Final model training and validation 

For each input set, the select model (feature selection and machine- 
learning algorithm combination) with the highest averaged AUC in 
cross-validation was trained on the whole training dataset applying 
optimized machine-learning hyperparameters. These final models were 

then tested on independent internal (Yale dataset) and external (Gei-
singer Clinic) cohorts. DeLong’s test was used to compare paired AUCs 
and to calculate p-values and AUC 95% confidence intervals (CI) 
(DeLong et al., 1988). The R pROC package was used for AUC metric 
computations (Robin et al., 2011). 

Table 1 
Model input variables and abbreviations for machine-learning classifiers and 
feature selection methods.  

A) Clinical Variables B) Treatment Variable 

Age Thrombectomy reperfusion success: 
modified treatment in cerebral ischemia 
(mTICI) score 

Sex 

Admission NIH Stroke Score Intravenous thrombolytic therapy 
C) Machine-Learning Classifiers 
Random forest RF 
XGBoost XGB 
Logistic regression with elastic net 

regularization 
ElNet 

Native Bayes classifier NBayes 
Support vector machine with radial 

kernel 
SVM_rad 

Support vector machine with sigmoid 
kernel 

SVM_sig 

D) Feature Selection Methods 
Minimum redundancy maximum 

relevance filter 
MRMR 

Pearson correlation-based redundancy 
reduction combined with a mutual 
information maximization filter 

pMIM 

Logistic regression with RIDGE 
regularization adapted for feature 
selection 

RIDGE 

Hierarchical clustering HClust 
Principal component analysis-based 

feature selection 
PCA 

No feature selection implemented noFS 

Three main prognostic clinical variables at the time of admission (A) were 
included in the Combined and Clinical + Treament models. The treatment 
variables of post-thrombectomy reperfusion success (mTICI ascore) and intra-
venous thrombolytic treatment (B) were used in the Radiomics + Treatment, 
Clinical + Treatment, and Combined models. Six machine-learning classifiers 
(C) and 6 feature selection methods (D) were used in 36 combinations for the 
Radiomics, Radiomics + Treatment, Combined models, while feature selection 
was omitted in Clinical + Treatment models. Machine-learning and feature se-
lection abbreviations were previsouly described in detail (Haider et al., 2020b) 
and are summarized in the supplementary methods. 

Table 2 
Demographic characteristics of patients in training and testing cohorts for pre-
diction of (A) discharge and (B) long-term outcome.  

A. Discharge 
outcome prediction 

Training/ 
validation 
cohort 
(n = 494) 

Independent cohort 
(n = 100) 

P value 

Age (years) 70.4 ± 15.4 69.2 ± 14.0 0.471 
Male sex 269 (54%) 52 (52%) 0.653 
Admission NIHSS 

(median, 
interquartile) 

15 (10–19) 13 (7–19.25) 0.126 

Onset-to- 
catheterization 
time (hours) 

7.2 ± 5.2 6.8 ± 4.8 0.501 

Onset-to-CTA scan 
(hours) 

5.3 ± 5.4 5.6 ± 5.3 0.603 

Occlusion side (left) 256 (52%) 59 (59%) 0.518 
ICA occlusion 120 (24%) 19 (19%) 0.254 
MCA M1 occlusion 314 (64%) 48 (48%) 0.004 
MCA M2 occlusion 152 (31%) 41 (41%) 0.046 
Received 

intravenous rt-PA 
187 (38%) 38 (38%) 0.978 

Successful 
reperfusion* 

368 (74%) 87 (87%) 0.007 

Discharge mRS score 
(median, 
interquartile) 

4 (3–5) 4 (1–4) 0.101 

Favorable outcome 
at dischargey

123 (25%) 32 (32%) 0.140 

B. Long-term 
outcome 
prediction 

Training/ 
validation 
cohort 
(n = 373) 

Independent 
cohort 
(n = 72) 

External 
cohort 
(n = 232) 

P value 

Age (years) 71.5 ± 15.3 68.7 ± 14.0 69.8 ± 14.8 0.207 
Male sex 200 (54%) 41 (57%) 103 (44%) 0.048 
Admission NIHSS 

(median, 
interquartile) 

14 (IQR 
10–19) 

13 (6.75–19) 18 
(12–23.25) 

<0.001 

Onset-to- 
catheterization 
time (hours) 

7.4 ± 5.3 7.1 ± 4.9 6.8 ± 5.2 0.388 

Onset-to-CTA scan 
(hours) 

5.4 ± 5.4 5.2 ± 5.0 5.7 ± 5.5 0.718 

Occlusion side (left) 193 (52%) 43 (60%) 119 (51%) 0.421 
ICA occlusion 93 (25%) 13 (18%) 54 (23%) 0.447 
MCA M1 occlusion 233 (62%) 37 (51%) 144 (62%) 0.198 
MCA M2 occlusion 115 (31%) 29 (40%) 32 (14%) <0.001 
Received 

intravenous rt-PA 
137 (37%) 24 (33%) 93 (40%) 0.525 

Successful 
reperfusion* 

283 (76%) 60 (83%) 215 (93%) <0.001 

3-month mRS score 
(median, 
interquartile) 

4 (IQR 2–6) 3 (1–6) 3 (1–5) 0.063 

Favorable outcome 
at 3 monthsy

123 (33%) 28 (39%) 82 (35%) 0.586 

(A) Demographic characteristics differed significantly between the training and 
internal independent cohorts in proportion of MCA M1 segment occlusion, 
proportion of MCA M2 segment occlusion, and rate of successful reperfusion. (B) 
Demographic characteristics differed significantly between the training, inde-
pendent, and external cohorts in admission NIHSS, gender ratio, rate of MCA M2 
segment occlusion, and successful reperfusion. 
ICA = internal carotid artery; MCA = middle cerebral artery; mRS = modified 
Rankin Scale; NIHSS = National Institutes of Health Stroke Scale; rt-PA = re-
combinant tissue plasminogen activator. 
*Successful reperfusion was defined by achieving modified Thrombolysis in 
Cerebral Infarction (mTICI) of 2b or 3. 
yFavorable outcome was defined by an mRS score ≤ 2. 

E.W. Avery et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 34 (2022) 103034

5

2.6. Statistical analysis 

For univariate comparison between two groups, we used a student’s 
t-test for continuous variables (age, onset-to-catheterization, onset-to- 
CTA), the Mann-Whitney rank test for ordinal variables (NIHSS and 
mRS), and the Fisher exact test for categorical variables. For univariate 
comparison between three groups, we used ANOVA for continuous 
variables, the Kruskal-Wallis test for ordinal variables, and the Chi- 
square test for categorical variables. 

3. Results 

3.1. Patient demographics 

Our training dataset consisted of 496 Yale LVO stroke patients, 494 
of whom had discharge outcome scores, and 373 of whom had long-term 
outcome scores available. See Supplementary Fig. 1 for flowchart of 
patients included in final analysis. Our independent internal testing 
cohort consisted of 101 Yale LVO stroke patients, 100 of whom had 
discharge outcome scores and 72 of whom had long-term outcome 
scores available. Our external testing cohort from Geisinger Health 
consisted of 232 LVO stroke patients with long-term outcome informa-
tion available. Table 2 summarizes the demographic characteristics of 
patients included for discharge and long-term outcome prediction. 

3.2. Cross-validation results 

Heatmap summaries of the cross-validation performance for all 
candidate models are depicted in Fig. 2. The best performing Radiomics 
only models had an averaged AUC of 0.69 ± 0.06 for long-term outcome 
prediction and 0.65 ± 0.05 for discharge outcome prediction. The best 
performing Radiomics + Treatment models had an averaged AUC of 
0.74 ± 0.06 for long-term outcome prediction and 0.70 ± 0.05 for 
discharge outcome prediction. The best performing Clinical + Treat-
ment models had an averaged AUC of 0.810 ± 0.05 for long-term 
outcome prediction and 0.82 ± 0.05 for discharge outcome prediction. 
The best performing Combined input models had an averaged AUC of 
0.82 ± 0.05 for long-term outcome prediction and 0.81 ± 0.04 for 
discharge outcome prediction. Support vector machine (SVM) with 
either sigmoid or radial kernel was the machine-learning classifier uti-
lized by the best-performing models of all input types except the Com-
bined model for prediction of long-term outcome, which utilized logistic 
regression with elastic net regularization (ElNet). The feature selection 
methods most utilized by best-performing models were principal 
component analysis (PCA, used in 3 of the 6 best-performing models) 
and minimum redundancy maximum relevance filter (MRMR, used in 2 
of 6 best-performing models). Notably, cross-validation results for 
models trained on radiomics features extracted from the whole brain 
had similar averaged AUC to those using MCA territory radiomics 
(Supplementary Fig. 2). 

3.3. Independent and external testing 

The internal independent and external testing performances of the 
best-performing models selected from cross-validation results are sum-
marized in Fig. 3 and Table 3. In the internal (Yale) independent cohort, 
there was no significant difference in the prognostic performance of the 
Radiomics only model (AUC = 0.79, 95% CI = 0.60–0.83, p = 0.55; AUC 
= 0.72, 95% CI = 0.60–0.85, p = 0.39), the Radiomics + Treatment 
model (AUC = 0.78, 95% CI = 0.70–0.90, p = 0.78; AUC = 0.72, 95% CI 
= 0.60–0.85, p = 0.39), or the Clinical + Treatment model (AUC = 0.77, 
95% CI = 0.65–0.87, p = 0.87; AUC = 0.76, 95% CI = 0.66–0.86, p =
0.90) compared to the Combined model (AUC = 0.77, 95% CI =
0.67–0.87; AUC = 0.76, 95% CI = 0.65–0.87) in predicting functional 
outcome at both discharge or long-term, respectively. However, in the 
external (Geisinger Medical Center) cohort, the Combined model (AUC 

= 0.74, 95% CI = 0.68–0.81) outperformed both the Radiomics model 
(AUC = 0.68, 95% CI = 0.61–0.75, p = 0.005) and the Radiomics +
Treatment model (AUC = 0.66, 95% CI = 0.59–0.73, p < 0.001). There 
was no significant difference in the prognostic performance of the 
Clinical + Treatment model (AUC = 0.73, 95% CI = 0.66–0.79, p =
0.81) compared to the Combined model in the external cohort. 

3.4. Model bias analysis 

To discern factors influencing incorrect radiomics model predictions 
in external testing, we compared the group of subjects whose outcomes 
were falsely predicted by the Radiomics, Radiomics + Treatment, and 
Combined model types (false negative (FN) and false positive (FP) pre-
dictions) to the group of subjects whose outcomes were correctly pre-
dicted by all 3 radiomics-containing model types (true positive (TP) and 
true negative (TN) predictions). Our models’ binary predictions for 
favorable versus poor outcomes were derived by rounding the proba-
bilistic output (0.00–1.00) of machine-learning classifiers for each sub-
ject. The FP + FN subgroup differed significantly from the TP + TN 
subgroup with regard to proportion of good 3-month outcomes (FP +
FN: median mRS = 1(0–2), 80% mRS < 3; TP + TN mRS = 4(3–6), 10% 
mRS < 3; p < 0.0001), admission NIHSS (FP + FN: median 17(12–22); 
TP + TN: 21(16–26), p = 0.0025), and proportion of male subjects (FP 
+ FN:30%; TP + TN: 49%; p = 0.035). 

4. Discussion 

Using radiomics features extracted from the admission CTAs of 829 
acute LVO stroke patients, we devised, optimized, and validated 
machine-learning classifiers to predict functional outcomes at both 
discharge and 3-month follow-up. Four different input types were 
analyzed: Radiomics only, Radiomics + Treatment (radiomics, reper-
fusion mTICI score, and intravenous thrombolysis), Clinical + Treat-
ment (clinical variables and treatment), and Combined input (radiomics, 
treatment, and clinical variables), all of which showed strong perfor-
mance in cross-validation analyses (Fig. 2). In independent testing using 
a separate 101-subject dataset from the same institution, Radiomics, 
Radiomics + Treatment, and Clinical + Treatment models performed 
with similar accuracy to the Combined model in prediction of both 
discharge and long-term outcome (Tables 3a & 3b, Fig. 3). In external 
testing using a 232-subject dataset from another institution, the Com-
bined model performed with similar accuracy to the Clinical + Treat-
ment model, but significantly better than both the Radiomics and 
Radiomics + Treatment models (Table 3b, Fig. 3). In all, the general 
success of radiomics-based model types in predicting LVO stroke 
outcome indicates that there may be a role for radiomics models in 
guiding cost- and time-sensitive treatment decisions by automating risk 
stratification of acute LVO stroke patients based on admission CTA. 

As clinical variables serve as the current standard for acute stroke 
triage, the fact that similar prognostic performance was observed in the 
radiomics and clinical models indicates that a radiomics-only model can 
offer useful prognostic information at the time of admission when there 
are ‘real-life scenario’ limitations in obtaining thorough clinical infor-
mation. Such scenarios include: the inability to perform a thorough 
neurological exam, patient sedation, language barrier, fluctuating 
neurological exam, and prior motor deficits confounding baseline exam. 
Furthermore, image-guided risk stratification tools can potentially help 
expand treatment eligibility of acute LVO stroke patients to those with 
unknown time of onset (wake-up stroke) or with mild/indeterminate 
stroke severity. 

As indicated by the strong performance of Radiomics and Radiomics 
+ Treatment models in cross-validation and independent cohort ana-
lyses, radiomics-based model success was observed whether or not input 
variables included reperfusion success or even clinical data. However, 
the addition of clinical input variables allowed the Combined model to 
demonstrate more stable generalizability upon external testing. Of 
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Fig. 2. Heatmap summary of cross-validation performance for all candidate models. The feature selection/machine-learning combinations with the highest averaged 
area under the curve (AUC) across validation folds (from 20 repeats × 5-fold cross-validation) are highlighted with bold yellow cell border lines. These best- 
performing models were selected for internal independent and external cohort testing. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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interest, the statistically inferior performance of Radiomics and Radio-
mics + Treatment models was driven by a tendency of these model types 
to overestimate the risk of poor outcome: incorrectly predicted cases had 
a significantly higher proportion of patients with 3-month favorable 
outcome compared to correctly predicted cases in external testing (80% 
vs 10%, p < 0.0001; median mRS 1(0–2) vs 4(3–6), p < 0.0001). Such a 
tendency towards overestimation of risk would in reality promote 
additional support for patients expected to do poorly, without imposing 
potential harm. The prominence of successful mTICI reperfusion scores 
may also contribute to the minimal improvement observed in the 
Radiomics + Treatment model as compared to Radiomics alone: mTICI 
scores of 2b or 3 were observed in 74% of subjects in the training set, 
87% in the internal independent cohort, and 93% in the external cohort. 
These proportions of successful reperfusion are in line with other 
recently published studies such as the ASTER trial, in which 86% of 
subjects who underwent ET had mTICI 2b or greater (Dargazanli et al., 
2018). However, it has been documented that operators tend to over-
estimate the degree of reperfusion compared to core lab scoring (Zhang 
et al., 2018). In general, a ceiling effect of mTICI scoring likely reduces 

this variable’s capability of enhancing model performance. 
A fully automated prognostication tool based on admission CTA 

radiomics can facilitate objective assessment of stroke patients and 
effective treatment triage in the context of expanding telemedicine 
practice. While the use of telemedicine to guide stroke treatment is well 
established, the COVID-19 pandemic motivated rapid expansion of care 
via tele-stroke to provide consistent and timely care while minimizing 
patient and provider exposure and preserving personal protective 
equipment (Guzik et al., 2021). Prior studies have shown that tele-stroke 
programs improve the timeliness of thrombolysis treatments (Lee et al., 
2017). In addition, tele-stroke services may reduce the racial, ethnic, 
and sex disparities in ischemic stroke care (Reddy et al., 2021). 
Furthermore, current human prediction accuracy of LVO patient 
outcome requires improvement, as evidenced by the current rate of poor 
prognosis after successful ET (futile reperfusion, observed in 50% of LVO 
patients undergoing ET) (Meinel et al., 2020) and the high percentage 
(92–93%) of LVO patients who do not currently meet criteria for ET 
(Desai et al., 2019). Models such as ours with AUC ranges up to 0.74 in 
external testing exceed these statistics and could improve patient 

Fig. 3. Area under the curve (AUC) of receiver operating characteristics (ROC) analysis for prediction of discharge outcome in the internal independent cohort, and 
prediction of long-term outcome in the independent and external cohorts (Table 3). ROC curves for Radiomics (green), Radiomics + Treatment (blue), Clinical +
Treatment (black), and Combined (red) models are shown in each quadrant. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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outcomes and resource utilization in both tele-stroke and traditional 
settings. 

More specifically, identification of patients with futile reperfusion 
can guide treatment triage by optimizing patient selection for inter- 
hospital transfer to comprehensive stroke centers (Stefanou et al., 
2020). Patients with high likelihood of futile reperfusion may benefit 
from additional treatment intervention for improvement of long-term 
outcome and may be candidates for future clinical trials evaluating 
treatment options beyond current reperfusion interventions. 

Our methodology may also guide future studies applying radiomics 
algorithms to stroke imaging data. Of interest, all but one of the best- 
performing models identified in cross-validation utilized the support 
vector machine classifier with either sigmoid (SVM_sig) or radial 
(SVM_rad) kernel. While the most prominent classifiers in many recent 
machine-learning studies have been ensemble methods such as XGBoost 
and random forest (Belgiu and Dragut, 2016; Chen and Guestrin, 2016), 
SVM classifiers have also shown utility in multiple neuro-radiomics 
studies (Ortiz-Ramon et al., 2019; Tian et al., 2018). Future work at 
the intersection of machine-learning, radiomics, and stroke clinical 
research may utilize deep learning, which allows for implicit learning of 
relevant features and has been shown to significantly enhance machine- 
learning performance (LeCun et al., 2015). Substantially larger training 
datasets are required for a deep learning approach compared to con-
ventional machine-learning techniques and are needed to implement 
deep learning for prediction of LVO stroke functional outcome in future 
works. The machine-learning methods of the present work maintain the 
advantage of being more transparent than deep learning methods, 
allowing for extraction and analysis of important features. 

Our study is limited by the nonrandomized nature of patient selec-
tion and the lack of an untreated control group. However, considering 
the outcome for unsuccessful thrombectomy as the natural course of 
untreated LVO, this subgroup may substitute for control subjects. Of 
note, the fact that practice-changing trials (Albers et al., 2018; Nogueira 
et al., 2018) were published during the timeline of patient presentation 
in our cohorts (2014–2020) may have impacted treatment variables in 
older vs more recently presenting patients. Our results also demonstrate 
inherent limitations in the generalizability of our Radiomics and 

Radiomics + Treatment models on external data, which could be in part 
due to differences in CTA acquisition methods. Additionally, we 
excluded patients with imaging artifacts such as metal instrumentation, 
head movement, and prior surgeries. While inclusion of these images 
could have potentially improved the robustness of final models, intro-
duction of such noise into the training dataset could have hindered 
model development. Lastly, we trained our models on radiomics features 
extracted from the bilateral MCA territories rather than the whole brain 
or whole anterior circulation territory which includes anterior cerebral 
artery as well. However, models trained on whole-brain radiomics are 
described in Supplementary Fig. 2 and demonstrate similar cross- 
validation performance to the models described in this manuscript. 

5. Conclusion 

In summary, our work demonstrates the feasibility of using auto-
matically extracted radiomics features to create prognostic models for 
LVO patient outcomes from baseline CTA scans. With comparable per-
formance to models based on patients’ neurological exams and clinical 
variables, models solely utilizing radiomics features can help with 
prognostication when acquisition of baseline clinical information is 
limited or confounded. Such models are a promising step towards the 
increasingly important goals of implementing automated cost- and time- 
sensitive decision-assistance tools, particularly in tele-stroke and com-
munity hospital settings, and increasing the number of patients who are 
eligible for life-saving ET. 
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difference in independent testing AUC values was found when comparing the Radiomics, Radiomics + Treatment, or Clinical + Treatment models to the Combined 
model in prediction of either (A) discharge or (B) long-term functional outcome. However, the Combined model outperformed Radiomics and Radiomics + Treatment 
models in prediction of long-term functional outcome in the external cohort (B). 
*P value represents difference from Combined input model. P values were calculated using DeLong’s test. 
yStatistically significant at threshold p < 0.05. 
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