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Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by

vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality

and unfortunately no disease modifying therapy is currently available. A key cell in

the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with

contractile properties that produce a large amount of pro-fibrotic extracellular matrix

molecules such as collagen type I. In this narrative review we will discuss the presence,

formation, and role of myofibroblasts in SSc, and how these processes are stimulated

and mediated by cells of the (innate) immune system such as mast cells and T

helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target

myofibroblasts will be highlighted for future perspective.
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INTRODUCTION

Systemic sclerosis (SSc) is a rare but severe auto-immune disease characterized by inflammation,
vasculopathy and excessive fibrosis of connective tissues. Its incidence worldwide is on average
an estimated 13 people per 1 million per year, with a prevalence of ∼200 people per 1 million
(1). Risk factors include genetic predisposition (2), female sex (3), and exposure to environmental
cues such as chemicals like silica or solvents (4), but its etiology remains poorly understood. The
excessive fibrosis characteristic for SSc typically starts distally in the skin of the extremities and
moves upwards toward and trough the trunk until it greatly negatively affects the function of
many organs like the gastro-intestinal tract and lungs. SSc is therefore accompanied by a high
morbidity and patients often require extensive medical care with a (severely) reduced quality of
life (5). Mortality is also increased in SSc patients. On average, the standard mortality rate of
all causes is 2.7, with lung involvement being the major cause of death (6). Furthermore, the
estimated loss of life-expectancy for patients is more than 15 years (7). Unfortunately, to date, no
targeted disease-modifying therapy is available, resulting in a large unmet medical need. Because
of this need, SSc has been designated an orphan disease to support research and development of a
treatment.

The lack of targeted therapy for SSc is partly due to a lack of understanding of its
pathophysiology. Its pathophysiology is a complex interplay between endothelium, the innate and
acquired immune system, target organs and connective tissue which culminates in excessive fibrosis
of e.g., skin and internal organs. A key cellular player in many fibrotic conditions such as keloid
formation, Dupuytren’s contracture and post-operative scarring is the myofibroblast, which is a
special type of fibroblast. In this review we will discuss the role of myofibroblasts in SSc, their
formation and how these cells are at the center of SSc pathophysiology, by regulating many of this
disease’s aspects.
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ON THE MYOFIBROBLAST AND ITS
BIOLOGICAL FUNCTION

Myofibroblasts were first identified in granulation tissue during
open wound healing, as cells that resembled fibroblasts
but contained microfilaments in their cytoplasm similar to
those of smooth muscle cells (8, 9). Subsequently, it was
demonstrated that these cells have contractile properties and
are key in open wound closure (9). Myofibroblasts facilitate
wound healing in several ways (Figure 1); First, they are
capable of producing large amounts of extra cellular matrix
(ECM) molecules such as collagen type I, collagen type III
and fibronectin to replace lost ECM. Secondly, myofibroblasts
are contractile. Their microfilaments (also known as stress
fibers) consist of alpha smooth muscle actin (αSMA) and
non-muscle myosin type II (10) and can contract in typical
actin-myosin fashion, albeit rather slowly compared to muscle
actin myosin filaments. Thirdly, myofibroblasts strongly connect
physically to their environment; via integrin-mediated focal
adhesions and cadherin-mediated adherens junctions their
actin cytoskeleton is strongly anchored to their surrounding
ECM and neighboring cells, respectively (11). The combination
of this strong connection to the environment with their
ability to contract allows myofibroblasts to exert tension
on their surroundings and contract (damaged) tissue. This
contraction decreases wound size and is crucial for open
wound healing. Long term wound healing is further supported
by myofibroblasts via their ability to strengthen the ECM;
myofibroblasts express several protein and collagen crosslinking
enzymes such as protein-glutamine gamma-glutamyltransferase
2 (= transglutaminase 2), protein-lysine 6-oxidase (LOX), and
procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2)
(12). These enzymes help strengthen e.g., fibrillar collagen
bundles by post-translationally modifying collagen molecules,
which results in increased crosslinking of these molecules in
collagen networks during the maturation phase of wound
healing. These crosslinks increase this networks’ strength and
prevents enzymatic degradation and thus strengthen the (scar)
tissue.

Myofibroblasts also secrete and/or activate various autocrine
and paracrine mediators to facilitate wound healing. For
example, myofibroblasts produce vascular endothelial growth
factor (VEGF) (13). This polypeptide growth factor is key in
the formation of new blood vessels. Furthermore, myofibroblasts
produce endothelin 1, a potent vasoconstrictor but also a factor
which stimulates the formation of new myofibroblasts (14)
and enhances their function in regard to collagen production
and contractile properties (15). Myofibroblast function is also
enhanced by their production of connective tissue growth
factor (CTGF), a matricellular protein which stimulates e.g.,
their formation and collagen type I production. A key growth
factor which is produced (13) and potently activated by
myofibroblasts is transforming growth factor β (TGFβ) (16). This
polypeptide growth factor is strongly pro-fibrotic and stimulates
myofibroblast formation and activity. TGFβ is produced in latent
form [bound by latency associated peptide (LAP) and latent
TGFβ binding proteins (LTBP)] but can efficiently be activated

FIGURE 1 | The myofibroblast and its properties. Myofibroblasts are

characterized by stress fibers containing αSMA, production of extracellular

matrix (ECM) components and ECM strengthening enzymes. Furthermore,

myofibroblast are closely linked to their environment via focal adhesions and

adherens junctions. Cytokines which are produced by myofibroblasts include

TGFβ, VEGF, CTGF, IL-1, IL-6, and IL-8. These characteristics help

myofibroblasts fulfill their role in wound healing.

by myofibroblasts via an integrin-mediated process (16, 17). Of
note, TGFβ induces the expression of ET-1, CTGF, and VEGF in
myofibroblasts, indicating that this growth factor lays at the heart
of the expression of these factors. In addition, myofibroblasts can
produce a range of various cytokines and chemokines to aid in the
recruitment and facilitate the function of (innate) immune cells
(13). Most notably, they produce interleukin 1 (IL-1), interleukin
6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractive
protein 1 (MCP-1) (13).

Together these abilities make myofibroblasts well suited to
facilitate wound healing.

ON THE PRESENCE OF
MYOFIBROBLASTS IN SSC

Myofibroblasts have long been associated with SSc
pathophysiology (18). Already in 1972 it was identified that
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fibroblasts obtained from SSc skin have a pro-fibrotic phenotype
and produce more collagens than control fibroblasts (19).
In 1990 it was confirmed using immunohistochemistry that
fibroblasts of SSc patients near lesional areas in skin, esophagus,
and lungs contain alpha smooth muscle actin (20) and are thus
myofibroblasts.

In skin, the presence of myofibroblasts correlates with the
amount of (hyalinized) collagen and skin parameters related to
fibrosis such as tightness, hardness and stiffness, and does so
more significantly than inflammation (21–23), supporting for a
role of myofibroblasts in the pathogenesis of these clinical signs.
This skin thickening and hardening can occur to such extent
that it impairs movement of e.g., fingers. Furthermore, excessive
matrix deposition leads to loss of tissue architecture such as sweat
glands and hair follicles.

In lungs of SSc patients, the presence of myofibroblasts in the
interstitial space can already be observed early during the fibrotic
process (24), and with progression of interstitial lung disease they
can ultimately also be observed in bronchoalveolar lavage liquid
of SSc patients (25). The presence of pathological myofibroblasts
greatly negatively affects lung function. Their matrix producing
ability destroys alveolar architecture and increases interstitial
space thickness, which both hamper respiration. Furthermore,
the presence of myofibroblasts can induce stenosis; the abnormal
narrowing of bloodvessels, and blood vessel narrowing is further
enhanced by myofibroblasts’ expression of ET-1, a potent
vasoconstrictor. This hampers pulmonary blood flow, and as a
consequence induces strain on the right heart ventricule.

Another location where myofibroblasts can be detected in
SSc is in the esophagus and gastric wall of patients with severe
fibrosis (26). Here, myofibroblast presence results in loss of
muscle function, making these tissues unable to contract. As a
consequence, gastric acid can flow into the esophagus, causing
gastro-oesophageal reflux disease.

Together, these observations place myofibroblasts in the
various organs that can be affected by SSc. In addtion, organs
such as kidney, intestine and myocard can also be affected by
myofibroblast-driven fibrosis in SSc (18). However, of note, in
late stage fibrotic atrophic SSc skin these cells can no longer
be detected (27). Figure 2 gives an overview of the location of
myofibroblasts in SSc.

In healthy tissues, the presence of myofibroblasts is (very)
rare due to the tendency of myofibroblasts to undergo apoptosis
when they are no longer needed for the healing process (28, 29).
However, a putative resident type of myofibroblast can be found
in lung alveolar ducts, where they help regulate alveolar function.
In contrast, in SSc their presence is unwanted and attributed to
a lowered susceptibility of myofibroblasts to undergo apoptosis
and to increased formation.

DECREASED APOPTOSIS OF
MYOFIBROBLASTS IN SSC

Two major pathways govern cellular apoptosis; the intrinsic
and extrinsic pathway. The extrinsic pathway is induced by
activation of fas cell surface death receptor (Fas). Fas is a

FIGURE 2 | Organs commonly affected by diffuse cutaneous SSc.

membrane spanning receptor of the TNF receptor superfamily
and can, upon binding of Fas ligand, trigger the formation
of a death-inducing signaling complex (DISC). This complex
subsequently activates apoptosis-initiator caspase 8 to start a
caspase pathway ultimately culminating in activation of caspase-
3 and apoptosis (Figure 3). The intrinsic pathway is triggered
by release of cytochrome c from mitochondria, which is
subsequently incorporated into apoptosomes, cellular structures
which activate the apoptosis-initiator caspase-9 to initiate
apoptosis (30). A key protein in release of cytochrome c from
mitochondria is BCL2-associated X protein (BAX), which, upon
oligomerization, forms pores in the mitochondrial membrane
through which cytochrome c can leak (31). Two important
inhibitors of BAX are BCL2 and BCL2-XL (also known as
BCL2L1), which both prevent oligomerization of BAX and are
thus anti-apoptotic. Of note, the extrinsic and intrinsic pathways
are not fully discrete but linked, for example via BH3 interacting
domain death agonist (BID), a protein which is activated by
caspase 8 and subsequently forms mitochondrial membrane
pores in cooperation with BAX (32). Ultimately, whether cells
like myofibroblasts undergo apoptosis is determined by the ratio
of activity between pro-apoptotic mitochondrial membrane pore
forming proteins (e.g., BAX) and their anti-apoptotic inhibitors
(e.g., BCL2). Pro-survival signaling can skew this balance in favor
of anti-apoptotic proteins.

In systemic sclerosis, myofibroblasts are less prone to undergo
apoptosis for several reasons. To begin, it has been observed that,
in quiescent state, SSc myofibroblasts express less pro-apoptotic
BAX compared to myofibroblasts of control subjects (33). A
possible cause for this is increased activity of tyrosine-protein
kinase ABL1 (c-Abl). Silencing of c-ABL enhances apoptosis
in both healthy and SSc skin fibroblasts by increasing the
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FIGURE 3 | Caspase-dependent apoptosis pathways in myofibroblasts. The extrinsic pathway is activated via death inducing signaling complex and results in

caspase 8-mediated caspase 3 activity which results in apoptosis. The intrinsic pathway is triggered by cytochrome c release from mitochondria which results in

caspase 9-mediated caspase 3 activity. This cytochrome c release is governed by the ratio between pro-apoptotic BAX/BAK and BCL2(XL ). Pro-survival signaling

affects this ratio in favor of BCL2(XL ).

BAX/BCL2 ratio toward pro-apoptotic BAX (34). An example
of how c-ABL can be activated is via TGFβ signaling; in
idiopathic pulmonary fibrosis, c-Abl is activated by TGFβ (35),
and silencing of c-Abl inhibits the pro-survival effects of TGFβ
on myofibroblast apoptosis (34).

Secondly, in fibrotic tissues, extracellular matrix stiffness
is increased compared to healthy tissue. This increased
stiffness is an important survival signal for myofibroblasts; via
mechanosensing such stiffness results in intracellular activation
of Rho and Rho-associated kinase (ROCK) whose activity
increases BCL2-XL expression (36). Importantly, this increased,
stiffness-induced, BCL2-XL expression is needed to counteract
the function of the pro-apoptotic protein BIM (36). BIM is an
activator of BAX and accumulates in myofibroblasts exposed to
a stiff matrix. This accumulation primes the cells to undergo
apoptosis (36), and only the continued presence of BCL2-XL

prevents this. This balance between BCL-2 and BIM serves a role
during normal wound healing; once the matrix softens during
the final wound remodeling stage, pro-surivival ROCK signaling
drops, resulting in loss of BCL-2 expression, and rapid BIM-
mediated apoptosis of myofibroblasts (36). Recently, it has been

shown that pharmacological inhibition of BCL2-XL can mimic
this process and induce targeted BIM-mediated apoptosis in
myofibroblasts and even revert established (murine) fibrosis (36).

In addition, in SSc skin, phosphatidylinositol 3-kinase
(PI3K)/AKT serine/threonine kinase (AKT) signaling (37) is
increased. This pathway facilitates myofibroblasts survival by
inhibiting the activity of BAX. It does so by inactivating bcl2-
associated agonist of cell death (BAD) via phosphorylation, after
which this protein can no longer inhibit the function of anti-
apoptotic proteins such as BCL2-XL. Many growth factors can
induce PI3K/AKT signaling, including TGFβ. TGFβ signaling
is increased in skin of SSc patients, and TGFβ has been
demonstrated to induce AKT signaling in dermal fibroblasts
to lower myofibroblasts’ sensitivity for Fas-mediated apoptosis
(34, 37, 38). Furthermore, TGFβ signaling also lowers expression
of acid sphingomyelinase (SMPD1) (39). This enzyme induces
the activation of protein phosphatase 2 (PP2A), i.e., an inhibitor
of AKT signaling, and a reduction in SMPD1 thus enhances
pro-survival AKT signaling. Additionaly, SMPD1 facilitates Fas-
dependent apoptosis via its product; i.e., the lipid ceramide,
which helps cluster Fas at the cell membrane, thus facilitating
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the formation of death inducing signaling complexes (40). In SSc
fibroblasts, it has been shown that TGFβ lowers Fas-mediated
apoptosis and that overexpression of SMPD1 prevented this
effect, indicating its importance (39).

Finally, a role for micro RNAs (miRNA) in protecting
myofibroblasts against apoptosis has been described in SSc.
miRNAs are small non coding RNA molecules that can bind
messenger RNAs and induce their degradation via an RNA-
induced silencing complex (RISC). In SSc skin, expression of
miRNA21 is increased, and this miRNA targets and degrades
pro-apoptotic BAX mRNA (41). Additionally, miRNA21 targets
phosphatase and tensin homolog (PTEN), which is an inhibitor
of AKT signaling, as this phosphatase lowers intracellular
PIP3 levels, the activator of AKT signaling (38). Via these
mechanisms, presence of this miRNA lowers cellular sensitivity
to apoptosis. Notably, TGFβ induces expression of miRNA21 in
fibroblasts (38).

Together these mechanisms protect myofibroblasts from
apoptosis in SSc which, in contrast to their final loss during
wound healing, ensures their continued presence (long) after
their formation.

ON THE FORMATION OF
MYOFIBROBLASTS IN SSC: PATHWAYS

In SSc, not only the apoptosis of myofibroblasts is decreased but
also their formation is increased. Myofibroblasts can originate
in several ways, including the differentiation of fibroblasts
toward myofibroblasts. This process is key in normal wound
healing and facilitated by growth factors such as TGFβ, Wnts,
damage associated molecular patterns such as fibronectin cloths,
and tissue stiffness; the stiffer the matrix the more prone
fibroblasts are to become myofibroblasts (42). In Figure 4 several
intracellular pathways are listed that are involved in the transition
of fibroblasts to myofibroblasts.

To begin, a key growth factor for myofibroblast formation is
TGFβ; this growth factor directly induces extracellular matrix
production and αSMA expression in fibroblasts. TGFβ activity
is increased in skin of SSc patients, just as expression of its
activating integrin αVβ5 (43, 44). This integrin can recognize
latent TGFβ via its RGD domain and can mechanically separate
the latency conferring peptides from the active peptide (42). The
importance of integrin-mediated TGFβ activation is illustrated
by the observation that inhibition of integrin αVβ5 by the use of
antibodies or antisense RNA inhibits myofibroblasts formation
(43, 44). Various intracellular pathways play a role in establishing
the effects of TGFβ, in particular: SMAD3, PI3K/AKT, p38
MAPK, and c-ABL. Overexpression of SMAD3 enhances,
whereas knockdown inhibits αSMA and extracellular matrix
production in fibroblasts (45–48). Furthermore, fibroblast-
specific deletion of SMAD3 reduces αSMA production and
myofibroblast phenotype (49–52), for example, loss of SMAD3
lowers the number of activated myofibroblasts in cardiac
fibrosis in vivo and reduces extracellular matrix production
by myofibroblasts (47). Inhibition of PI3K/AKT signaling
inhibits TGFβ-mediated myofibroblast formation, whereas

overexpression of a constitutively active form of AKT1
enhances myofibroblasts development. The use of p38 MAPK
inhibitors also lowers TGFβ-induced collagen type I and αSMA
production and prevents TGFβ-induced AKT signaling (53–55).
Additionally, this pathway alters cellular energy metabolism in
such a way that is facilitates cellular contraction (56). Finally,
in fibroblasts lacking c-ABL the expression of extracellular
matrix molecules and αSMA is reduced in response to TGFβ.
Of note, TGFβ can also negatively affect myofibroblasts. For
example, SMAD3 can inhibit cellular proliferation via lowering
the expression of c-myc and preventing the progression of cell
division from G1 to S phase (57). Furthermore, pre-treatment of
granulation tissue (myo) fibroblasts with TGFβ enhances their
sensitivity to undergo bFGF-mediated apoptosis (58). This last
observation illustrates that cellular context, e.g., the presence of
bFGF, can greatly impact TGFβ signaling outcome.

Importantly, TGFβ facilitates the function of various other
growth factors in fibroblasts. In SSc skin fibroblasts, TGFβ makes
fibroblasts more sensitive to anabolic stimulation with platelet
derived growth factor (PDGF), via induction of its receptor
(PDGFR) (59). This growth factor induces extracellular matrix
production and proliferation via the activation of PI3K/AKT, p38
MAPK, c-ABL, and focal adhesion kinase (FAK) pathways. In
addition, this last pathway regulates PDGF-induced migration
of myofibroblasts which recruits myofibroblasts to fibrotic areas
(60). TGFβ and PDGF can work in concert, for example, in
mouse corneal stromal fibroblasts co-stimulation of fibroblasts
with TGFβ and PDGF greatly enhances myofibroblast formation
compared to TGFβ alone (61).

Another pathway enhanced by TGFβ in SSc is canonical
Wnt signaling. TGFβ signaling via p38 MAPK lowers dickkopf-1
(DKK1) expression (62), which is an inhibitor of canonical Wnt
signaling via β-catenin. In skin and fibroblasts of SSc patients,
decreased DKK1 expression is observed (62), together with
increased β-catenin accumulation (63), and increased expression
ofWnt signaling-related genes (62, 64). Stimulation of fibroblasts
with canonical Wnts such as Wnt-1 or Wnt3a upregulates
collagen type 1 and αSMA expression, and does so to a similar
extent as TGFβ. Furthermore, mice with continuous fibroblast-
specific Wnt signaling by artificial β-catenin stabilization rapidly
develop skin fibrosis whereas fibroblast-specific deletion of
β-catenin protects mice from bleomycin-induced skin fibrosis
(63). Notably, Wnt signaling can induce autocrine TGFβ
signaling (64) and overexpression of DKK1 protects mice even
against TGFβ-receptor mediated skin fibrosis, indicating that
both pathways are closely interwoven and interdependent.

Apart from the abovementioned effects, TGFβ can induce
the expression of fibronectin 1 extra domain A (FN1 EDA) in
(myo) fibroblasts. FN1 EDA is a splice variant of fibronectin
which contains the so-called EDA domain. Normally, FN1 EDA
is not expressed in healthy tissues but its expression is induced
during wound healing (65) Fibroblasts can detect FN1 EDA via
membrane bound receptors such as α4 containing integrins or
toll like receptor 4 (TLR4), and its presence is a prerequisite for
TGFβ-mediatedmyofibroblast formation; its expression precedes
αSMA expression, and mice that lack their FN1 EDA domain are
unable to produce myofibroblasts during injury (65–67). In turn,
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FIGURE 4 | Continued.
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FIGURE 4 | Stimuli for myofibroblast formation and their intracellular pathways. The four variants of platelet-derived growth factor (PDGF) can interact with homo- or

heterodimers of PDGF receptor alpha (PDGFRα) and beta (PDGFRβ) to induce signaling by: phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT), p38

mitogen-activated protein kinases (p38 MAPK), focal adhesion kinase (FAK) and tyrosine-protein kinase ABL1 (c-ABL). Canonical Wnt signaling is activated via

formation of a wnt/frizzled/LRP5/6 complex which recruits disheveled (DVL) to the plasma membrane. This inhibits β-catenin degradation, leading to the accumulation

of this protein and subsequent signaling. Interleukin 6 (IL-6) signaling uses a complex of membrane-bound or soluble IL-6 receptor (IL-6R) and glycoprotein 130

(gp130) to activate PI3K/AKT, p38MAPK and signal transducer and activator of transcription 3 (STAT3) signaling. Oncostatin M (OSM) also uses gp130, but together

with oncostatin M receptor beta (OSMRβ) or leukemia inhibitory factor receptor (LIFR). Transforming growth factor beta (TGFβ) induces heterotetramerization of

TGFβ-receptor type I (TGFBR1) and II (TGBR2) and results in intracellular activation of SMAD3, p38 MAPK, PI3K/AKT c-ABL. TGFβ-receptor type III receptors such as

betaglycan (TGFBR3), and endoglin (ENG) guide TGFβ availability and receptor complex formation. Mechanotransduction can occur via mechanosensitive ion

channels, leading to e.g., calcium ion (Ca2+) influx, integrin complexes and deformation of cellular structures, leading to activation of myocardin-like protein 1 (MLK1),

β-catenin, FAK, p38 MAPK, PI3K/AKT, and yes-associated protein 1 (YAP)/WW domain-containing transcription regulator protein 1 (TAZ). The effects of each of these

pathways are listed in the table. Note that not all intracellular pathways are listed for each stimulus, only those connected to myofibroblast formation.

FN1 EDA facilitates the mechanical activation of TGFβ because
it binds the latent form of TGFβ and presents this to integrins.

Next to these aforementioned stimuli, cellular
mechanosensing is another crucial element in the transition
of fibroblasts to myofibroblasts. Via for example intergrins,
mechanosensitive ion channels, and cell structure deformation,
fibroblasts can sense mechanical cues such as matrix stiffness.
This mechanosensing results in activation of various intracellular
pathways such as FAK, PI3K/AKT, p38 MAPK, and β-catenin,
and activation of transcription activators such as myocardin-
like protein 1 (MKL-1) and transcriptional coactivator YAP1
(YAP1) and WW domain-containing transcription regulator
protein 1 (TAZ). Both MKL-1 and YAP/TAZ directly regulate
myofibroblast phenotype. Knockdown of MKL-1 lowers
αSMA expression in cells grown on a stiff matrix whereas
overexpression of a constitutively active form ofMKL-1 increases
αSMA expression in cells grown on a soft matrix (68, 69). MKL-1
also activates collagen type 1 expression in lung fibroblasts
(70). Furthermore, MKL-1 interacts with SMAD3 to bind the
promoters of collagen type I and ASMA, and knockdown
of MKL-1 lowers SMAD3-dependent gene expression (71).
However, this interaction with SMAD3 can result in more
rapid degradation of MKL-1, leading to repression of MKL-1-
dependent genes (72). β-catenin has been shown to counteract
this effect of SMAD3 (72), indicating that MKL-1 function
depends on the integration of various pathways. Knockdown
of YAP/TAZ in fibroblasts that are grown on stiff matrixes
lowers proliferation, collagen type 1 synthesis, contractile force
and increases pro-apoptotic caspase3 and caspase 7 activity.
Furthermore, knockdown of YAP or overexpression of a
dominant negative form lowers TGFβ-mediated myofibroblast
formation (73–76). Notably, YAP/TAZ influence matrix stiffness
by directly inducing serpine1 expression (73). Serpine1 inhibits
the activation of plasmin, a protease which degrades extracellular
matrix molecules such as fibrin and fibronection and can activate
collagenases. Plasmin activity thus degrades and softens the
extracellular matrix, but YAP/TAZ activity counteracts this
(73) of note, serpine1 expression can also be rapidly and highly
induced by TGFβ (77), and mechanical activation of TGFβ is
enhanced in stiffer matrixes (42). Both YAP/TAZ and TGFβ
activity can thus result in a feed forward loop in which tissue
stiffness results in tissue stiffness-enhancing activity. Such a
mechanism can explain continued fibrosis in absence of a
exogenous stimulus.

Finally, the transition of fibroblasts to myofibroblasts is also
facilitated by intracellular STAT3 signaling. STAT3 is induced
by various cytokines such as interleukin 6 (IL-6) and oncostatin
M (OSM). IL-6 expression is strongly expressed in SSc skin
fibroblasts (78), and in vitro, stimulation of SSc skin fibroblasts
with IL-6 results in collagen and αSMA expression (78–80).
Furthermore, in the murine bleomycin model for skin fibrosis,
knockout of IL-6 reduces skin pathology, as does administration
of an anti-IL-6 receptor antibody (MR16-1) (79). In SSc skin,
STAT3 signaling is activated (81) resulting in pro-fibrotic gene
expression in fibroblasts; for example, STAT3 regulates collagen
type I expression in SSc skin fibroblasts (82). However, of note,
in lungs of SSc patients no enhanced STAT3 activation can be
observed (82). Importantly, in both bleomycin induced skin and
lung fibrosis in mice, knockout or pharmacological inhibition
of STAT3 ameliorates fibrosis (83) (81). Furthermore, in both
models, STAT3 was shown to be downstream of TGFβ signaling,
as inhibition of STAT3 prevented TGFβ-induced myofibroblasts
formation (81, 83).

Together these pathways can mediate the transition of
fibroblasts to myofibroblasts and direct myofibroblasts activity
after formation but cellular context plays an important role in
guiding the outcome.

ON THE FORMATION OF
MYOFIBROBLASTS IN SSC: CELLS

Apart from the transition of fibroblasts to myofibroblasts,
an important source of myofibroblasts in SSc is the
transdifferentiation of other cell types (Figure 5).

To begin, one cell type that can function as a source of
myofibroblasts is the pericyte. These contractile cells surround
endothelial cells in the microvasculature and regulate blood flow.
Pericytes already express αSMA, and can become myofibroblasts
if they leave their cellular niche and start to express proteins such
as collagen type I and FN1-EDA. That this process occurs in SSc
is suggested by a study that shows that pericytes in SSc skin, but
not in healthy skin, express FN1-EDA and other myofibroblast
markers (27). Furthermore, using lineage tracing it has elegantly
been demonstrated that perivascular cells end up in skin scars as
myofibroblasts (84). In addition, this transition is also observed
in lung, liver, and kidney fibrosis (85), indicating that pericyte
to myofibroblast transition is a common aspect of many fibrotic
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FIGURE 5 | Cellular origins of myofibroblasts in SSc. Myofibroblasts can originate from various cell types, including fibroblasts, adipocytes, monocytes/fibrocytes,

pericytes, endothelial cells, and epithelial cells. Key molecules for each transition are depicted. For epithelial cells to become myofibroblasts, they have to undergo

epithelial to mesenchymal transition (EMT). For endothelial cells a similar process is needed, called endothelial to mesenchymal transition (EndoMT).

disorders. Putative drivers of this transition are VEGF, PDGF,
and TGFβ.

Another cell type which can give rise to myofibroblasts is the
fibrocyte. Fibrocytes are circulating cells of myeloid origin with
stem cell like characteristics. These cells were first identified as
the myeloid cells that rapidly invade wounds and, in contrast to
other myeloid cells, produce ECM molecules. Their migration
to wounds is guided by damage associated molecular patterns
(DAMPs) and chemokines such as Chemokine (C-C motif)
ligand 21 (CCL21) (86), and after arrival, these cells start
differentiating into a myofibroblast-like phenotype under the
influence of factors such as TGFβ (86). Of note, fibrocytes can
originate from monocytes, and, importantly, SSc monocytes
display increased maturation toward myofibroblasts as indicated
by αSMA expression when compared to monocytes from healthy
controls (87). Furthermore, fibrocyte presence and involvement
in pulmonary fibrosis can readily be detected in SSc (87).
Paradoxically, fibrocyte numbers in blood are lower in SSc
patients than in healthy controls. Possibly, these cells are
recruited out of the blood compartment into affected areas which
would explain their lower numbers in blood.

In addition to the abovementioned cells, adipocytes, i.e., fat
cells, are another source of myofibroblasts in SSc. Via the process
of adipocyte to myofibroblast transition these cells can become
myofibroblasts. In SSc skin, subcutaneous fat disappears over the
course of the disease (88). With the use of adiponectin-lineage
tracking, it has been demonstrated in the murine bleomycin

model of skin fibrosis that adipocytes can lose their adipocyte-
related gene expression and start expressing αSMA to become
myofibroblasts (88). Importantly, in this model of skin fibrosis
the loss of fat tissue precedes fibrosis (88) indicating that
this process can underlie the fibrotic process. Adipocyte to
myofibroblast transition is strongly driven by TGFβ (88), Found
in inflammatory zone 1 (FIZZ1) and possibly Wnt signaling
(89). In vitro, FIZZ1 suppresses adipogenesis and stimulates
myofibroblast differentiation via Notch1 signaling. Furthermore,
mice lacking FIZZ1 retain more fat and develop less fibrosis in

response to bleomycin skin injury (90). Of note, FIZZ1 has also
been attributed a role in lung fibrosis, by recruiting bone marrow
derived stem like cells like to damaged lung tissue (91), and its
levels are increased in serum of SSc patients (90).

Finally, two important sources of myofibroblasts in SSc are

epithelial to mesenchymal transition (EMT) and endothelial
to mesenchymal transition (EndoMT). In both processes,
respectively epithelial and endothelial cells lose their phenotype
and become myofibroblasts. Both processes can be observed in
SSc. EndoMT can be identified using immunohistochemistry
by observing endothelial cells with both endothelial (cluster
of differentiation (CD31, and VE-cadherin) and myofibroblast
markers (αSMA), and has been observed in skin and in lungs
of SSc patients (92, 93). Furthermore, EndoMT has been
linked to endothelial dysfunction as a cause for pulmonary
arterial hypertension, a major complication in SSc (94). Notably,
endothelial cells that undergo EndoMT produce more IL-6, IL-8
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and TNFα compared to normal endothelial cells (94). EMT is
an important driver of lung fibrosis, in which alveolar epithelial
cells become myofibroblasts (95). This was demonstrated using
alveolar specific lineage tracking, which visualized that alveolar
cells started to express αSMA upon overexpression of TGFβ1
(95). The role of EMT in skin fibrosis is less clear. In SSc skin,
expression of the key EMT inducing transcription factor SNAI1
can be observed in keratinocytes, but not loss of their epithelial
E-Cadherin marker (96). Possibly, the EMT process is therefore
only partially evoked here.

In conclusion, myofibroblasts can originate from many
sources in SSc. Possibly, their origin has an effect on their
phenotype and function, yet little is known if this is the case.

ON INCREASED ACTIVITY OF
MYOFIBROBLASTS IN SSC

Because of reduced apoptosis and increased formation,
myofibroblasts numbers are increased in SSc. However, also
their activity is markedly increased in SSc. For example, skin
(myo) fibroblasts of SSc patients show more activation of focal
adhesion kinase (FAK) in vitro than those of controls (97).
This focal adhesion kinase is a key component of integrin
signaling, and regulates fibroblast migration, survival and
growth. Furthermore, in vitro, (myo)fibroblasts obtained from
SSc patients produce more extracellular matrix molecules such
as collagen type I than those of healthy controls, and their
migratory and contractile properties are also increased (19, 98).
Because the activated phenotype of SSc (myo) fibroblasts persists
ex vivo, e.g., during cell culture, epigenetic changes most likely
play an important role in this phenotype. For example, recent
research has shown that in SSc skin fibroblasts, expression of
the histone demethylase Jumonji domain-containing protein 3
(JMJD3) is increased (99). This histone demethylase removes
the so-called H3K27me3 mark from histones, and this mark can
repress expression of pro-fibrotic genes such as collagen type I
in fibroblasts (100). Furthermore, pharmacological inhibition
of H3K27 trimethylation induces skin fibrosis and aggravates
pathology in bleomcyin induced skin fibrosis (100). A key target
which is activated by JMJD3 is Fos-related antigen 2 (Fra-2) (99).
This transcription factor has been identified as an important
regulator of extracellular matrix production in skin fibroblasts;
transgenic overexpression of Fra-2 results in increased dermal
thickness and myofibroblast formation and is a mouse model for
SSc (101), whereas knockdown of Fra-2 reduces both TGFβ- and
PDGF-induced collagen production in primary skin fibroblasts
of SSc patients (102).

Next to epigenetic changes, several cytokines can enhance
the formation and function of myofibroblasts. In Table 1 an
overview is given of how various cytokines affect myofibroblasts
activity. As already mentioned TGFβ, PDGF, Wnts, IL-6, and
OSM are key cytokines for myofibroblasts formation and activity.
In addition to these factors, both IL-4 and IL-13 are pro-fibrotic
(150). Both cytokines induce αSMA expression in primary lung
fibroblasts in a dose- and time-dependent manner (105, 150),
and enhance the production of collagen type I in normal

fibroblasts (108). IL-22 has been described to have similar effect
(118). Less clear is the role of IL-1 and Tumor necrosis factor
α (TNFα). Of these factors both inhibitory and stimulatory
effects on (myo) fibroblasts have been described. In atrial
and intestinal myofibroblasts TNFα induces proliferation and
collagen synthesis (119, 120). However, in dermal fibroblasts
TNFα can inhibit αSMA expression by inhibiting TGFβ signaling
(124). Interleukin 1 can not only induce, but also inhibit,
collagen production, proliferation and myofibroblasts formation
in dermal and lung fibroblasts by inhibition of TGFβ signaling
(103, 104). Apart from these stimulatory cytokines, several
signaling molecules inhibit myofibroblast formation and activity.
For example, interferon γ (IFNγ) inhibits collagen synthesis,
sensitizes dermal fibroblast to Fas-mediated apoptosis (125, 126)
and inhibits IL-4 effects (125). Prostaglandin E2 has similar
effects on formation and apoptosis in lung and keloid fibroblasts
(145–147). The role of basic fibroblast growth factor (FGF2)
is less clear, as it can inhibit TGFβ-mediated myofibroblast
formation (140), but can also increasemyofibroblast proliferation
(151).

The increased presence and activity of myofibroblasts in
SSc results in various deleterious effects. First of all, their
excessive matrix production and remodeling capabilities can
destruct organ architecture leading to loss of function like in
lung fibrosis. Furthermore, deposition of extracellular matrix
molecules such as collagens in the interstitial space of lung
tissue inhibits gas exchange, greatly lowering lung function and
resulting in interstitial lung disease. In skin excessive matrix
deposition increases stiffness, increases hardness, and leads to
loss of cutaneous tissues like, fat tissue, sweat glands, hair
follicles, and sebaceous glands (152). In the gastro-intestinal
tract, myofibroblast-induced fibrosis negatively affect motility,
digestion, absorption, and excretion (153).

Blood vessel function is also impacted by myofibroblasts.
To begin, myofibroblasts produce endothelin-1 (15). Endothelin
1 is a potent vasoconstrictor, leading to increased blood
pressure. Notably, endothelin 1 also stimulates the formation of
new myofibroblasts. Furthermore, myofibroblasts also produce
VEGF (154), e.g., during wound healing, and can also express
angiopoietin 1 and 2, both of which stimulate the formation
of new blood vessels (155). As mentioned, myofibroblasts also
produce and activate TGFβ. VEGF, angiopoietins, and TGFβ are
all key regulators of endothelial homeostasis, and normally these
factors are well balanced to maintain this homeostasis. However,
this balance can be disturbed by the myofibroblast’s production
of these factors, leading to aberrant vascular remodeling. For
example, uncontrolled VEGF signaling has been suggested to be
a cause for capillary malformations in SSc (154).

Myofibroblast also have an immunomodulatory role.
As mentioned, they express for example interleukin 1
(IL-1), interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte
chemoattractive protein 1 (MCP-1) (13). Both IL-8 and MCP-1,
also known as CCL2, are chemokines, attracting neutrophils,
monocytes and T cells and in this way facilitate inflammation.
Both IL-1 and IL-6 can enhances pro-inflammatory gene
expression in immune cells. Furthermore, both factors
can participate in the differentiation of monocytes toward
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TABLE 1 | Influence of various cytokines on myofibroblast biology.

Signal

molecule

Type of

(myo)-fibroblasts

Observations Effect References Remarks

IL-1 Dermal, Lung Stimulates collagen type 1 production

Stimulates proliferation

Inhibits collagen type 1 production

Reduces formation and proliferation

+

+

−

−

(103)

(103)

(103, 104)

(103, 104)

Can inhibit TGFβ effects

IL-4 Lung

Lung

Keloid, Dermal

Increases formation (αSMA expression)

Increases proliferation

Increases collagen type 1 production

+

+

+

(105)

(106, 107)

(108)

Stimulates Th2 formation and

alternative activation of macrophages

IL-6 Lung

Lung

Dermal

Inhibition of sIL6R signaling lowers

myofibroblasts numbers

Inhibition of sIL6R signaling lowers collagen

and fibronectin deposition

Increases collagen type I and αSMA expression

+

+

+

(109)

(109)

(78, 110)

sIL6R signaling enhances TGFβ

signaling (110)

IL-10 Dermal, cardiac

Dermal

Dermal

Reduces collagen type I production

Reduces TGFβ and TNFα induced proliferation

Lowers sensitivity to FAS-induced apoptosis

−

−

+

(111–113)

(114)

Induces TGFβ production by

macrophages

IL-13 Lung

Lung

Keloid & Dermal

Increases αSMA expression

Increases proliferation

Increases collagen type 1 production

+

+

+

(105)

(105, 107)

(108)

IL-17 Dermal

Lung

Inhibits collagen type 1 production

Stimulates collagen, TGFβ and IL-6 production

−

+

(115, 116)

(117)

Induces IL-6 production and immune

cell attraction in fibroblasts

IL-22 Induces differentiation

Induces collagen type 1 production

No effect on collagen production

+

+

=

(118) Enhances fibroblast response to

TNFα

TNFα Intestinal

Intestinal, Dermal,

cardiac

Palmar dermal

Dermal

Lung, Dermal

Dermal

Induces collagen accumulation via TNFR2

Induces proliferation via TNFR2

Induces myofibroblasts formation

Induces apoptosis via TNFR1

Sensitizes fibroblasts to FAS-induced

apoptosis

Suppresses αSMA expression and TGFβ

effects

+

+

+

−

−

−

(119)

(119–121)

(119)

(122)

(114, 123)

(124)

Alters PDGF signaling (121)

IFNγ Dermal

Dermal

Dermal

Inhibits collagen synthesis

Sensitizes to FAS-induced apoptosis

Inhibits proliferation in fast dividing cells,

stimulates proliferation in slowly dividing cells

−

−

?

(125, 126)

(114)

Antagonizes IL-4 (125) and TGFβ

(127)

OSM Lung

Lung, Dermal

Lung, Dermal

Lung

Increases αSMA expression and contraction

Increases proliferation

Increases collagen production

Increases cell survival

+

+

+

+

(128)

(129, 130)

(117)(131)

(117)

OSM signaling is augmented by IL4

or IL13 (132)

CCL2 Lung Inhibits apoptosis via production of IL-6 + (133) Chemoattractant of monocytes

Stimulates IL-4 production in Th2

cells

TGFβ Lung, Dermal,

cardiac, keloid

Increases αSMA expression

Stimulates collagen type 1 production

Stimulates proliferation

Increases contraction

Inhibits apoptosis

Stimulates apoptosis

Inhibits proliferation

+

+

+

+

+

−

−

(38, 45–

48, 134, 135)

(136)

(58)

(57)

Works in concert with Integrin-FAK

Enhances Wnt signaling in SSc by

downregulating DKK1 via p38 MAPK

(62)

Causes hyperactivation of STAT3 in

SSc (81)

Counteracted by bFGF signaling

CTGF Corneal Facilitates TGFβ effects + (137)

(Continued)
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TABLE 1 | Continued

Signal

molecule

Type of

(myo)-fibroblasts

Observations Effect References Remarks

PDGF Corneal,

Dermal,

Lung

Increases αSMA expression

Stimulates collagen type 1 production

Stimulates proliferation

+

+

+

(61, 138, 139) TGFβ stimulates PDGFR expression

(59)

FGF2 (bFGF) Dermal

Dermal

Inhibits TGFβ-induced myofibroblasts formation

Increases fibroblast proliferation

Stimulates apoptosis

− (140)

(140)

(58)

Wnt Canonical Wnt signaling induces fibroblast

proliferation and migration, collagen gel

contraction, and myofibroblast differentiation

+ (62–64, 89) Induces TGFβ production (64)

Histamine Lung

Dermal

Dermal

Enhances proliferation via a H2R

Increases αSMA expression

Inhibits TGFβ-induced αSMA expression via

H1R

+

+

−

(141)

(142)

(143)

Leukotriene

D4

Lung Enhances TGFβ-induced collagen synthesis + (144)

PGE2 Lung

Keloid

Lung

Induces apoptosis

Inhibits migration, contraction and

TGFβ-induced collagen synthesis

Inhibits myofibroblasts formation

−

−

−

(145)

(146)

(147)

Serotonin Lung

Lung

5-HT2B receptor antagonists reduce

myofibroblast differentiation

Induces extracellular matrix synthesis

+

+

(148)

(149)

Effects depend on TGFβ signaling

(149)

macrophages and play a role in the differentiation of naive
T-cells toward an effector subtype (156).

ON THE ROLE OF THE (INNATE) IMMUNE
SYSTEM IN MYOFIBROBLAST
FORMATION AND FUNCTION

Myofibroblast survival, formation, and function are all increased
in SSc. The (innate) immune system plays an important role in
this. In Figure 6 an overview is given of how.

One immune cell which can induce myofibroblasts formation
and activity is the mast cell. Mast cells are part of the
innate immune system and well known for their role in
allergy. However, they have already been implicated in SSc
pathophysiology for a long time (157), because they can produce
several mediators which stimulate fibrosis (158). One such
factor is Platelet-activating factor, which stimulates platelet
aggregation and degranulation. Platelet degranulation releases
many (growth) factors, including TGFβ, PDGF, and fibronectin,
all of which are factors which stimulate myofibroblasts formation
and function. Another product of mast cells and platelets
is serotonin. Serotonin has long been implicated in fibrotic
disorders; already in 1958 it was demonstrated that subcutaneous
injections of serotonin induce skin fibrosis (159). More recently,
it was demonstrated that serotonin directly increases extracellular
matrix production in primary skin fibroblasts (149). This

effect runs via the 5H-T2b receptor; inhibition of this receptor
with terguride decreases collagen and fibronectin production
by fibroblasts. Importantly, mice that lack this receptor (5H-

T
−/−

2b
) are protected against bleomycin-induced skin fibrosis,

just as mice in which the 5H-T2b, receptor is pharmacologically
inhibited (149). Mast cells also produce tryptase, a serine
proteinase, which, remarkably, stimulates fibroblast proliferation
and collagen production (142, 160, 161), and histamine, which
also induces (lung) fibroblast proliferation (141). Next to
these factors, mast cells also produce a large array of pro-
fibrotic cytokines; IL-4, IL-6, IL-13 TNF-α, TGFβ, and PDGF
(158) which directly stimulate the formation and activity of
myofibroblasts. Interestingly, mast cells can directly interact with
skin (myo) fibroblasts, and this facilitates their role in fibrosis.
This interaction was shown to be serpine1 dependent. Apart from
the aforementioned role as inhibitor of plasmin activation, this
protein is a chemotactic for mast cells and induces the expression
of intercellular adhesion molecule 1 (ICAM1) in fibroblasts,
which is needed for mast cells to adhere to fibroblasts (162). Of
note, serpine1 is a downstream target of TGFβ signaling in many
cell types, including fibroblasts.

Another innate immune cell which can have a pro-fibrotic
role is the neutrophil. Like mast cells, neutrophils produce
various pro-fibrotic cytokines including: TGFβ, IL-6, and VEGF
(163). Furthermore, activated neutrophils release reactive oxygen
species (ROS) (164). Reactive oxygen species activate fibroblasts
and stimulate fibrosis (165). In part, this effect is due to the
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FIGURE 6 | The influence of immune cells on myofibroblast formation and function. Immune cells produce various mediators (also see Table 1) that influence

myofibroblast formation and function. For each cell type (and platelets) the corresponding mediators are depicted. Cells which stimulate myofibroblast function include

mast cells, monocytes/macrophages and T helper 2 lymphocytes via e.g. production of IL-4, IL-13, and TGFβ. In contrast, T helper 1 cells can negatively affect

myofibroblast function via production of interferon gamma (IFNγ). Importantly, the ultimate outcome of an immune response on myofibroblast function depends on the

interplay between immune cells, as this interplay regulates the production of the mediators the affect myofibroblast function.

activation of TGFβ. Chemical reaction of reactive oxygen species
with latent TGFβ disrupts the quaternary protein structure
of latent TGFβ, and results in release of active TGFβ (165).
Of note, neutrophils of SSc patients release more ROS than
neutrophils of healthy controls when challenged with TNFα
(164). Recently, it was also demonstrated that neutrophil elastase,
a serine proteinase, can induce myofibroblasts formation (166).
Mice lacking this enzyme are protected against asbestos-induced
lung fibrosis, and in vitro neutrophil elastase directly stimulates
myofibroblasts formation, proliferation, and contractility (166).
Furthermore, pharmacological inhibition of neutrophil elastase
by sivelestat protects mice from bleomycin induced lung fibrosis
(167), demonstrating that at least in lungs, neutrophil elastase is
pro-fibrotic.

Next to mast cells and neutrophils, also macrophages can
stimulate the formation and activity of myofibroblasts. To begin,
macrophages, and their precursor the monocyte, can produce
large amounts of TGFβ, for example during bleomycin induced
lung fibrosis in rats (168). Apart from TGFβ, macrophages
produce many cytokines with pro-fibrotic effects, including
IL-4, IL-6, and IL-13 (156). Especially alternatively activated
macrophages, also known as M2 macrophages, are associated
with production of pro-fibrotic cytokines. These cells have a
less pro-inflammatory and more repair oriented phenotype than
classically activated macrophages, i.e., M1 macrophages (156).
Macrophages, like neutrophils, also produce reactive oxygen
species which enhance fibrosis. The importance of macrophages
in regulating fibrosis is demonstrated by the observation that in
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mice, deletion of lung macrophages using liposomal chlodronate
reduces bleomycin induced lung fibrosis, and a similar effect is
obtained if circulating monocytes are depleted using liposomal
chlodronate (169).

A cell of the innate immune system with a possible anti-

fibrotic role is the natural killer (NK) cell. In liver fibrosis,
this cell type can recognize myofibroblasts and stimulate them

to undergo apoptosis (170). Furthermore, NK cells produce

IFNγ a strong inhibitor of myofibroblasts formation and
function (171). However, in SSc, both the killing ability and
stimulation-dependent IFNγ production of NK cells has been
reported to be reduced (171).

In addition to the cells of the innate immune system, cells
of the acquired immune system also play a role in fibrosis. A
cell type particularly associated with fibrosis in SSc is the T
helper 2 cell (Th2). These cells produce the pro-fibrotic cytokines
IL-4, IL-5, and IL-13, which directly stimulate fibroblasts but
also induce the formation of alternatively activated macrophages
(172, 173). SSc is characterized by Th2 polarization, i.e., a
Th2 cytokine profile in blood, and importantly, in SSc, the
extent of Th2 polarization directly positively correlates with
active interstitial lung disease (i.e., lung fibrosis), supporting
for a role of Th2 cells in this process (132). Also T helper
17 cells (Th17) can play a role in fibrosis, in part via their
production of IL-17 and IL-22, which can stimulate collagen,
TGFβ and IL-6 production in pulmonary fibroblasts (117,
118). In contrast to these two T helper subtypes, T helper 1
(Th1) cells are more associated with inhibition of myofibroblast
function, for example in pulmonary fibrosis (174). This effect
of Th1 cells is attributed to their production of IFNγ, which
directly inhibits myofibroblast formation and function, but also
directs macrophage polarization away from the pro-fibrotic,
alternatively activated (M2) phenotype. The role of regulatory
T cells (Treg) in fibrosis and myofibroblast activity is less clear.
These cells produce TGFβ and IL-10 which can directly regulate
myofibroblast function, but also affect the activity of Th1, Th2,
and Th17 cells. Because these effector T cells have different
functions on myofibroblasts, the end effect of Treg activity
is difficult to predict. Finally, B lymphocytes have also been
demonstrated to be able to promote fibrosis; co-culture of B
cells with skin fibroblasts induced the expression of collagen
and αSMA by the latter (175). For this effect cell-cell contact
was required, as the use of a transwell system negated the
stimulatory effect of B cells on fibroblast activity (175). However,
B lymphocytes are able to produce TGFβ, CCL2, and IL-6, which
enhance myofibroblast activity without the need for cell contact.

ON THERAPEUTIC TARGETING OF
MYOFIBROBLASTS IN SSC

In view of the role of myofibroblasts in SSc, inhibiting their
formation or function makes an excellent option for targeted
therapy. Several compounds that have been investigated in, or
are currently under investigation in clinical trials are listed
in Tables 2, 3, respectively. Whether these compounds truly
target myofibroblasts is up for debate, yet they do target

cellular processes important for myofibroblast formation and
function.

To begin, one compound that is currently under investigation
is tocilizumab. Tocilizumab is a humanized antibody directed
against the IL-6 receptor and currently enrolled in a phase III trial
for SSc therapy (98). In an initial phase 2 double-blind, placebo
controlled study tocilizumab did not significant reduce skin
thickening (189), but the open label extension phase of this study
did show encouraging protective effects on skin thickening and
loss of forced vital capacity in SSc patients (190). Interestingly,
skin biopsies were collected from enrolled patients before and
after treatment and analyzed for fibroblast phenotype. Treatment
with tocilizumab for 24 weeks decreased fibroblast protein
production, migration and contractility compared to baseline
(98). Furthermore, a large effect between the tocilizumab and
placebo treated groups was observed on gene expression profile;
in the placebo group, gene expression was not significantly
altered over 24 weeks, whereas in the tocilizumab treated
group 2,136 genes were significantly differentially expressed.
Strikingly, many TGFβ signaling related genes, together with cell
contractility pathways, were downregulated to a level similar to
normal expression levels (98). This study thus demonstrates that
tocilizumab is a serious candidate for targeting (myo-) fibroblasts
in SSc.

In view of these results with tocilizumab, the results of
tofacitinib in SSc treatment will be of interest. Tofacitinib is a
small molecule JAK1 and JAK3 kinase inhibitor downstream of
IL-6 signaling which can be used for the treatment of rheumatoid
arthritis. Because JAK1 and JAK3 both activate STAT3 this
compound can be expected to inhibit myofibroblast function.
Currently, tofacitinib is under investigation in a small double-
blinded phase I/II trial for safety and efficacy in SSc.

Another compound of interest for treatment of fibrosis in SSc
is pirfenidone. Pirfenidone is used for the treatment of idiopathic
pulmonary fibrosis and is a pyridone derivative. Dietary intake
of this compound was shown to inhibit bleomycin-induced
lung fibrosis in hamsters (191). Furthermore, this compound
reduces fibroblast proliferation and attenuates TGFβ-induced
αSMA and collagen production in primary skin fibroblast (192,
193). In lung fibroblast of SSc patients with interstitial lung
disease (ILD), treatment with pirfenidone lowered αSMA and
fibronectin expression (194). However, in an open label phase
2 study with 63 SSc patients with ILD, no beneficial effects of
pirfenidone were observed on disease outcomes (187).

Nintedanib is a small molecule kinase inhibitor of platelet
derived growth factor receptor (PDGFR), vascular endothelial
growth factor receptor (VEGFR), and fibroblast growth factor
receptor (FGFR), which has been approved for the treatment
of interstitial lung disease, and which can possibly be used
for the treatment of (ILD in) SSc. For this latter application,
it was recently granted a fast track designation by the U.S.
Food and Drug Administration (FDA). In lung fibroblasts in
vitro, nintedanib inhibits proliferation and motility as induced
by FGF and PDGF, but also inhibits TGFβ-induced collagen
deposition (195). In vivo, nintedanib protects mice and rats
against bleomycin-induced lung fibrosis (195, 196), and lowers
the amount of lymphocytes and neutrophils but not macrophages
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TABLE 2 | Clinical trials conducted with putative anti-fibrotic agents in SSc.

Target Type of trial Phase Duration

(months)

Number of

patients

Type of patients Result References

Abatacept CD80/

CD86

Randomized,

double-blind,

placebo-controlled

I/II 6 10 dcSSc Five out of seven patients (71%)

randomized to abatacept and one out

of three patients (33%) randomized to

placebo experienced ≥30%

improvement in skin score

(176)

Bovine Collagen

type I

Randomized,

double-blind,

placebo-controlled

II 12–15 168 dcSSc

6 months stable

mRSS of ≥16

No significant differences in the mean

change in MRSS or other key clinical

parameters between the CI and

placebo treatment groups at 12 or at

15 months

(177)

C-82 topical gel CBP

β catenin

Randomized,

double-blind,

placebo-controlled

I/Ii 1 17 dcSSc ≤3 years,

increase in mRSS

≥ 5 in 6 months

No detected result in clinically efficacy

on mRSS

(178)

Dasatinib PDGFR

c-ABL

Single-arm, open

label

I/II 9 31 dcSSc ≤ 3 years,

mRSS ≥15

No significant clinical efficacy on

mRSS or pulmonary function test

(179)

Fresolimumab TGFβ Single-arm

Open label

I 6 15 dcSSc ≤ 2 years

mRSS ≥15

Improved mRSS Reduced TGFβ

dependent gene expression in skin

biopsies

(180)

Imatinib PDGFR

c-ABL

Single-arm

Open label

IIa 6 24 dcSSc Improved skin morphology and

mRSS compared to baseline

(181)

Randomized

Double-blind

Placebo-controlled

II 6 28 mophea >20% or

SSc with mRSS

>20/51

This study failed to demonstrate the

efficacy of imatinib on mRSS

(182)

Randomized

Double-blind

Placebo-controlled

II 6 10 active dcSSc Imatinib was poorly tolerated; only 10

of 20 patients included

(183)

Single-arm

Open-label

II 6 26 SSc patients with

active pulmonary

involvement and

unresponsive to

cyclophosphamide

Stabilized lung function, no effect on

skin

(184)

Metelimumab

(CAT 192)

TGFβ Randomized

Double-blind

Placebo-controlled

I/II 6 45 SSc duration of

<18 months

No evidence of a treatment effect (185)

Nilotinib PDGFR

c-ABL

Single-arm

Open label

IIa 6 and 12 10 dcSSc ≤3 yr

mRSS ≥16

Significant MRSS improvement (186)

Pirfenidone ? Randomized

Open-label

II 4 63 SSc <7 years No clinically relevant differences on

skin on FVD

(187)

Relaxin Relaxin receptor Randomized

Double-Blind

Placebo-controlled

II 6 231 dcSSc ≤5 years

mRSS ≥16

Recombinant relaxin was not

significantly better than placebo in

improving total skin score, pulmonary

function, or functional disability in

(188)

Tocilizumab IL6 receptor Double-blind,

placebo-controlled

II 12 87 progressive SSc

≤5 yr

15 ≥ mRSS ≤40

Not associated with a significant

reduction in skin thickening

(189)

Open label

extension phase

24 51 Skin score improvement and FVC

stabilization

(190)
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TABLE 3 | Clinical trials currently underway with putative anti-fibrotic agents in SSc.

Compound Target Type of trial Phase Duration

(months)

Number of

patients

Type of patients Identifier

Dabigatran Thrombin Single-arm

open label

I 6 15 SSc <7 yr with ILD NCT02426229

GSK2330811 OSM Randomized

Double-blind

Placebo-controlled

II 3 40 active dcSSc <5 years

10 ≥ mRSS ≤35

NCT02453256

Lenabasum

(CT-101)

CBr2 Randomized

double-blind

Placebo-controlled

III 12 354 dcSSc <6 yr NCT03398837

Nintedanib PDGFR/VEGFR/FGFR Randomized

double-blind

Placebo-controlled

III 12 up to 24 580 SSc <7 yr with ILD NCT02597933

SAR156597 IL4-13 Randomized

double-blind

Placebo-controlled

II 6 94 dcSSc NCT02921971

Tofacitinib JAK1/JAK3 kinase Randomized

double-blind

Placebo-controlled

III 12

(+ 12 open label)

212 dcSSc <5 years

10 ≥ mRSS ≤35

NCT02453256

in bronchoalveolar lavage liquid in this model. In SSc skin
fibroblasts, nintedanib also prevents proliferation and motility
and lowers the expression of αSMA (197). Furthermore, it lowers
the myofibroblasts count and skin fibrosis in bleomycin induced
skin fibrosis in mice (197). In two phase 3 trials with patients
suffering from interstitial lung disease, nintedanib profoundly
lowered the decline in forced vital capacity (195, 198). Currently
a phase 3 trial is underway to test its safety and efficacy in SSc.

PDGFR signaling is also targeted by nilotinib. This small
molecule kinase inhibitor inhibits both PDGFR signaling and
c-ABL signaling. In dermal fibroblasts, nilotinib inhibits TGFβ-
or PDGF-induced collagen production in a dose dependent
manner (199). Furthemore, this compound strongly lowered
myofibroblasts formation and dermal thickness in bleomycin
induced skin fibrosis in mice (199). Nilotinib has been tested
in a small open label trial with 10 SSc patients (186), and has
shown promising results on the modified Rodnan skin score
after 6 and 12 months of treatment. A compound similar to
nilotinib is imatinib, which also targets PDGFR and c-ABL
signaling (200) This compound also reduces collagen production
in skin fibroblasts, and also protects mice against bleomycin
induced fibrosis via reduction of myofibroblasts formation and
matrix deposition (200). Several clinical phase 2 trials have been
conducted with imatinib in SSc. In an open label, single-arm
clinical trial a positive effect of imatinib on skin thickening was
reported after 6 months of treatment (181). However, in another
placebo controlled, double blinded phase 2 study no efficacy
on modified Rodnan skin score was reported after 6 months
of treatment (182). Furthermore, a single center randomized,
double-blind, placebo-controlled phase 2 trial warned for poor
drug tolerance in SSc patients (183). A low dose of imatinib has

also been tested in an open label study for treatment of intestitial
lung disease in SSc patients unresponsive to cyclophosphamide
(184), and was reported to stabilize lung function but again had
no effect on skin.

In view of its pro-fibrotic effects, TGFβ has also been targeted
in SSc. Currently, several TGFβ signaling targeting drugs are
under clinical development for e.g., cancer treatment (201),
but no trials for SSc are currently reported. In a small open
label single center study, Fresolimumab (180), a high affinity
TGFβ inactivating monoclonal antibody was recently tested in
SSc patients, and reduced TGFβ dependent gene expression in
skin biopsies and improved modified Rodnan skin score (180).
In the past, a low affinity antibody had no such effect (185).
Interestingly, several compounds that inhibit TGFβ activation by
integrins are under development for various diseases. In a genetic
mouse model for SSc (characterized by a mutation in fibrilin)
antibodies against integrin α5β1 and integrin α5β3 inhibit skin
fibrosis (202). The effects of these antibodies are mimicked by a
TGFβ inhibiting antibody, illustrating that these effects possibly
run via inhibition of TGFβ activation. In addition, a monoclonal
antibody targeting integrin αVβ6 has been shown to protect mice
from radiation induced fibrosis (203).

Currently also under development for treatment of SSc is
lenabasum (CT-101). Lenabasum is a canabinoid type 2 receptor
(CBr2) agonist and is currently being tested in a phase 3 trial for
its efficacy and safety in treatment of SSc. Skin fibroblasts express
CBr2, and this expression is increased in SSc (204). Stimulation of
SSc skin fibroblasts with the synthetic cannabinoid WIN55,212-
2 lowers matrix production, myofibroblast formation, and
production of TGFβ, CTGF, and IL-6 (204). Furthermore,
addition of this compound to mice inhibits bleomycin induced
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skin fibrosis by lowering fibroblast to myofibroblast transition
and TGFβ, CTGF, and PDGF production (205). In addition, in
bleomycin lung fibrosis activation of canabinoid receptor type 2
signaling by JWH133 lowered both the inflammatory response
and extracellular collagen deposition, which was accompanied by
reduced levels of TGFβ in blood (206). These observations make
lenabasum a promising compound.

Finally, a therapy currently under investigation in a phase
2 trial as targeted therapy for SSc is the use of abatacept.
Abatacept is a fusion protein consisting out of an IgG1 Fc
tail fused with the extracellular part of CTL4 and is currently
in use for the treatment of rheumatoid arthritis. Abatacept
targets and prevents the function of CD80/CD86 molecules
of professional antigen producing cells. This prevents these
antigen presenting cells from activating T cells, as CD80/CD86
provide the co-stimulatory signal required in addition to MHCII
binding to initiate T (helper) cell differentiation. Early SSc skin
is characterized by perivascular T cell infiltrates (172), and
(late stage) SSc patients have increased Th2 cell activation (Th2

polarization) and these cells express the pro-fibrotic cytokines
IL-4, IL-5, IL-6, and IL-13 (172). In bleomycin induced skin
fibrosis in mice, abatacept lowers the influx of monocytes, T
cells and B cells into lesional areas, lowers IL-6 and IL-10 levels
and lowers skin fibrosis (207). Importantly, abatacept does not
affect skin fibrosis in the murine Tsk1 model of SSc which is
less dependent on inflammation nor in bleomycin induced skin

fibrosis in SCID mice which lack T cells. In a very small double-
blind placebo controlled trial of 10 patients, abatacept improved
the mRSS of patients. Especially patients with an inflammatory
gene expression profile in their blood responded well to abatacept
(176). These results indicate that abatacept can possibly eleviate
inflammation driven fibrosis, but not by directly targeting
myofibroblasts.

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we have addressed the role of myofibroblasts in
SSc pathophysiology. The presence and formation of these cells
are increased in SSc, giving rise to pathology due to their ability
to produce excessive amounts of extracellular matrix molecules
like collagen type I, their ability to affect vascular biology by
production of e.g., VEGF and ET1, but also due to their immuno-
modulatory effects via production of IL-6 and TGFβ. Targeting
these cells is therefore a feasible strategy to get to a targeted
therapy for SSc. Currently multiple drugs doing just that are
in phase 3 trials, giving hope for the future of SSc treatment.
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