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Abstract

Purpose

To evaluate the physiological changes related with age of all retinal layers thickness mea-

surements in macular and peripapillary areas in healthy eyes.

Methods

Wide protocol scan (with a field of view of 12x9 cm) from Triton SS-OCT instrument (Topcon

Corporation, Japan) was performed 463 heathy eyes from 463 healthy controls. This proto-

col allows to measure the thickness of the following layers: Retina, Retinal nerve fiber layer

(RNFL), Ganglion cell layer (GCL +), GCL++ and choroid. In those layers, mean thickness

was compared in four groups of ages: Group 1 (71 healthy subjects aged between 20 and

34 years); Group 2 (65 individuals aged 35–49 years), Group 3 (230 healthy controls aged

50–64 years) and Group 4 (97 healthy subjects aged 65–79 years).

Results

The most significant thinning of all retinal layers occurs particularly in the transition from

group 2 to group 3, especially in temporal superior quadrant at RNFL, GCL++ and retinal

layers (p�0.001), and temporal superior, temporal inferior, and temporal half in choroid

layer (p<0.001). Curiously group 2 when compared with group 1 presents a significant thick-

ening of RNFL in temporal superior quadrant (p = 0.001), inferior (p<0.001) and temporal (p

= 0.001) halves, and also in nasal half in choroid layer (p = 0.001).

Conclusions

Excepting the RNFL, which shows a thickening until the third decade of life, the rest of the

layers seem to have a physiological progressive thinning.
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Introduction

Currently OCT is widely used in clinical practice and clinical trials accepting their measure-

ments for the evaluation of the response to treatment and the progression of pathologies [1].

Retinal thickness or central macular thickness (CMT) measured with OCT is particularly used,

which correlates with pathological changes and response to treatment for a variety of eye dis-

eases [2].

Currently we still accept the thickness of the retina as the space between surfaces detected,

but retinal image segmentation is challenging; structures such as vascular structures, macula,

and microaneurysms have low contrast with their background. In contrast, other structures

have high contrast with background tissues, but they are difficult to distinguish using classical

segmentation techniques [1, 3].

Also, recent works have shown that the most commonly used algorithms in daily practice

for retinal layer segmentation have a large number of segmentation errors, especially in the

case of age-related macular degeneration, great disruptive pathology such as subretinal fluid,

intraretinal cysts and retinal detachments that interrupt the structured logical organization of

the retinal layers [4, 5].

Currently we can classify the existing segmentation algorithms into two clusters, mathemat-

ical modeling and machine learning approaches. Mathematical modeling is based on the previ-

ous anatomical, structural and clinical knowledge that is known about the retina. However

pure machine learning algorithms for retinal layer segmentation classifies each pixel from an

image on how they fall under a particular layer or boundary, that means that boundaries

between layers are not linear [2].

Swept-source (SS)-OCT offers potential advantages due to a modified Spectral-domain

(SD) and depth resolved technology which includes an improved imaging range, minor sensi-

tivity roll-off with imaging depth, greater detection efficiencies, and an adjustability to longer

imaging wavelengths of 1050nm, this allows a greater choroidal penetration and higher speed

for image acquisition. The main difference of SS-OCT is that captures the interferences of the

backscattered light from the retina thanks to a wavelength sweeping laser light source and a

photodiode detector, in contrast to SD-OCT where a line scan camera and a spectrometer

record the interferences between a broadband light source. Those improvements on SS-OCT

enables higher density raster scan protocols and deeper image penetration, as a result on en-

face reconstructions a better visualization of choroidal detail is possible [6].

Swept-source (SS)-OCT with a wavelength of 1,050 nm and 100,000 A-scans/sec has

allowed in-depth visualization of the eye from the retina to the sclera even in patients with

moderate to severe cataracts, as well as during eye blinking and/or ocular movement. SS-OCT

systems have the potential for superior and simultaneous imaging of the retina and choroid

because of the longer wavelength, potentially higher detection efficiency, and lower dispersion

[7].

Choroidal thinning has been considered more and more important in the last months,

because it has been associated with some ophthalmological pathologies such as age-related

macular degeneration (AMD), and also in neurodegenerative diseases such as multiple sclero-

sis [8], Parkinson’s disease [9] or Fibromyalgia [10] and systemic conditions like diabetes mel-

litus [11] or pathologies with unclear physiopathology such as migraine [12, 13].

Also, age has been found to be negatively correlated with central choroidal thickness and

with central choroidal volume [14], choroidal thickness and volume are also negatively statisti-

cally significant concerning the refractive error, and axial length measured with low-coherence

reflectometry was also found to be negatively correlated with choroidal thickness and volume.

On the other hand, sex has not been found to influence choroidal thickness significantly [15].
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Imaging of the choroid was dramatically improved with the development of spectral

domain optical coherence tomography (SD-OCT) and was further augmented with the advan-

tage of enhanced depth imaging SD-OCT (EDI SD-OCT) by Spaide and colleagues [16].

Even though, standard cross-sectional (Bscan) OCT imaging are still limited, consequently

the choroidal assessment is not as detailed as it could be. However, en-face OCT imaging, is

able to provide a high-definition three-dimensional and depth-resolved reconstruction of the

choroid, revealing choroidal vascular details not easily visible on cross-sectional OCT imaging.

Despite this, SD-OCT is the gold standard for clinical assessment and management of chorior-

etinal disorders, nevertheless the limited depth of penetration (~850nm), could compromise the

choroidal assessment although the selection of the enhanced depth imaging (EDI) method [7].

In the absence of automated segmentation software for SS OCT systems, previous investiga-

tors have used manual (mostly single-point) measurement techniques using in-built calibers

or modification of retinal segmentation lines to evaluate choroidal thickness; given the high

anatomic variability of the choroid, these are impractical for clinical use, are highly dependent

on location of measurement, and may be subject to further operator effects [17]. Nevertheless,

SS-OCT provides objective and automated measurements of the choroid.

Materials and methods

Between 2015 and 2018, 480 healthy withe caucasian patients were recruited for this cross-sec-

tional study. The inclusion criteria were age between 20 and 79 years, refractive error less

than ± 5 diopters (D), axial length between 21 and 25 mm, intraocular pressure less than

21mmHg. The exclusion criteria were concomitant ocular disease (such as glaucoma or retinal

pathology); systemic pathologies that could impair the visual system; ocular trauma; laser ther-

apy; and pathology affecting the optic nerve and retina (such as glaucoma, optic neuritis, mac-

ular degeneration). We excluded eyes with morphometric parameters of optic disc suggestive

of subclinical chronic glaucoma (cup to disc ration�0.5).

All participants provided written informed consent to participate in this study. The written

informed consent for participants and for the study protocol was approved by the Ethics Com-

mittee of Clinic Research in Aragon (CEICA) and by the Ethics Committee of Miguel Servet

University Hospital, in Zaragoza, Spain, which specifically approved the study procedures.

This study was conducted in accordance with the guidelines established by the principles of

the Declaration of Helsinki.

Both eyes of each subject were evaluated, but only one of the eyes, randomly selected, was

included in the statistical analysis to avoid potential bias by interrelation between eyes of the

same subject. In the cases of subjects with exclusion criteria in only one eye, the other eye was

selected for the analysis.

A total of 13 eyes were excluded because of not enough OCT quality or exclusion criteria

detected during the exploration (morphometric parameters of optic disc compatibles with

glaucoma, epiretinal membrane or macular hole). Finally, we included 467 eyes (233 males,

234 females), that were classified in four groups in steps of 15 years, as the difference between

the youngest and the oldest is 60 years: Group 1 (composed by 71 eyes of 71 healthy subjects

aged between 20 and 34 years); Group 2 (composed by 65 eyes of 65 healthy individual aged 35

to 49 years), Group 3 (with 230 eyes from 230 healthy controls aged between 50 and 64 years)

and Group 4 (composed by 97 eyes from 97 healthy subjects aged 65–79 years).

OCT evaluation

Retinal measurements were obtained in all subjects using the DRI Triton SS-OCT device (Top-

con, Tokyo, Japan). We performed the 3D+5LineCross protocol (12.0�9.0mm + 9.00mm
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overlap 8), which allows 100.000 A scans/sec. The DRI Triton SS-OCT provides a quality scale

in the image to indicate the signal strength. The quality score ranges from 0 (poor quality) to

100 (excellent quality). Only images with a score >55 were analyzed in our study, and poor-

quality images prior to data analysis were rejected.

We exported data of 5 layers using 3DH_DISC (Disc5.2x5.2-Superpixelgrid-200) and the

thickness of the 26x26 grid were analyzed to get mean and standard deviation in the four age

groups as shown in Fig 1.

Using the Data Collector software of the Triton OCT, measurements of full layers and of 5

different layers were obtained (Fig 2): Retinal thickness (from the inner limiting membrane–

ILM- to the retinal pigment epithelium boundaries), Retinal nerve fiber layer (RNFL) (between

the ILM to the GCL boundaries), Ganglion cell layer (GCL) + (between RNFL to the inner

nuclear layer boundaries) and GCL++ (between ILM to the inner nuclear layer boundaries),

and choroid (from the Bruch membrane to the choroidal-scleral interface).

Automated built-in calibration software, Topcon Advances Boundary Software (TABS)

determined the distance between the delimiting lines in retina and choroidal plexus, establish-

ing 7 boundaries and five layers.

Data analysis

Comparison between age groups was performed using analysis of variance (ANOVA) for each

thickness measurement for four quadrants and four halves. Post-Hoc analysis was performed

to obtain statistical differences in each comparison between the four age groups (Group 1

compared with Group 2; Group 1 compared with Group 3; Group 1 compared with Group 4;

Group 2 compared with Group 3; Group 2 compared with Group 4; and Group 3 compared

with Group 4). Correction for multiple comparisons was used in all analyses. In order to

graphically see the evolution of the thickness of each segmented layer, a numerical method

called the finite element method (FEM) was used. Numerical techniques such as the finite

Fig 1. A: Location of 3D+5line cross OCT scans on retina. B: 26�26 grid centered on optic disc, the center area is not

shown because the OCT thickness is always zero. C: cross-sectional OCT image and segmentation boundaries.

https://doi.org/10.1371/journal.pone.0240441.g001
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element method have been extensively implemented as effective and noninvasive methods to

analyze biological tissues, and in particular in ophthalmology [18–20]. The finite element

method is a computational tool which allows analysing the stress/strain behaviour of a struc-

ture subjected to different loads and boundary conditions. Here, this method has only been

used to study the evolution of retinal layers thickness along time and to graphically see the evo-

lution of each of them by a contour plot map. Thus, a finite element mesh using ABAQUS

(Abaqus 6.14, Simulia, Rhode Island, USA) mimicking the Triton grid (Disc5.2x5.2-Superpix-

elgrid-200) was developed. The finite element mesh was constructed using membrane quadri-

lateral elements and the size of the mesh was 5.2x5.2mm. Afterwards, the thickness of each

box of the grid for each group and each layer was introduced. In this way, the evolution of the

thickness of each layer can be seen from a spatio-temporal point of view from Group 1 to

Group 4.

Results

We analysed a total of 467 eyes from 467 healthy subjects, 71 eyes from 71 individuals between

20–34 years (group 1), 65 eyes from 65 subjects between 35–49 years (group 2), 230 eyes from

230 subjects between 50–64 years (group 3) and 97 eyes from 97 individuals between 65–79

years (group 4).

Mean and standard deviation for each layer were represented in Fig 3 for the four age

groups.

Fig 4 represents the contour map obtained by finite element modeling of the evolution of

the thickness of each layer for the different age groups, which shows progressive thinning of all

layers with age, especially from 50 years onwards.

A comparative analysis between age groups were performed for all layers to find thickness

differences for four quadrants (temporal superior -TS-; temporal inferior -TI-; nasal superior

-NS-; and nasal inferior -NI-) and four halves (superior, inferior, nasal and temporal).

Retinal full layer analysis

There are highly significant differences between groups in our analysis for each quadrant and

halves. In the post-hoc analysis, a significant thickening that did not overcome the Bonferroni

Fig 2. Representation of the five layers measured by Triton optical coherence tomography. Retina (from the inner

limiting membrane–ILM- to the retinal pigment epithelium boundaries), Retinal nerve fiber layer (RNFL) (between

the ILM to the GCL boundaries), Ganglion cell layer (GCL) + (between RNFL to the inner nuclear layer boundaries),

GCL++ (between ILM to the inner nuclear layer boundaries), and choroid (from the Bruch membrane to the

choroidal-scleral interface).

https://doi.org/10.1371/journal.pone.0240441.g002
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correction for multiple comparison was found for TI quadrant at group 2 compared with

group 1 (p = 0.038) and also at temporal half (p = 0.043). Considerable differences that over-

came the Bonferroni correction or multiple comparison were found comparing group 2 vs

group 3, in which a thinning trend is visible for TS (p = 0.004), and TI (p = 0.007) quadrants

and temporal (p = 0.005) halves. Comparing group 3 vs group 4, significant thinning was

found for the four quadrants (p�0.002), and the four halves (p<0.001). Comparing group 1 vs

group 3 we did not find any statistical differences between groups although there is a presumed

thinning in group 3. On the other hand, there is an obvious thinning in group 4 compared

with group 1 and group 2 for all quadrants and halves (p<0.001).

Retinal nerve fiber layer analysis

Significant differences for all quadrants and halves were found between age groups, except for

NS quadrant and nasal half. A significant RNFL thickening that overcame Bonferroni correc-

tion was observed at group 2 compared with group 1 in TS quadrant (p = 0.001), inferior half

(p<0.001) and temporal half (p = 0.001). Group 3 presents a significant thickening at inferior

half (p = 0.002) when compared with group 1, but a significant thinning at TS quadrant

(p = 0.001) when compared with group 2. Group 4 presents just a significant thickening at NI

quadrant (p = 0.002) compared with group 1, but compared with group 2, it is observed a sig-

nificant thinning at TS (p<0.001) and TI (p<0.001) quadrants and at superior (p<0.001) and

temporal (p<0.001) halves. Same conduct happens when this group is compared with group 3

at TI quadrant (p<0.001) (Table 1).

RNFL to inner nuclear layer (GCL+)

GCL+ appears to be significantly thicker in group 2 when comparing with group 4 at TS quad-

rant (p = 0.001), inferior and temporal halves (p = 0.001), but not compared with groups 1 and

3. Group 3 present a significant thinner GCL+ layer at NI quadrant and inferior half

(p<0.001) when compared with group 1, however GCL+ is significantly thicker in this group

compared with older population (group 4) at TS quadrant and superior half (p = 0.001).

Finally, group 4 exhibits a significant thinning of GCL+ layer for every quadrants and halves

(p<0.001) (Table 1).

From inner limiting membrane to inner nuclear layer (GCL++)

Significant differences between groups in the GCL++ layer were found almost in every quad-

rant and half, except for NI quadrant and nasal half, that apparently are not predictive of

changes in this layer (Table 1). Comparing group 3 vs group 1, significant differences were not

found, but compared with group 2 significant thinning appears in TS quadrant (p<0.001). On

the other hand, group 4 exhibits a thinner GCL++ layer compared with group 1 in TI quadrant

(p = 0.001) and superior and temporal halves (p = 0.002). Compared with group 2 thinning

gets more significant in TS and TI quadrants (p<0.001), and superior and temporal halves

(p<0.001) (Table 1).

Fig 3. Representation of mean and standard deviation for each layer measured by Triton optical coherence

tomography, for the four age groups. Group 1 (composed by 71 healthy subjects with age between 20 and 34 years);

Group 2 (composed by 65 individuals with 35–49 years), Group 3 (with 230 healthy controls with 50–64 years) and

Group 4 (composed by 97 healthy subjects with 65–79 years). On the left column, the mean and standard deviation is

shown for each layer and age group. On the right column, the quartiles are plotted to show data dispersion and the

presence of outliers.

https://doi.org/10.1371/journal.pone.0240441.g003
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Retina (from RNFL to photoreceptors layer)

There are no significant differences when comparing group 1 with group 2, but when compar-

ing with group 3 significant thinning is found at TS and NS quadrants (p = 0.003 and

p = 0.001) and superior and nasal halves (p = 0.001 and p = 0.006). Furthermore, when com-

paring with group 4, significant thinning is found in all quadrants and halves (p<0.001) except

for NI quadrant (p = 0.041) (Table 2).

By contrast comparing group 2 with group 3, there seems to be a significant thinning at TS

(p<0.001), NS (p = 0.013) and NI (p = 0.009) quadrants and all halves (p<0.001, p = 0.024,

p = 0.008, p = 0.003), but when comparing with group 4 significant thinning occurs in all

quadrants (p<0.001, p<0.001, p<0.001 and p = 0.008) and all halves (p<0.001). Finally, when

Fig 4. Finite element contour map of the evolution of the thickness of each layer measured by Triton optical coherence

tomography for the four age groups (20–34 years, 35–49 years, 50–64 years, and 65–80 years). On the left, the contour bar

represents the equivalence between colour and thickness value (in μm) for each layer. Blue zones correspond to thicker areas and red

zones correspond to thinner ones. The optic nerve is represented in grey colour. Different scales have been used to represent the

thickness value for each layer. It can be seen a progressive thinning of all layers with age, especially from 50 years onwards.

https://doi.org/10.1371/journal.pone.0240441.g004

Table 1. Mean ± standard deviation of four quadrants and halves for age groups in the retinal nerve fiber layer, GCL+ and GCL++, and comparison of thickness

between age groups.

Group 1 (20–34 years) Group 2 (35–49 years) Group 3 (50–64 years) Group 4 (65–79 years) P

RNFL TS Quadrant 97.10±10.17 103.01±10.05 97.53±11.79 96.36±11.70 0.001�

TI Quadrant 93.16±11.55 97.63±9.57 97.12±13.62 90.49±12.03 <0.001�

NS Quadrant 88.89±12.20 88.70±10.66 87.13±14.22 85.19±12.04 0.222

NI Quadrant 77.72±10.44 82.00±7.50 80.94±11.39 84.49±15.81 0.003�

Superior Half 92.99±6.39 95.87±8.03 92.33±10.55 90.78±9.94 0.009

Inferior Half 85.44±6.15 89.81±6.08 89.03±9.17 97.49±10.30 0.007�

Nasal Half 83.30±9.31 85.35±8.02 84.03±11.82 84.84±13.16 0.687

Temporal Half 95.13±9.60 100.32±7.41 97.33±11.89 93.42±10.73 <0.001�

GCL + TS Quadrant 48.87±4.26 47.70±5.29 47.01±4.69 45.10±4.35 <0.001�

TI Quadrant 53.07±6.21 52.36±6.07 51.11±5.51 49.70±5.63 0.001�

NS Quadrant 40.42±2.99 39.27±3.22 39.44±4.31 38.40±3.82 0.011

NI Quadrant 41.06±3.84 39.69±3.67 39.13±3.93 37.79±5.42 <0.001�

Superior Half 44.65±3.05 43.49±4.3 43.23±3.76 41.75±3.38 <0.001�

Inferior Half 47.06±4.14 46.03±4.14 45.15±3.85 43.75±4.53 <0.001�

Nasal Half 40.47±3.15 38.48±3.17 39.29±3.72 38.09±3.87 <0.001�

Temporal Half 50.97±4.82 50.03±5.44 49.06±4.74 47.40±4.56 <0.001�

GCL++ TS Quadrant 145.98±9.61 150.72±11.23 144.55±11.72 141.47±13.00 <0.001�

TI Quadrant 146.23±9.25 150.01±10.43 148.25±13.14 140.20±13.29 <0.001�

NS Quadrant 129.28±13.08 128.00±11.89 126.49±15.07 123.45±13.76 0.046

NI Quadrant 118.78±10.08 121.70±8.98 120.01±11.65 122.10±16.72 0.263

Superior Half 137.63±8.03 139.36±10.03 135.52±11.74 132.46±12.03 0.001�

Inferior Half 132.51±6.73 135.85±8.45 134.13±10.16 131.15±12.68 0.015

Nasal Half 124.03±10.07 124.85±9.62 123.25±12.53 122.78±14.55 0.709

Temporal Half 146.10±8.40 150.36±9.29 146.40±11.79 140.83±12.39 <0.001�

The asterisks show significant levels that overcome Bonferroni correction for multiple comparisons, Abbreviations: TS, temporal superior; TI, temporal inferior; NS,

nasal superior; NI, nasal inferior.

https://doi.org/10.1371/journal.pone.0240441.t001

PLOS ONE Changes in retinal layers related with age

PLOS ONE | https://doi.org/10.1371/journal.pone.0240441 October 14, 2020 9 / 14

https://doi.org/10.1371/journal.pone.0240441.g004
https://doi.org/10.1371/journal.pone.0240441.t001
https://doi.org/10.1371/journal.pone.0240441


comparing group 3 with group 4 significant thinning is found at TS (p = 0.008) and TI

(p<0.001) quadrants and superior (p = 0.016) and temporal (p<0.001) halves.

Choroid analysis

Choroid howed significant differences between age groups for all quadrants and halves

(Table 2). At second age group (35 to 49 years) it seems to exist a choroidal thickening at supe-

rior half (p = 0.001) when compared with group 1. By contrast, group 3 presents a thinner cho-

roidal layer compared with previous groups, but this thinning is just significant when

compared with group 2 for TS and TI quadrants, and for temporal half (p<0.001). The thin-

nest choroidal values can be seen for group 4, which is significant when comparing with group

1, 2 of 3 for every parameter analyzed (p<0.001).

Except the GCL+ with a linear thinning ratio of -0.050 μm/year, the tendency in the other

layers differs. A thickening ratio of 0.476 μm/year for the full layers complex, 0.010 μm/year

for the retina, 0.856 μm/year for the choroid, 0.125 μm/years for the RNFL and 0.087 μm/years

for the GCL++ is observed until de third decade of life. Subsequently a thinning ratio of

-1.406 μm/year for the full layers complex, -0.058 μm/year for the retina, -1.364 μm/year for

the choroid, -0.084 μm/years for the RNFL and -0.131 μm/years for the GCL++ is observed

from de third decade of life.

Table 2. Mean ± standard deviation of four quadrants and halves for age groups in the full layers, retina and choroid measurement, and comparison of thickness

between age groups.

Group 1 (20–34 years) Group 2 (35–49 years) Group 3 (50–64 years) Group 4 (65–79 years) P

Full layers TS Quadrant 498.67±40.41 517.52±71.87 485.86±79.41 458.84±52.42 <0.001�

TI Quadrant 470.53±50.57 493.19±73.98 463.30±78.88 418.36±47.21 <0.001�

NS Quadrant 479.50±43.65 480.96±68.32 465.49±89.01 426.43±54.78 <0.001�

NI Quadrant 436.80±35.97 449.07±68.93 427.20±82.69 389.57±45.18 <0.001�

Superior Half 489.09±39.43 499.24±68.04 475.68±83.03 442.63±51.55 <0.001�

Inferior Half 453.67±40.77 471.13±69.78 445.25±79.36 403.97±44.68 <0.001�

Nasal Half 458.15±38.27 465.02±67.74 446.35±85.07 408.00±47.52 <0.001�

Temporal Half 484.60±44.81 505.35±71.76 474.58±78.35 438.60±47.09 <0.001�

Retina TS Quadrant 300.15±9.62 303.03±13.05 294.89±14.05 290.65±10.68 <0.001�

TI Quadrant 293.30±10.88 298.22±14.59 294.78±15.79 285.90±13.29 <0.001�

NS Quadrant 274.31±12.44 272.71±14.01 266.56±18.82 262.47±13.48 <0.001�

NI Quadrant 259.40±8.85 261.13±10.94 255.70±16.01 255.04±16.13 0.012

Superior Half 287.23±9.01 287.87±12.24 280.73±15.29 276.56±11.16 <0.001�

Inferior Half 277.85±8.47 279.68±12.06 275.24±14.68 270.47±13.13 <0.001�

Nasal Half 266.85±9.31 266.92±11.81 261.13±16.75 258.76±14.06 <0.001�

Temporal Half 298.22±9.38 300.63±12.80 294.84±14.42 288.27±11.30 <0.001�

Choroid TS Quadrant 173.28±40.68 203.81±77.25 168.16±74.45 145.42±48.17 <0.001�

TI Quadrant 149.75±46.90 179.46±72.31 145.66±73.86 109.60±39.44 <0.001�

NS Quadrant 175.66±43.38 193.17±68.84 174.84±82.28 140.19±47.74 <0.001�

NI Quadrant 147.86±34.92 169.42±68.43 147.11±77.33 110.51±35.24 <0.001�

Superior Half 174.47±39.34 198.49±71.18 146.39±77.27 142.81±45.52 <0.001�

Inferior Half 148.80±38.36 174.44±68.99 146.39±74.44 110.05±35.90 <0.001�

Nasal Half 161.76±38.04 181.30±67.82 160.98±78.97 125.35±38.98 <0.001�

Temporal Half 161.52±43.20 191.64±73.73 156.91±73.27 127.51±41.66 <0.001�

The asterisks show significant levels that overcome Bonferroni correction for multiple comparisons. Abbreviations: TS, temporal superior; TI, temporal inferior; NS,

nasal superior; NI, nasal inferior.

https://doi.org/10.1371/journal.pone.0240441.t002
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Discussion

Previous histopathological studies of the choroid have shown that choroidal thickness decreases

with age; this finding has been confirmed by posterior in-vivo studies [7, 14, 17, 21]. Choroidal

thinning on OCT has been associated with ophthalmological conditions such as age-related

macular degeneration, age-related choroidal atrophy, axial length, or systemic conditions such

as diabetes, Alzheimer’s disease, cognitive impairment, vascular diseases or obesity [11, 21, 22].

In addition, the loss of vascular perfusion related to age has been described in previous

studies performed with OCT-Angiography [23], even this alteration of blood flow could be

observed by magnetic resonance [24]. Furthermore, a significant reduction of retrobulbar cir-

culation related to age has been found in Doppler studies, this reduction could be also related

with the increased prevalence of cardiovascular risks related with age such as hypertension,

diabetes, lipid disorders and sedentary lifestyle [25–28].

Traditionally, the age of 40 years has been established as the age of onset of the classic oph-

thalmological alterations, although other pathologies such as macular alterations are more

common beyond 50 years, so these changes in the choroid can be a predictive factor of future

clinical alterations [7, 29, 30].

In our study, we have seen that global retinal tendency is toward thickening in the third

decade of life (group 2) and towards thinning after the fourth decade (group 3). Regarding the

choroid, the same pattern was seen and also for the rest of layers, except at GCL+ layer, where

there is a continuous thinning from group 1 to group 4. These results are consistent with those

of Hanumunthadu et al. 2018, their age-stratified analysis suggested that choroidal thickness

was smaller in children and younger adult population, and it appeared to decrease again in

older adults [21].

In contrast with published studies, our analysis has focused on a division by quadrants and

halves in the peripapillary area. We observed that superior half and quadrants are thicker than

their inferior homologous, however, it seems that there is no difference when comparing nasal

and temporal orientation. As we have seen previously, group 1 seems to have a very similar

choroidal thickness to group 3 in practically all the quadrants and halves, except in the supe-

rior half, where apparently the thickness of the choroid is greater in this group.

Comparing the thinning of the total retina and the one produced specifically in the choroid,

we can see that it is in group 4 where the thinning of this last layer is more pronounced, espe-

cially in the inferior half of the retina. Same thing happens for groups 1 and 2, but not in 3,

where thinning is symmetric when comparing the superior quadrants and halves with the infe-

rior ones and the nasal quadrants and halves with the temporal ones.

The potential clinical application of our findings is to know which thickness values in each

layer should be considered pathological. This study may be the base to build a normative data-

base that allows health personnel to improve the interpretation of retinal measurements, even

with a color scale similar to that one used by most OCT devices (red color means pathological

thinning, yellow color indicated slight thinning, green color means normal, blue indicates

slight thickening and purple means abnormal thickening); this helps to determine which layers

are out of normal limits in each range of age. This is an important limitation of the Triton cur-

rent software because we can visualize numerous measurements of all retinal layers, but oph-

thalmologists do not know if these values are normal for the age of each subject or patient.

Our findings suggest that there is a progressive and physiological thinning of all retinal lay-

ers from the third decade of life. In any case, it would be useful to extend this study further

with a larger population of ordinary individuals across a range of different ethnicities and

from longer geographic areas, to clarify the physio-pathological mechanisms that affect retinal

layers.

PLOS ONE Changes in retinal layers related with age

PLOS ONE | https://doi.org/10.1371/journal.pone.0240441 October 14, 2020 11 / 14

https://doi.org/10.1371/journal.pone.0240441


Supporting information

S1 Data.

(SAV)

Author Contributions

Data curation: Elisa Viladés, Elvira Orduna.
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