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A B S T R A C T

Providing timely patient care while maintaining optimal resource utilization is one of the central operational
challenges hospitals have been facing throughout the pandemic. Hospital length of stay (LOS) is an important
indicator of hospital efficiency, quality of patient care, and operational resilience. Numerous researchers have
developed regression or classification models to predict LOS. However, conventional models suffer from the
lack of capability to make use of typically censored clinical data. We propose to use time-to-event modeling
techniques, also known as survival analysis, to predict the LOS for patients based on individualized information
collected from multiple sources. The performance of six proposed survival models is evaluated and compared
based on clinical data from COVID-19 patients.
. Introduction

Length of stay (LOS) refers to the cumulative duration of patient
ospitalization between consecutive admission and discharge times
ver a given time horizon. Most hospitals face the challenges of provid-
ng timely patient care while maintaining optimal resource utilization,
specially during the COVID-19 pandemic. According to an annual
urvey conducted by the American Hospital Association, admitted pa-
ients spent more than $1.16 trillion across all registered U.S. hospitals
n 2019 (American Hospital Association, 2021). In the U.S., every 1-
our transfer delay is associated with an adjusted 3% increase in the
dds of inpatient mortality (Churpek, Wendlandt, Zadravecz, Adhikari,
inslow, & Edelson, 2016). Moreover, from the medical perspective,

rolonged LOS increases the risk of adverse events, such as poor
utritional levels, hospital-acquired infections, adverse drug events
nd other complications. From the hospital management perspective,
rolonged LOS decreases the bed turnover rate, disrupts the patient
low and access to care due to bed shortages, which makes hospital
trategic and operational management difficult. The ongoing COVID-19
andemic has tremendously overloaded the healthcare systems leading
o excessive demand for hospital beds. Therefore, quantifying and
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optimizing the LOS could improve the efficiency of hospital manage-
ment, facilitate beneficial treatment, reduce wait times, and mitigate
exposure to risks associated with hospitalization. Real-time demand
capacity (RTDC) management has been considered a best practice to
manage hospital capacity and improve patient flow (Resar, Nolan,
Kaczynski, & Jensen, 2011). RTDC can be used to estimate the LOS
and assist in performing adjustments by integrating four steps into
bed management processes: predicting capacity, predicting demand,
developing and evaluating a plan. However, this manual tool exhibits
a number of flaws related to subjective outcomes and sole restriction
to surgical departments. Past research has also attempted to group
patients by their medical conditions. They assume that each disease
or illness is associated with a recommended LOS, which refers to
diagnosis-related group (DRG) systems. These systems assume that all
patients who fall within the same DRG have identical LOS. However,
LOS is a complex metric affected by many factors, including individual
demographics, different treatment strategies and discharge planning,
which may extend the LOS beyond the target range (Awad, Bader-El-
Den, & McNicholas, 2017). Therefore, a personalized and accurate LOS
prediction model is essential to improve hospital resources utilization
and healthcare decision-making.
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Over the past decade, the prediction of patient LOS with vari-
ous diseases has been extensively investigated using several statistical
and machine learning techniques, such as logistic regression, random
forests, support vector machine (SVM), decision tree-based methods,
etc. Luo et al. (Luo, Lian, Feng, Huang, & Zhang, 2017) proposed
to use logistic regression and random forests to establish a model
to predict the LOS of patients with chronic obstructive pulmonary
disease. Tanuja et al. (Tanuja, Acharya, & Shailesh, 2011) compared
multi-layer perceptron (MLP), naive Bayes, K-NN, and decision tree
models to predict patients’ LOS. Their results showed that MLP and
naive Bayes models had the best classification accuracy of around 85%,
while K-NN performed poorly with only 63.6% accuracy. Kulkarni et
al. (Kulkarni, Thangam, & Amin, 2021) used MLP for the prediction
of prolonged LOS in acute coronary syndrome patients. Dogu et al.
(Dogu, Albayrak, & Tuncay, 2021) proposed an integrated approach
combining fuzzy cognitive maps and artificial neural networks (ANN)
for the LOS prediction for patients with chronic obstructive pulmonary
disease. Barnes et al. (Barnes, Hamrock, Toerper, Siddiqui, & Levin,
2016) compared the prediction performance among random forests,
logistic regression, and clinical decisions in application to inpatient
LOS to support hospital discharge decisions. They found the machine
learning models were more accurate than clinician predictions. A com-
prehensive review of patient LOS studies conducted by Awad et al. can
be found in Awad et al. (2017). The emergence of advanced machine
learning, in particular deep learning, has proved very powerful at
distilling complex hidden relationships in the data and, thus, these
methods typically demonstrate good prediction performance. The main
advantage of deep learning approaches is their capability of automated
extraction of complex data representations through end-to-end training
from raw data, which significantly reduces the effort of manual feature
engineering. Zebin & Chaussalet (Zebin & Chaussalet, 2019) proposed
to use autoencoder dense neural networks to classify LOS into short (0–
7 days) and long stays (>7 days) using the public MIMIC III dataset.
Harerimana et al. (Harerimana, Kim, & Jang, 2021) proposed a hier-
archical attention network to predict LOS and in-hospital mortality.
The proposed model was able to leverage the patient anamnesis and
free text diagnosis recorded on the first day for prediction purposes.
Rajkomar et al. (2018) combined three different deep learning models
and developed an ensemble model to predict hospital readmission and
LOS.

Based on the aforecited literature, the existing LOS models can be
grouped into two general categories: classification models and regres-
sion models. Classification models are usually used to predict categori-
cal outcomes. In other words, the aim is to group the LOS into multiple
classes, e.g., short stay, medium stay and long stay, based on the
number of days that the patient stays in the hospital. However, several
studies have demonstrated that the LOS distributions are highly skewed
to the right (Harerimana et al., 2021; Ma, Yu, Ye, Yao, & Zhuang,
2020). This skewness indicates that the dataset becomes heavily imbal-
anced as only a few long LOS cases exist. This imbalance misleads the
performance evaluation as classes with long LOS are deemed outliers
by the model. Therefore, viewing the LOS task as a regression problem
is a more appropriate and informative way of balancing the dataset
by predicting the actual number of LOS days in lien of class labels.
With this goal in mind, Caetano et al. (Caetano, Laureano, & Cortez,
2014) compared six regression techniques: taking average prediction,
decision trees, multiple regression, ANN ensemble, random forests and
SVM. They found that the best results were obtained by the random
forest model. Rowan et al. (Rowan, Ryan, Hegarty, & O’Hare, 2007)
found that ANNs could be an effective LOS stratification instrument
in postoperative cardiac patients. Muhlestein et al. (Muhlestein, Akagi,
Davies, & Chambless, 2019) presented a machine learning ensemble
model to predict patient LOS after brain tumor surgery. Verburg et al.
(Verburg, de Keizer, de Jonge, & Peek, 2014) compared eight regression
models for modeling intensive care LOS and concluded that currently

available models for ICU LOS are not suitable for predicting individual
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patient outcomes and should not be used as an indicator for ICU
quality or efficiency. Moreover, Vekaria et al. (2021) pointed out that
these data-driven methods failed to address the inherent uncertainty,
complexity and heterogeneity in the healthcare field. It is frequently the
case that data collected from clinical trials and cohort studies are high-
dimensional, censored, heterogeneous by their nature and may have
missing information, presenting additional challenges to traditional
statistical analysis. For example, it is common in clinical studies to
have subjects who did not experience the event of interest at the end
of a study or dropped out before the event of interest occurs. These
subjects are usually called to be right-censored. Although the data may
seem to be incomplete for these subjects as the time-to-event is not
actually observed, these subjects are highly valuable as the observation
that they went a certain amount of time without experiencing an event
is informative per se. Time-to-event modeling techniques, also referred
to as survival analysis, have the capability to handle censored data that
normally are disregarded by regular regression models. Several studies
have applied time-to-event analysis in the clinical field (Schober &
Vetter, 2018). The main advantage of using time-to-event data analysis
is that such models can give a probability estimate instead of solely
point estimates as conventional regression models. Moreover, survival
models have the capability of incorporating censored data into models.
The Cox proportional hazard (PH) model is the most frequently used
technique for time-to-event analysis. The fundamental assumption in
the Cox PH model is that the hazards are proportional by a linear
combination of patient’s covariates. In other words, the relative hazard
remains constant over time with different predictor or covariate levels.
However, this proportional assumption may limit its applicability to
accounting for non-linear and complex relationships among various
features in the dataset. Recently, a number of deep learning based time-
to-event models have been developed, such as DeepSurv (Katzman,
Shaham, Cloninger, Bates, Jiang, & Kluger, 2018), DeepHit (Lee, Zame,
Yoon, & van der Schaar, 2018), Cox-CC (Kvamme, Borgan, & Scheel,
2019). Current research is predominantly focused on assessing the
effect of factors, such as treatments that simultaneously allow one to
control for the effects of other covariates and risk factors associated
with prolonged LOS (Luth et al., 2021). To date, studies of COVID-19
mainly focused on epidemiological investigation, diagnosis and treat-
ment, prevention and control (Wang et al., 2020). Fewer studies have
investigated the COVID-19 patients’ hospital LOS during the pandemic.

Driven by these issues, the primary goal of this study is to estimate
the duration of hospital stay among patients admitted with COVID-19
using clinical data. In this paper, we systematically compare time-to-
event models for individualized LOS prediction, which will be helpful
to facilitate efficient medical resource allocation during the COVID-19
pandemic. Specifically, we apply six different time-to-event models, in-
cluding Cox PH model, DeepSurv, Cox-CC, DeepHit, multi-task logistic
regression (MTLR), random survival forest (RSF) and compare their
performance.

The rest of this paper is organized as follows. Section 2 presents
a brief review of time-to-event data-based LOS prediction. Section 3
summarizes the experimental settings, including data description and
data preprocessing steps. The experimental findings, i.e., prediction
performance results and discussion, is also reported in Section 3. The
conclusions are given in Section 4.

2. Time-to-event models for LOS prediction

In this section, we provide a brief review of concepts employed in
survival analysis and present models subsequently used in the paper.
Survival analysis is a branch of statistics concerned with analyzing
time-to-event data and predicting the probability of occurrence of an
event. The event could be any format, such as recovery, relapse, or
death, discharge, etc. The main benefit of time-to-event modeling is
that the data related to participants who did not experience the event
by the end of the study or were unavailable for follow-up (referred



Y. Wen, M.F. Rahman, Y. Zhuang et al. Machine Learning with Applications 9 (2022) 100365

a
T
t
t
‘

ℎ

t
v
o
u
c

𝑃

w
a

a
c
m
m
s
m
r
p

B

n
b
i
o
o

f
r
l
t
d
n
w
m
l
i

C

o
e
p
T
b
a
b

𝑃

to as data censoring) can still contribute to the analysis. However, in
conventional regression models, censored data are typically discarded,
which may introduce a bias into the model.

To estimate the LOS by using survival analysis tools, the objective
is to model the LOS distribution as a function of time. Letting 𝑓 (𝑡)
and 𝐹 (𝑡) denote the probability density function and the cumulative
distribution function of the random time 𝑇 , respectively, the goal is
to find the distribution 𝑃 (𝑇 ≤ 𝑡) = ∫ 𝑡

0 𝑓 (𝑢) 𝑑𝑢 = 𝐹 (𝑡), which has a
relationship with survival function 𝑆 (𝑡) via 𝑆 (𝑡) = 𝑃 (𝑇 > 𝑡) = 1 −𝐹 (𝑡).
For patient 𝑖, define the associated event time 𝑇𝑖 = min{𝐹𝑖, 𝐶𝑖}, where
𝐹𝑖 denotes the event time and 𝐶𝑖 denotes the censoring time. Let 𝛿𝑖
denote the indicator function taking value 1 if the event occurs for
patient 𝑖 at 𝑇𝑖, or taking value 0 if it is censored at 𝑇𝑖. Other predictors
(e.g., demographics, vital signs, etc.) are denoted as a vector 𝒁 𝑖. Now
ll observed data for patient 𝑖 can be denoted as 𝑫𝑖 =

{

𝒁 𝑖, 𝐹𝑖, 𝛿𝑖
}

.
hen the survival function for patient 𝑖 𝑆𝑖 (𝑡) = 𝑃𝑖(𝑇 ≥ 𝑡) represents
he probability of ‘‘survival’’ up to time 𝑡. The hazard function is
he instantaneous rate at which events occur for individuals who are
‘surviving’’ at time 𝑡

(𝑡) = lim
𝛥𝑡→0

Pr (𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡|𝑇 ≥ 𝑡)
𝛥𝑡

(1)

The term ∫ 𝑡
0 ℎ (𝑢) 𝑑𝑢 is then called cumulative hazard function and

denoted by 𝐻 (𝑡) (Kartsonaki, 2016). The hazard function is linked to
survival function by 𝑆 (𝑡) = exp

{

− ∫ 𝑡
0 ℎ (𝑢) 𝑑𝑢

}

. Accordingly, the full
likelihood function, which are used for parameter estimation, can be
written as the product of the survival and hazard functions

𝐿 =
∏

𝑖
𝐿𝑖 = ℎ

(

𝑡𝑖
)𝛿𝑖 𝑆

(

𝑡𝑖
)

. (2)

In addition, once we have 𝑆 (𝑡), the mean or the expected value survival
with boundary conditions 𝑆 (0) = 1 and 𝑆 (∞) = 0 can be estimated by

𝜇 = ∫

∞

0
𝑆 (𝑡) 𝑑𝑡 (3)

The one-dimensional integration can be easily performed numerically
with usual approaches such as Gauss–Legendre quadrature method
(Hildebrand, 1987).

In the context of the present paper, an important clarification needs
to be made. When treating COVID-19 patients, any particular patient
can and usually does have multiple admissions and discharges over
any particular time frame, oftentimes due to transfer between different
departments within the hospital or internal patient tracking peculiari-
ties. Therefore, instead of counting time to the next discharge, a more
adequate and useful LOS metric is the cumulative amount of time spent
by a patient in a hospital over a certain time period (e.g., 30 days as
we did in this paper) from a given encounter, which can encompass
multiple non-overlapping stays at the hospital. Another advantage of
this approach is that it is amenable to aggregation over population of
patients and pragmatically useful for hospital management to under-
stand predicted resource utilization over a reasonable time period and
over a population of patients. Thus, the time 𝑇 corresponds to the total
time spent by a patient in the hospital within a certain window of time.
Correspondingly, 𝐹 (𝑡) describes the probability of 𝑇 not exceeding 𝑡,
𝜇 is the expected time spent in the hospital and so on. The events of
interest are discharged due to recovery or due to death. In sum, the
model is used to predict the cumulative time spent in the hospital over
the next 30 days rather than the time of the next discharge. Censoring
effects can occur if the patient is transferred to another hospital and
dies there.

A. Cox proportional hazard model
One class of prevailing survival models is given by the Cox PH

model. Cox PH is a semiparametric model that quantifies the effects
of observed covariates on the risk of an event occurring (e.g., death),
which is one of the most popular methods for estimating the probability
distribution of survival time based on one or more predictor variables
3

in various fields (Wen, Guo, Son, & Wu, 2022). The functional form is
defined as

ℎ𝑖 (𝑡) = ℎ0 (𝑡) exp
(

𝝎T𝒁 𝑖
)

(4)

where ℎ0(𝑡) is a baseline hazard function shared by all individuals
hat can be in either a non-parametric or parametric form. 𝝎 is a
ector parameter to be estimated, representing the effect of covariates
n the outcome. To estimate the unknown parameters 𝝎, instead of
sing Eq. (2), partial likelihood is commonly used (Cox, 1972), which
an be expressed as

𝐿(𝝎) =
𝑁
∏

𝑖=1

⎛

⎜

⎜

⎝

𝑒𝝎T𝒁𝒊

∑

𝑗∈𝑅𝑖
𝑒𝝎T𝒁𝒋

⎞

⎟

⎟

⎠

𝛿𝑖

(5)

here 𝑅𝑖 = {1 ≤ 𝑗 < 𝑁|𝑇𝑗 ≥ 𝑇𝑖} represents a risk set including
ll subjects at risk at time 𝑇𝑖. N is the total number of individuals.

To maximize the Cox partial likelihood, Newton–Raphson’s method is
usually employed.

Lastly, for the baseline hazard estimation, Breslow approximations
to the partial log-likelihood can be used (Breslow, 1972) as

ℎ̂0(𝑡𝑖) =
𝑑𝑖

∑

𝑗∈𝑅𝑖
𝑒𝝎𝑻𝒁𝒋

. (6)

Where 𝑑𝑖 is the number of events at time 𝑡𝑖. The model assumes that
patient’s log-risk of failure is a linear combination of respective

ovariates. However, it may be too simplistic and limit the suitability of
odeling non-linear interactions among prognostic factors. Therefore,
ore complex models are in demand to capture non-linear relation-

hips. To overcome this well-known issue associated with Cox PH
odel, machine learning approaches, which facilitate the detection of

elationships in complex datasets, have recently been employed for this
urpose.

. DeepSurv
ANNs have shown great potential when complex interactions or

on-linear effects exist. Fig. 1 shows an example of a neural network-
ased Cox PH model architecture. The ANN architecture consists of
nputs, one or more fully connected hidden layers, and a Cox-regression
utput layer. Replacing the exponential part 𝝎T𝒁 of Eq. (4) by the
utput of ANN, the inputs are fused in a non-linear manner.

As an extension to the Cox PH model, DeepSurv is a deep feed-
orward neural network, which involves modeling proportional hazard
atios over individuals using deep neural networks. It has the ability to
earn non-linear hazard ratios (Katzman et al., 2018). In this model,
he inputs to the network are the various patient information and
iagnosis, and the hidden layers consist of a fully connected layer of
odes, followed by a dropout layer. The output layer is a single node
ith a linear activation which estimates the log-risk function in the Cox
odel. The loss function of the model is the average negative log-partial

ikelihood with regularization. Stochastic gradient descent optimization
s used to find the optimal weights of the network.

. Cox-CC
As shown in Eq. (5), to calculate the loss function, one needs to sum

ver all risk sets 𝑅𝑖, which can be extremely computationally expensive,
specially for large datasets. To resolve this issue, Kvamme et al. (2019)
roposed a case-control approximation to the loss function estimation.
hey fitted the Cox model with mini-batch stochastic gradient descent
y approximating the risk set 𝑅𝑖 with a reasonable portion subset 𝑅𝑖
nd then weight the likelihood accordingly with weights 𝑤𝑖, which can
e formulated as

𝐿 (𝝎) =
𝑁
∏

𝑖=1

⎛

⎜

⎜

⎝

𝑒𝝎𝒁𝒊

𝑤𝑖
∑

𝑗∈𝑅𝑖
𝑒𝝎𝒁𝒋

⎞

⎟

⎟

⎠

𝛿𝑖

. (7)

The selected i’s refer to case in case-control approximation. The weights
𝑤 need to be determined to ensure the approximation is close to the
𝑖



Y. Wen, M.F. Rahman, Y. Zhuang et al. Machine Learning with Applications 9 (2022) 100365
Fig. 1. Neural network-based Cox PH model.
full sum over 𝑅𝑖. The case-control design was originally developed by
Goldstein and Langholz (Goldstein & Langholz, 1992). They showed
that for the Cox partial likelihood, the sampled risk sets produce
consistent parameter estimators equivalent to those using full risk sets.

D. Random survival forest (RSF)
Random forests are an ensemble learning method that performs

by constructing a number of decision trees and taking their majority
vote for classification and average in case of regression. Random sur-
vival forest (RSF), introduced by Ishwaran et al. (Ishwaran, Kogalur,
Blackstone, & Lauer, 2008), is an extension of the random forest
model to take censored data into account by constructing survival
trees. Survival trees stem from the concept of regression trees, in
which the observations are split into groups, and then maximize the
difference in the response between groups using a metric. The time-to-
event data are used as the response (Segal, 1988). The RSF algorithm
constructs numerous survival trees from bootstrap samples of the data
and utilizes the averaged predictions of each tree to construct an overall
prediction of the survival time for each observation. The RSF method
has become attractive as a non-parametric method with less restrictive
model assumptions.

E. DeepHit
The aforementioned methods are continuous-time models. They

need to define a functional form to learn the relationship between the
covariates and the survival times. The following two models are known
as discrete-time models.

DeepHit is a deep neural network that learns the distribution of
survival times directly (Lee et al., 2018). To achieve this, it discretizes
the survival times and treats the survival analysis problem as a mul-
ticlass classification problem over the discrete-time intervals. DeepHit
employs a multi-task network architecture that consists of a single
shared sub-network and a family of cause-specific sub-networks. Given
the covariates 𝒁 𝑖 of patient 𝑖, the DeepHit model tries to learn the
probability 𝑃 (𝐹𝑖 = 𝑠, 𝛿𝑖 = 𝑘|𝒁 = 𝒁 𝑖),i.e., the probability that a (new)
patient with covariates 𝒁 𝑖 will experience the event 𝑘 at time 𝑠. To train
DeepHit, a loss function 𝐿𝑇 𝑜𝑡𝑎𝑙 = 𝐿1 + 𝐿2 that is specifically designed
to handle censored data is minimized, where 𝐿1 is the log-likelihood of
the joint distribution of the survival time and event of interest, while
𝐿2 incorporates a combination of cause-specific ranking loss functions.

F. Multi-task logistic regression (MTLR)
The Multi-Task Logistic Regression (MTLR) model, developed by

Yu et al. (Yu, Greiner, Lin, & Baracos, 2011), is a combination of a
series of logistic regression models. Logistic regression can be viewed
as modeling survival probability of individuals at a certain time point.
By discretizing the time duration to disjoint multiple intervals, MTLR
can be treated as a combination of logistic regression models that

estimate the probability that the event of interest happens within each

4

interval. MTLR enforces the dependency of the outputs by predicting
the event status of an individual at each time snapshot jointly instead
of independently.

3. Experiments

3.1. Data description and summary statistics

The data used in this study is obtained from the University of
Texas Medical Branch at Galveston (UTMB). For this study, we ana-
lyzed 805 patient records with hospital admission times occurring from
03/16/2020 to 11/07/2020 and who were confirmed via PCR testing
to have COVID-19. Each record consists of demographical data such
as gender, ethnicity, age, vital indices such as pulse, temperature, BMI
(body mass index) and ICD-10 diagnosis code. ICD-10 refers to the
10th revision of the International Statistical Classification of Diseases
and Related Health Problems, which is a medical classification list
provided by the World Health Organization. It contains codes for
diseases, signs and symptoms, abnormal findings, complaints, social
circumstances, and external causes of injury or disease. In the base
ICD-10 classification system, the code set allows for more than 14,000
different codes to track various diagnoses. Considering the small size
of our dataset, we filter out the barely used ICD-10 codes and only
keep the codes with more than 60 occurrences that the number of
patients has been diagnosed. This is necessary since the majority of
the ICD-10 are never used. In this way, the dimension of the data
can be significantly reduced. After excluding irrelevant ICD-10 codes,
a total of 59 features are used for this study. In addition, there is a
column to record the deceased status. As described in Section 2, rather
than measuring the time to the next discharge, in this dataset, the LOS
recorded corresponds to the cumulative amount of time (possibly, over
several non-overlapping stays) a patient has spent in the hospital within
30 days of the encounter of interest. Table 1 and Fig. 2 summarize the
distribution of LOS based on gender, ethnicity, and age. From Table 1
and Fig. 2 we can see that the distribution of LOS is heavily right-
skewed, with 76.28% of LOS values below 7 days and 89.81% of LOS
values below 14 days. The median and mean of LOS are 2.15 and
5.27, respectively. Interestingly, there are more male patients in almost
all rows of Table 1 than female patients, which is also apparent from
Fig. 2(b). The percentage of patients under 18 years old is extremely
low with only 0.99% (8/805). Adults over 60 years of age represent
42.98% of hospitalizations. It indicates that older adults have a higher
risk. Obviously, we can conclude that the risk for severe illness with
COVID-19 increases with age. Another phenomenon we can observe is
no significant difference between Hispanic or Latino and not Hispanic or
Latino patients.
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Table 1
Distribution of LOS.

LOS Records
(No./%)

Gender Ethnicity Age

Male Female Unknown HLa NHLa Unknown [0,18] [18,60] 60+ Unknown

1 346/42.98% 158 188 0 153 191 2 8 235 103 0
2 47/5.84% 26 21 0 17 28 2 0 33 14 0
3 56/6.96% 38 17 1 21 30 5 0 27 28 1
4 56/6.96% 40 16 0 22 34 0 0 22 34 0
5 31/3.85% 23 8 0 17 13 1 0 17 14 0
6 52/6.46% 31 20 1 13 38 1 0 18 33 1
7 26/3.23% 19 7 0 12 13 1 0 12 14 0
8 32/3.98% 23 9 0 12 17 3 0 16 16 0
9 16/1.99% 13 3 0 5 10 1 0 7 9 0
10 7/0.87% 4 3 0 3 4 0 0 2 5 0
11 13/1.61% 9 4 0 2 11 0 0 6 7 0
12 25/3.11% 17 8 0 3 22 0 0 12 13 0
13 9/1.12% 7 2 0 4 5 0 0 1 8 0
14 7/0.87% 5 2 0 3 4 0 0 3 4 0
14+ 82/10.19% 62 20 0 30 50 2 0 38 44 0

Total 805/100% 475 328 2 317 470 18 8 449 346 2

aH.L.: Hispanic or Latino; NHL: Not Hispanic or Latino.
Fig. 2. Length of stay distribution (a) pooled; (b) grouped by gender; (c) grouped by ethnicity; (d) grouped by age.
.2. Data preprocessing

It is quite common that clinic datasets have missing values which oc-
ur when the value of a variable of interest is not measured or recorded
n the sample. Data can be missing for several reasons, including (i)
oss of a patient to follow-up; (ii) patient refuses to respond to some
uestions; (iii) investigator or mechanical error; and (iv) physicians
ot ordering certain investigations for some patients (Austin, White,
ee, & van Buuren, 2020). In our dataset, missing values appear in
he fields of age, temperature, vitals, etc. It was found that incomplete
ata lead to adverse effects on the outcome as it decreases the learning
ate and accuracy of prediction and increases the variability in the
valuation metrics (Holmes & Bilker, 2002). It was also found that the
5

effect relates to the percentage of the missing data as well as the type
of the missing data. In our dataset, the majority of missing entries are
from vitals. Among 805 records, the number of missing values for BMI,
diastolic blood pressure, systolic blood pressure, pulse, pulse oximetry,
respiration, temperature is 78, 3, 3, 1, 3, 6, 2, respectively. Considering
that we only have a limited number of records, this is nonnegligible.
The commonly used approach to address the presence of missing data is
complete-case analysis, where subjects with missing data are excluded.
Another method is called mean-value imputation, where missing values
are replaced with the mean value of that variable in those subjects for
whom it is not missing. However, in many settings, these approaches
can lead to biased estimates (e.g., of regression coefficients) and/or
confidence intervals that are artificially narrow (Austin et al., 2020).
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To address this issue, in this paper, for each patient, we first extract the
patient’s vitals from the past two weeks and use Tukey’s five-number
summary for the pooled sample as the current vital information. Five-
number summary refers to ‘‘minimum value’’, ‘‘lower hinge (or first
quartile)’’, ‘‘median’’, ‘‘upper hinge (or third quartile)’’ and ‘‘maximum
value’’. For example, instead of using one column for temperature,
there are five columns used. Based on consultation with medical ex-
perts, this approach was deemed reasonable. In our paper, the missing
values are handled by multivariate imputations by chained equations
(MICE) based on random forests (Van Buuren & Groothuis-Oudshoorn,
2011).

After filling in missing entries, the data is preprocessed in further
steps. For the categorical features (e.g., gender, ethnicity), one-hot en-
coding techniques are used. For continuous features, Min–Max scaling
is used to normalize the data to reduce variation. Normalization is a
scaling technique in which values are shifted and rescaled so that they
end up ranging between 0 and 1. It is also known as Min–Max scaling,
which is equalized as

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(8)

where 𝑥 represents the original value. 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum
nd the minimum values of the sampled feature values, respectively.

.3. Evaluation metrics

Metrics for evaluating the prediction performance are summarized
n this section. For survival models, various metrics are available to
andle the censored values. Concordance index (C-index) and Brier
core are the two most commonly used metrics for this purpose.
1) C-index

The most commonly applied discriminative evaluation metric to
valuate the predictive ability of a survival model is C-index (Harrell,
aliff, Pryor, Lee, & Rosati, 1982). The C-index is concerned with
he order of the predictions, not the predictions themselves. The idea
ehind the C-index is that for a random pair of individuals in a dataset,
he predicted event times of the two individuals have the same ordering
s their true event times. A concordance index of 1 represents a model
ith perfect prediction, an index of 0.5 is equal to random prediction.
he C-index shows the model’s ability to correctly provide a reliable
anking of the survival times based on the individual risk scores.
2) Brier Score

The Brier score rule is affected by both discrimination and calibra-
ion, which is defined by

𝑆 (𝑡) = 1
𝑁

𝑁
∑

𝑖=1

(

1𝑇𝑖>𝑡 − �̂� (𝑡, 𝑥)
)2

, (9)

where 𝑁 is the number of events under consideration. Brier scores
calculated with the above formula lie between 0 and 1: A Brier score
of 0 reflects perfect accuracy (i.e., there is no difference between
event scores), and a Brier score of 1 reflects perfect inaccuracy. If
the dataset contains right-censored data, it is necessary to adjust the
core by weighting the squared distance using the inverse probability of
censoring weights method (Graf, Schmoor, Sauerbrei, & Schumacher,
1999).

𝐵𝑆 = 1
𝑁

𝑁
∑

𝑡=1

⎛

⎜

⎜

⎝

(

0 − �̂� (𝑡, 𝑥)
)2

⋅ 1𝑇𝑖≤𝑡,𝛿𝑖=1
�̂�(𝑇 −

𝑖 )
+

(

1 − �̂� (𝑡, 𝑥)
)2

⋅ 1𝑇𝑖>𝑡
�̂�(𝑡)

⎞

⎟

⎟

⎠

(10)

where �̂� (𝑡) is the estimator of the conditional survival function using
the Kaplan–Meier method.

In addition, three frequently used performance metrics are ap-
plied to measure the prediction performance, i.e., mean absolute error
(MAE), root mean squared error (RMSE), and mean absolute percentage
error (MAPE). These metrics are defined as

𝑀𝐴𝐸 = 1
𝑁
∑

|

|

�̂�𝑖 − 𝑦𝑖|| , (11)

𝑁 𝑖=1
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𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2, (12)

𝐴𝑃𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

|

|

�̂�𝑖 − 𝑦𝑖||
𝑦𝑖

⋅ 100
)

. (13)

In the above equations, 𝑦𝑖 and �̂�𝑖 represent observed LOS and
redicted LOS, respectively. 𝑁 is the total number of samples. All
f these metrics are negatively oriented scores, which means a lower
alue indicates a better model. Both MAE and RMSE measure the
verage RUL prediction error of the model. The value of these two
etrics could range between 0 and ∞. RMSE is the square root of

he mean squared difference between true LOS and predicted LOS.
MSE is always nonnegative and zero RMSE means a perfect fit to the
ata, which is nearly impossible in practice and can also be a sign of
verparameterization. MAPE is a variant of MAE, which is the absolute
rror normalized over the data. MAPE is widely used because it can
e easily interpreted. For example, a MAPE of 30% means the model
pproximates the target value with an average accuracy of 70% (by
ubtracting from 100%).

.4. Results and discussion

This section evaluates the performance of six survival models, which
re considered for LOS prediction in this paper. All computations are
onducted on a 2.3 GHz Quad-Core Intel Core i7 processor, and the
ode is written in Python. The percentage for the training and test
ets are 80% and 20%, respectively. To train the survival models,
he adaptive moment estimation (Adam) is chosen for optimization
Kingma & Ba, 2015). Adam is a stochastic first-order optimization
lgorithm that uses historical information about stochastic gradients
nd incorporates it in an attempt to estimate the second-order moment
f stochastic gradients adaptively. This method requires little memory,
hich makes it computationally efficient. Thus, Adam has been proved
ell-suited for problems where data volume and number of parameters
re comparatively larger. To determine the optimal network architec-
ure for each survival model, i.e., the number of hidden layers and
umber of hidden nodes, five-fold cross-validation was used on the
raining data set (i.e., 20% of training records are used for validation).
he model with the lowest validation error is eventually selected.
he best configuration is listed in Table 2. To evaluate the prediction
erformance, we first randomly select two samples from test data and
how the predicted LOS curve as depicted in Fig. 3. The vertical solid
lue lines in Fig. 3(a) and (b) are the true LOS for each sample, which
re 7.05 days and 12.41 days, respectively. As expected, for all models,
he 𝑆(𝑡) monotonically decreases as the days of follow-up increase. It
s observed that the predicted LOS curves are close to each other and
o the true value in Fig. 3(a), whereas in Fig. 3(b), the predicted curve
or each model varies. The center of the Cox-CC is closest to the true
alue, which indicates the best accuracy. To evaluate the performance
uantitatively, the expected LOS is calculated using Eq. (3) for Cox-
inear, DeepSurv, Cox-CC, DeepHit, MTLR, and RSF, respectively. They
re 7.68, 5.51, 6.15, 14.15, 6.09, 8.30, 6.64 for (a) and 11.47, 19.85,
3.06, 27.18, 6.48, 14.58 for (b), respectively. Then we calculate the
bsolute error (i.e., |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐿𝑂𝑆 − 𝑡𝑟𝑢𝑒𝐿𝑂𝑆|) for each model. The
bsolute errors yield 0.63, 1.54, 0.9, 7.1, 0.96, 0.41 for (a) and 0.94,
.44, 0.65, 14.77, 5.93, 2.17 for (b). As we can see, Cox-linear and Cox-
C constantly show good predictive capability for both (a) and (b). On
he other hand, DeepSurv and DeepHit significantly deviate from the
rue LOS in (b). From Fig. 3(b) we can see that the predicted LOS curves
f both models have longer tails than others, so the predicted values are
ubstantially larger than the true LOS.

Table 3 displays C-index and Brier scores for each model. In all per-
ormance comparison tables, the best performance values are marked
old. From Table 3 we observe that RSF shows the best C-index per-
ormance, and Cox-linear has the best Brier score. DeepHit, and MTLR
how poor performance in terms of both C-index and Brier scores. As
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Fig. 3. Predicted LOS curve for two randomly selected samples.
Table 2
Parameter settings.

Models Hidden layers Batch size Dropout

Cox-linear – – –
DeepSurv [64] 128 0.2
Cox-CC [96] 128 0.1
DeepHit [64,64] 128 0.1
MTLR [128,128] 128 0.1
RSF – – –

we discussed earlier, these two models discretize the survival times
and treat the survival analysis problem as a multiclass classification
problem over the discrete-time intervals. However, the dataset is highly
skewed, the majority of the LOS fall into less than one-day category
and, thus, negatively affect the capability of these models.

To evaluate the overall prediction performance, we calculate the
MAE, RMSE and MAPE in the 20% test data for each model. We also
include the popular support vector regression (SVR) for comparison
purposes. A support vector machine (SVM) constructs a hyperplane
or set of hyperplanes in a high- or infinite-dimensional Hilbert space,
which can be used for classification, regression, or other tasks like
outlier detection. Because of their relative simplicity and flexibility,
SVMs have become exceedingly popular in recent years. SVR uses the
same principles as the SVM, with only a few minor differences to adapt
for regression problems. We consider three different kernels in SVR,
namely, linear, radial basis function (RBF) and polynomial. It should
be noted that to run the SVR model, 60 censored samples had to be
removed from the data. Table 4 shows the comparison results. It is
observed that SVR with RBF kernel has the best MAE value. Cox-linear
and SVR with linear kernel have the best RMSE and MAPE, respec-
tively. It is somewhat surprising that deep learning models, including
DeepSurv and DeepHit, perform worse than linear models. In this study,
we only have 805 patient records with 59 selected features. For some
patients, some features have missing entries, which makes the problem
of data scarcity even more severe. Among 805 patient records, 644
records (80% of data) are used for training. Since the performance
of deep learning models relies heavily on the size of training data,
the former can be severely compromised when the number of training
samples is small. We also observe that all discrete-time survival models,
i.e., DeepHit, MTLR and RSF exhibit poor performance in terms of MAE,
RMSE and MAPE. From Table 4 we can also see that the MAPE of
discrete-time survival models is much bigger than their MAE and RMSE.
Because of the skewness of the distribution of LOS, the MAPE increases
quickly if a long LOS is erroneously predicted to be short or vice versa.
In other words, a single mistake of the model may dominate the MAPE.

It is surprising that the good C-index of RSF leads to a worse MAE,

7

Table 3
Comparison of C-index and brier score.

Models C-index Brier score

Cox-linear 0.7335 0.0741
DeepSurv 0.7332 0.0755
Cox-CC 0.7066 0.0815
DeepHit 0.5540 0.1503
MTLR 0.4745 0.1021
RSF 0.7388 0.0793

Table 4
Prediction performance comparison.

Models MAE RMSE MAPE

Cox-linear 3.4387 5.4834 5.5368
DeepSurv 3.4468 5.6120 4.5242
Cox-CC 3.6175 5.8959 5.0749
DeepHit 8.2114 9.1956 27.1449
MTLR 4.4384 6.5393 9.9455
RSF 4.4477 5.9019 11.7549
SVR (linear kernel) 3.4059 6.0313 4.1160
SVR (rbf kernel) 3.3073 5.9660 4.6721
SVR (polynomial kernel) 3.8371 6.2235 6.6887

RMSE and MAPE. This method requires a larger number of samples to
grow an accurate survival tree. With limited data, the LOS information
learned from data through RSF is confined.

4. Conclusion

Predicting cumulative hospital LOS over a given time horizon allows
hospitals to assess the overall patient load, which in turn allows im-
proved scheduling of patient admissions leading to reduced variation of
bed occupancies in hospitals. In this study, we investigated six different
survival models for LOS prediction. Patient-specific LOS distributions
can be learned by using survival models. Furthermore, we can make
full use of censored clinical data. The results of our case study show
that the selected survival models exhibited a variation in prediction
performance depending on the model evaluation criteria. Continuous-
time survival methods show good predictive capability compared with
discrete-time models. In this research, we only consider patients’ vital
signs in the form of numeric data. However, features from the text
and images could be very useful in improving the accuracy of LOS
prediction, which could be an interest of the future research direction.
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