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Abstract: Freezing of Gait (FOG) is an impairment that affects the majority of patients in the advanced
stages of Parkinson’s Disease (PD). FOG can lead to sudden falls and injuries, negatively impacting
the quality of life for the patients and their families. Rhythmic Auditory Stimulation (RAS) can be
used to help patients recover from FOG and resume normal gait. RAS might be ineffective due to the
latency between the start of a FOG event, its detection and initialization of RAS. We propose a system
capable of both FOG prediction and detection using signals from tri-axial accelerometer sensors that
will be useful in initializing RAS with minimal latency. We compared the performance of several time
frequency analysis techniques, including moving windows extracted from the signals, handcrafted
features, Recurrence Plots (RP), Short Time Fourier Transform (STFT), Discreet Wavelet Transform
(DWT) and Pseudo Wigner Ville Distribution (PWVD) with Deep Learning (DL) based Long Short
Term Memory (LSTM) and Convolutional Neural Networks (CNN). We also propose three Ensemble
Network Architectures that combine all the time frequency representations and DL architectures.
Experimental results show that our ensemble architectures significantly improve the performance
compared with existing techniques. We also present the results of applying our method trained on
a publicly available dataset to data collected from patients using wearable sensors in collaboration
with A.T. Still University.

Keywords: Parkinson’s Disease; freeze of gait; Deep Learning; Ensemble Learning; wearable sensor
data; detection and predication

1. Introduction

Parkinson’s Disease (PD) had affected about 6.2 million people globally in 2015 [1].
Since then the number is estimated to have risen to around 10 million [2], making it one of
the most widely occurring neuro-degenerative movement disorders. PD is usually much
more prevalent in aging people, adults 60 and over [3]. It is characterized by the loss of
nerve cells or neurons in the substantia nigra area of the basal ganglia in the human brain.
Loss of these cells results in reduction of the neurotransmitter dopamine and ultimately in
decreased control of body movements [3–6].

PD is characterized by a number of neurological and motor symptoms like speech
impediments, olfactory dysfunctions, autonomic dysfunctions, sleep disorders, fatigue,
resting tremors, stiffness of trunk and limbs, slowness of movement (bradykinesia), re-
duced movement (akinesia), dyskinesia, irregular stride length and gait speed, Freezing
of Gait (FOG), falls and postural disorders [7]. It is difficult to diagnose PD without the
manifestation of motor symptoms, which are often unlikely to appear before 50% to 70% of
the neurons have been damaged [8], making it difficult to administer any kind of preventive
measures. The motor symptoms usually cause functional impairments in a subject, creating
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difficulties in sitting and standing up. The person with PD also suffers from losing the
normal pendulum motion of the arms and displaying very small steps [4,5].

One of the most common symptoms of PD is FOG, with around 50% of all PD patients
being affected [9,10]. Episodes of FOG cause the person with PD to intermittently experi-
ence a sudden inability to move, which often occurs while initiating gait, making turns
while walking or when experiencing stress. The subjects report a feeling of their feet being
glued to the ground during these events [11]. Based on the signals received from sensors
worn around the ankles, it was found that while normal walking steps occur at a frequency
of 0.5 Hz to 3 Hz, FOG exhibits a frequency of 6 Hz to 8 Hz [12,13].

Typically, FOG is very difficult to estimate and predict, but it can cause the risk of falls
and pose health risk for the affected elderly [14–17]. An accurate prediction and detection
of FOG can reduce accidents and thus improve the quality of life of the patients and their
loved ones.

Current methods for detecting FOG [18–20] mostly consist of tests and detailed ques-
tionnaires used to assess the frequency and severity of FOG episodes. Although somewhat
accurate, these methods suffer from shortcomings because of their clinical setup not reflect-
ing real-world scenarios. FOG events usually tend to occur at home or while the patients
are performing Activities of Daily Living (ADL) [7,11,21], which are different from the
clinical test setup.

With the advancement in technology, using wearable sensors to monitor movements,
body temperatures, heart rates and other physical parameters has become increasingly
commonplace [22]. These sensors are lightweight, comfortable and usually do not hamper
a person’s daily activities while monitoring ADL. The data recorded from wearable sensors
for activity detection has brought promising performance in various applications, especially
when combining with modern Machine Learning (ML) and Deep Learning (DL) based
techniques [23–27]. There are wearable sensors that use auditory stimulation to treat
FOG, which help shorten the duration of FOG events [28]. However, these sensors cannot
effectively stop FOG episodes because of the latency of detection, which can still be
hundreds of milliseconds in the best case scenarios [29].

There have been many applications using wearable technologies along with ML and
DL based techniques to monitor motor functions of PD patients, aiming to achieve more ef-
fective treatment and reduce healthcare expenses [30–32]. These approaches can provide an
unobtrusive and comfortable experience to the patient, while collecting personalized long
term relevant medical history and improving the quality of treatment. Maetzler et al. [33]
state that an automatic FOG analysis and detection system could play a vital role in mon-
itoring the occurrence and evolution of FOG events over time. Although a permanent
and guaranteed cure for PD or FOG itself has not been available at this time, a sufficiently
accurate automatic monitoring system might prove to be helpful in minimizing the fre-
quency and duration of FOG events. An established FOG treatment is to use Rhythmic
Auditory Stimulation (RAS) [34], which produces a rhythmic ticking sound as auditory
cues to help the patient resume normal gait when a FOG is detected. RAS has shown to
improve walking by maintaining the speed and amplitude of movements [35–37].

With the popularity of the wearable sensors, the amount of available data collected
from them is increasing at a rapid pace, which facilitates the use of DL based techniques.
DL is under the scope of artificial intelligence that has the capabilities to automatically
extract features from data without manual feature engineering. DL based end-to-end
classifiers have shown promising performance, outperforming ML based classifiers in
general, if sufficient amount of training data is available. Recently, DL based approaches
have been adopted to perform tasks related to Human Activity Recognition (HAR) using
data from various sensors [23–26].

Deep Convolutional Neural Networks (CNNs) are common Deep Learning archi-
tectures. Lecun et al. [38] mention in their book “The Handbook of Brain Theory and
Neural Networks” that CNNs can be applied to temporal signals and images to auto-
matically extract abstract distinct features by combining several convolutional operators.
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Although CNNs are proficient in extracting invariant local features from data, this architec-
ture often falls short when the data has global time dependency, which is often the case
with data obtained from wearable sensors. Recurrent Neural Networks (RNNs) are able to
solve this issue because the connections between the nodes of this architecture exhibit a
discrete-time dynamical system [39,40]. Long Short Term Memory (LSTM) is one of the
most widely used RNNs, able to model time dependency in sequential time series data
using various logic gates to control a memory space [41].

Neural Network Ensembling is the learning paradigm of training a collection of neural
networks to collaborate on the same task [42]. The idea of ensembling was introduced
by Hansen et al. [43], who proposed that the generalization ability of a Neural Network
based system can be significantly improved by training a number of neural networks and
by combining their solutions to solve the same problem. A typical ensemble architecture
consists of two steps, i.e., training multiple components or constituent neural networks
and then creating an architecture that combines their outputs. In recent years, Ensemble
Learning techniques have been applied to PD detection tasks and they have achieved
significant success [44,45].

The purpose of this work is to combine some most widely used time frequency analysis
techniques, with CNN and LSTM based architectures for the detection and prediction of
FOG events, using data captured from a tri-axial accelerometer sensor. In order to solve
the issue of detection latency, we predict the changes in gait immediately before a FOG
event. If the onset of FOG events can be accurately predicted, RAS can be applied even
before it starts. We use a BiDirectional LSTM architecture with raw signals and handcrafted
features and it was observed that handcrafted features did not improve the performance.
We explored a CNN architecture with multiple visual representation methods including
Recurrence Plot (RP), Short Time Fourier Transform (STFT), Discrete Wavelet Transform
(DWT) and Pseudo Wigner Ville Distribution (PWVD). Three ensemble neural network
architectures were also proposed and it was observed that they significantly improve the
prediction and detection performance compared to individual models. We evaluated our
models with multiple metrics to ensure that our findings are unbiased.

Our research group, in collaboration with Arizona School of Health Sciences, A.T.
Still University, acquired gait data from 14 PD patients recorded using APDM™ wearable
sensors. We applied our trained neural networks and proposed a system capable of
monitoring FOG from these data after we verified the performance of our models on a
publicly available dataset.

2. Literature Review

Smart sensors have been commonly used as a tool for assessing motor symptoms such
as FOG in PD and other movement disorders. This is possible because of the improvements
in computational power of small devices [46]. Existing FOG assessment methods using
these sensors can be categorized into different groups depending on the sensor types,
sensor locations, extracted features, and the analytics methods. FOG detection can be
conducted real-time or offline [47]. However, FOG detection and prediction are challenging
tasks because of the variability of event duration and frequency. We observe that previous
studies mainly captured FOG episodes that are not consistent to the patients’ normal daily
activities because their data were simulated in laboratory settings. In this section, we
review related work on FOG detection.

An early FOG detection method was proposed by Han et al. [48] using U-AMS
(Activity Monitoring System). Wavelet power features were used for discrimination of
abnormal movements in PD patients. Moore et al. [49] then proposed a threshold based
method for FOG detection by defining the Freeze Index (FI), which is the ratio between
the power of the signal in “freeze” band (3–8 Hz) divided by the power of the signal in the
“locomotion” band (0.5–3 Hz). The proposed method marks FOG episodes when FI exceeds
a certain threshold. The subject dependent experimental results show 78% correct detection
of FOG (true positive rate) and 20% false positive rate. Bachlin et al. [28] presented a real
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time FOG detection method by introducing a new term to Moore et al. [49] method, called
Power Index (PI), which is the addition of walking band (WB) and Freezing Band (FB)
that indicates the amount of movement. In [28], FOG episodes are determined using two
thresholds (Freezing Threshold (FTH) and Power Threshold (PTH)) given FI > FTH and
PI > PTH. In this method, once the FOG episodes are detected, the patient will get the
auditory signals until his normal walking ability is resumed. They reported 73.1% and
81.6% for sensitivity and specificity respectively. The author also created the Daphnet
dataset [28] for FOG assessment methods evaluation.

The first proposed FOG detection method based on ML was by Mazilu et al. [50].
The features for this classification were from the work of Bachlin et al. [28] with some
additional features including mean, standard deviation, entropy, energy, FI and power
of the acceleration signals. Random Forest (RF), Naive Bayes and K-nearest neighbour
(KNN) were the ML algorithms used for classification. Motion data capture was done by a
smartphone and a wrist acceleration sensor. The best obtained results were 66.25 and 95.83
for sensitivity and specificity respectively with RF using 10-fold cross-validation. In the
following year, they presented another automatic FOG detection system using wearable
sensor. In this work, they did multi-class analysis as the PreFOG motion was considered a
new class (FOG vs. PreFOG vs. normal locomotion). Learning was conducted by studying
the time domain and statistical features from the motion data. In this new work, they
could improve F1 score by 8.1%. The new automatic FOG detection method introduced
auditory cueing to warn the patient about FOG episodes. In the same year (2013), a system
for automatic FOG detection was proposed by Tripoliti et al. [51]. The system was based
on four steps: data imputation (interpolation), band-pass filtering, entropy calculation
and automatic classification (Naïve Bayes, RF, Decision Trees and Random Tree). Data was
obtained from 5 healthy subjects, 5 PD patients with FOG symptoms and 5 PD patients
without FOG symptoms. The results show 81.94% sensitivity, 98.74% specificity, 96.11%
accuracy and 98.6% Area Under Curve (AUC) using RF. Another proposed FOG detection
work in 2013 was by Moore et al. [52], which assesses seven sensors placed in different
locations for gait analysis. Their analysis found that the shank and back were the most
convenient places for the sensors. However, they found that using all the seven sensors
could get higher and more robust performance with sensitivity 84.3% and specificity 78.4%.

In 2015, Zack et al. [53] presented a threshold based FOG detection technique follow-
ing the approach of Moore [52] using a single tri-axial accelerometer placed at the waist.
Receiver operating characteristic (ROC) curves were drawn to determine a global FI thresh-
old to distinguish between FOG and non-FOG episodes for different tasks. In addition to
the global FI threshold, they calculated the sensitivity and specificity of the FI threshold for
each subject. Combining all task results, a sensitivity of 75% and specificity of 76% were
achieved [47].

Rodríguez et al. [54] presented a novel approach for FOG detection using machine
learning techniques and daily activities of the PD patients in real environments. They
extracted 55 FOG related features from 21 PD patients using just a single waist-worn
tri-axial accelerometer. Support Vector Machine (SVM) with leave-one-out cross-validation
was used for classification in two scenarios: user independent and user dependent. Ex-
perimental results show a sensitivity of 88.09% and specificity of 80.09% with R-10-fold
cross-validation and a sensitivity of 79.03% and specificity of 74.67% for leave-one-subject-
out (LOSO) evaluation. After that, Sama et al. [55] decreased the number of features to 28
for the same dataset. The extracted features were sent to 8 different classifiers with greedy
subset selection process, 10-fold cross-validation and different window sizes. The results
of FOG detection at patients’ homes were 91.7% and 87.4% for sensitivity and specificity
respectively, which are better than the results of Rodrigues’s method.

Orphanidou et al. [56] evaluated machine learning algorithms to identify the FOG
prior to its onset. An accelerometer time series dataset containing 237 individual Freezing
of Gait events from 8 patients was considered, from which features were extracted and
presented to 7 machine learning classifiers. SVM achieved the highest performance in
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comparison with the benchmark techniques. The classification algorithm was applied to
5 s windows using 18 features, obtaining balanced accuracies (the mean value of sensi-
tivity and specificity) of 91%, 90% and 82% over the Walk, FOG and Transition classes,
respectively. However, the need for systematic analysis of the problem was identified.
Therefore, in their next study [56], they specifically focused on the early detection of a FOG
event, through classification of the transition class using varying size time windows and
time/frequency contrary to the majority of previous studies that recognized FOG only
when it had occurred. In their paper, the Daphnet dataset was used with accelerometer sig-
nals obtained from sensors mounted on the ankle, thigh and trunk of the PD patients. Data
augmentation was performed on the dataset to include another class label called ‘transition’
that showed the episodes before FOG occurrence. Daphnet features were sent out to a
group of 5 classifiers, including Gradient Boosting (GB), Extreme Gradient Boosting, SVM,
RF and Neural Networks. Experimental results show that SVM with Radial Basis (RBF)
kernels has the best performance with sensitivity of 72.34%, 91.49%, 75.00% and specificity
values of 87.36%, 88.51% and 93.62%, for FOG, transition and normal activity classes,
respectively.

Deep Learning (DL) techniques have also been used for automatic FOG determination.
DL can handle multi-modal data, missing information and high dimensional feature spaces.
The first proposed FOG detection method using DL was by Camps et al. [57]. The proposed
1D Convolutions Neural Network (CNN) has 8 layers, which is trained using a novel
spectral data representation strategy that considers information from both the previous
and current signal windows. The data was collected from 21 subjects, consisting 9-channel
signals recorded from a waist-worn Inertial Measurement Unit (IMU) with three tri-axial
sensors: accelerometer, gyroscope and magnetometer. The experimental results show a
performance of 90.6% for the Geometric Mean (GM), an AUC of 0.88, a sensitivity of 91.9%
and a sensibility of 89.5%.

In 2019, San-Segundo et al. [58] presented a study to evaluate the robustness of differ-
ent feature sets and ML algorithms for FOG detection using body-worn accelerometers.
They used four feature sets: (Mazilu et al. [50] features, Human Activity Recognition
(HAR) features, Mel Frequency Cepstral Coefficients (MFCCs) features, and Speech Quality
Assessment (SQA) features). They also used four classifications (RF, multi-layer perceptron,
Hidden Markov models (HMM) and deep neural networks). Evaluation was performed
using a LOSO cross-validation. The best results were obtained when using the current win-
dow and three previous windows, with the feature set composed of Mazilu features [50]
and MFCCs [59]. They found that the best classifier was a deep convolutions neural
network achieving an AUC of 0.93 and an Equal Error Rate (EER) of 12.5%.

In 2020, Sigcha et al. [60] evaluated some ML and DL classification and detection
techniques with accelerometer signals acquired from a body worn IMU to enhance the
FOG detection performance in real-world home environments. Three data representations
proposed in the literature were reproduced (including Mazilu features [50], Mel Frequency
Cepstral Coefficients (MFCCs) [59] and Fast Fourier Transform (FFT)) to establish a baseline
using RF classifier with 10-fold cross-validation (R10fold) and LOSO. This analysis was
also conducted to find the best data representation to test DL approaches including: a
denoiser autoencoder, a deep neural network with CNN and a combination of CNN and
LSTM layers. For comparison purposes, shallow algorithms such as one-class SVM (OC-
SVM), SVM, AdaBoost and RF were tested. This study was evaluated on the data collected
by Rodríguez-Martín et al. [54], which includes recordings from 21 PD patients, who
manifested FOG episodes when performing ADL at their homes. The best performance
for AUC was 0.93. Their results illustrate that modeling spectral information of adjacent
windows through an LSTM model can improve the performance of FOG detection without
increasing the length of the analysis window.

In order to give a clear comparison of the different methods, we summarize their char-
acteristics in Table 1. The novelty of the proposed work lies in the usage of multiple time
frequency techniques as well as the usage of ensembling methodologies. Although there
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have been many experiments with ML and DL based technologies and feature extraction
methods for FOG detection, to the best of our knowledge, our work is the first to apply time
frequency representation techniques like Recurrence Plots (RP), Short Time Fourier Trans-
form (STFT), Discreet Wavelet Transform (DWT) and Pseudo Wigner Ville Distribution
(PWVD) alongside original signal and extracted features for FOG detection and prediction.
We combine these techniques to design ensemble architectures. We designed a Bidirectional
LSTM based architecture with four layers and trained separate instances of the architecture
on Raw signal windows as well as 27 features extracted from the signal window.

Table 1. Comparison between technologies of various approaches.

Authors Technology Used

Han et al. [48] U-AMS (Activity Monitoring System) using wavelet power features for
discrimination of abnormal movement.

Moore et al. [49] Threshold based method for FOG detection by defining the Freeze Index
(FI), achieving 78% True Positive Rate

Bachlin et al. [28] Added Power Index (PI) to the method proposed by Moore et al. [49]

Bachlin et al. [28] Two thresholds (FTH and PTH) given FI > FTH and PI > PTH,
achieving 73.1% sensitivity and 81.6% specificity

Mazilu et al. [50]
Additional Features along with Bachlin et al. [28] features used with ML
models RF, Naive Bayes and KNN, achieving 66.25% sensitivity and
95.23% specificity

Tripoliti et al. [51]

Data imputation (interpolation), band-pass filtering, entropy calculation,
and automatic classification (Naïve Bayes, RF, Decision Trees and
Random Tree), resulting in 81.94% sensitivity, 98.74% specificity, 96.11%
accuracy and 98.6% AUC

Moore et al. [52]

Assessed seven sensors placed in different locations and concluded that
the shank and back were the most convenient places for the sensors.
Using all the seven sensors achieved best performance with sensitivity
84.3% and specificity 78.4%

Zack et al. [53]

presented a threshold based FOG detection technique following
Moore [52] using ROC to determine a global FI threshold to distinguish
between FOG and non-FOG episodes for different tasks, achieving
sensitivity of 75% and specificity of 76%

Rodríguez et al. [54]

used ML techniques and 55 FOG related features from 21 PD patients
with SVM. reporting a sensitivity of 88.09% and specificity of 80.09% for
user independent evaluation, and a sensitivity of 79.03% and specificity
of 74.67% for LOSO evaluation

Sama et al. [55]

Decreased the number of features to 28 for the Rodríguez et al. [54]
dataset and used 8 different classifiers with greedy subset selection
process, 10-fold cross-validation and different window sizes, achieving
91.7% and 87.4% for sensitivity and specificity respectively

Orphanidou et al. [56]

Extracted features and presented to 7 machine learning classifiers,
with SVM achieving the highest performance. The classification
algorithm was applied to 5 s windows using 18 features, obtaining
balanced accuracy (the mean value of sensitivity and specificity) of 91%,
90%, and 82% over the Walk, FOG and Transition classes, respectively
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Table 1. Cont.

Authors Technology Used

Orphanidou et al. [56]

Focused on the early detection, through classification of the transition
class using varying size time windows and time/frequency contrary to
the majority of previous studies that recognized FOG only when it had
occurred by including another class label called ‘transition’ that
showed the episodes before FOG occurrence. 5 classifiers were used,
including Gradient Boosting (GB), Extreme Gradient Boosting, SVM,
RF and Neural Networks. SVM with RBF kernels has the best
performance with sensitivity of 72.34%, 91.49%, 75.00% and specificity
values of 87.36%, 88.51% and 93.62%, for FOG, transition and normal
activity classes, respectively

Camps et al. [57]

Proposed 1D Convolutions Neural Network (CNN) with 8 layers,
trained using a novel spectral data representation strategy that
considers information from both the previous and current signal
windows showing a performance of 90.6% for the GM, an AUC of 0.88,
a sensitivity of 91.9% and a sensibility of 89.5%

San-Segundo et al. [58]

Evaluated the robustness of different feature sets and ML algorithms
for FOG detection using body-worn accelerometers with 4 feature sets:
(Mazilu et al. [50], HAR, MFCCs, and SQA) using 4 classification
methods (RF, multi-layer perceptron, HMM and deep neural
networks).The current window and three previous windows, with the
feature set composed of Mazilu features [50] and MFCCs [59] achieved
best scores. Deep convolutions neural network achieved an AUC of
0.93 and an Equal Error Rate (EER) of 12.5%.

Sigcha et al. [60]

Reproduced Mazilu features [50], MFCCs [59], and FFT) to establish a
baseline using RF classifier with 10-fold cross-validation (R10fold) and
LOSO. Further, tested multiple DL approaches include: a denoiser
autoencoder, a deep neural network with CNN and a combination of
CNN and LSTM layers and compared with shallow algorithms such as
one-class SVM (OC-SVM), SVM, AdaBoost and RF, achieving 0.93 AUC

Our Proposed Method

Using all three sensors from Daphnet [28] dataset, used moving
windows extracted from the original signal, handcrafted feature set
and time frequency visualization techniques including RP, STFT, DWT
and PWVD alongside a CNN and LSTM architecture. Evaluated the
performance and used trained models to create 3 ensemble
architectures which further improve the performance. The proposed
method is capable of both FOG detection and prediction and the
evaluation scores show better performance when compared to
existing approaches.

We also designed a CNN architecture with four Convolutional layers, separate in-
stances of which were trained on our visual features (RP, STFT, DWT, PWVD). Combining
these models trained six different data modalities, we proposed our three ensemble archi-
tectures and evaluated their performance. The proposed models were able to both detect
and predict FOG events while achieving the high scores in multiple evaluation criteria.
The scores of the proposed ensemble methods either outperform or are very close to the
scores of existing methods. Note that when solving a multiclass classification problem,
i.e., in both identifying and predicting FOG events, our architectures achieve superior
performance. We also tested the trained models on monitoring progression with real-world
data, i.e., predicting FOG from accelerometer data captured using APDM wearable sensors.
The result demonstrated that our approach is able to detect preFOG episodes in real world
scenarios as presented in Section 5.

We believed there was room for improving the performance of existing models. None
of the existing works analyzed by us had used visual representation of time series data for
this task. Combining various visual representation techniques with handcrafted feature
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engineering and the capacity of DL based models to automatically extract relevant features
from raw data was a promising avenue of research. Furthermore, although some authors
including Orphanidou et al. [56] had introduced the concept of a PreFOG/Transition
state before entering FOG state, their average performance scores for all classes were
comparatively low and in their experiment SVM outperformed Neural Network based
architectures. In other cases where DL based architectures achieved superior performance,
they were mostly detecting FOG itself, not the PreFOG state. The goal of this experiment
was to develop a unified solution that would be able to both predict FOG by detecting the
PreFOG state and detect FOG itself with high accuracy. Additionally, we also wanted to
compare the performance of various different time frequency representation techniques for
this task.

3. Materials and Methods

In this work, we developed DL based techniques and used time frequency represen-
tation data as a feature set to classify as well as predict the FOG events. Experimental
results show that our approach gives higher accuracy compared with existing state-of-the-
art models based on tri-axial accelerometer sensor signals. The performance of each DL
model was evaluated with different feature sets and multiple metrics in order to determine
the optimal combination of models without bias. Finally, we are able to propose three
ensemble architectures, each of which is composed of a selected set of models and features.
The ensemble architectures significantly improve the performance of individual models.

3.1. Data

The publicly available DAPHNet [28] dataset was used for our experiments. The dataset
contained data collected from ten PD patients, with seven male and three female experi-
encing regular FOG in their day to day activities. The average age of the participants was
66.4± 4.8 years, with an average disease duration of 13.7± 9.67 years. The average Hoehn
and Yahr score was 2.6± 0.65, indicating that the subjects had mild symptoms with mild
balance impairment to moderate balance impairment [61]. Two tri-axial (3D) accelerometer
sensors were attached to one of the patient’s legs: One was located at the shank just above
the ankle and another was attached to the thigh slightly above the knee. A third sensor was
placed at the lower back of the patient. The locations of the sensors are given in [28] and
illustrated in Figure 1.

Figure 1. Sensor placement for data collection.
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The dataset contained 237 FOG events. Synchronized video recordings were used
by physiotherapists to identify the FOG events. The signal point, where the left-right
steps stop alternating, is defined as the start of a FOG event. The point, where normal
pattern resumed is defined as the end of the FOG event. Eight out of the ten subjects
experienced FOG during the study, with the duration of FOG events ranging from 0.5 s to
40.5 s. The mean duration was 7.3± 6.7 s, with 50% of the FOG episodes being shorter than
5.4 s and 93.2% being shorter than 20 s. The signals were annotated in three categories:

• 0—Not part of the experiment; user performed activities are unrelated to the experi-
mental protocol while the sensors were installed.

• 1—Experiment; no FOG.
• 2—FOG.

3.2. Proposed Data Preparation Method

An overview of the preprocessing, data augmentation and feature extraction algo-
rithms used in this study is presented in Figure 2. The major components are explained in
the subsections below.

Figure 2. Proposed preprocessing, data augmentation and feature extraction workflow.

3.3. Preprocessing

In the preprocessing component, data that is irrelevant to the study is removed and
signals from the three axes of each sensor is combined so that there is only one signal
stream for each sensor.

3.3.1. Removing Unrelated Data

As previously described in Section 3.1, data with an annotation of 0 was not a part of
the experiment; the subjects performed activities which were not in accordance with the
protocol of the data collection process. In this step, the unrelated data was excluded from
the dataset.

The Daphnet [28] dataset was divided per subject and we excluded subjects who did
not experience FOG at all during the data collection period.
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3.3.2. Calculating Magnitude of Acceleration for all three axis

Each of the accelerometers was assigned to a single channel, with the data being
recorded for three channels: Ankle (A), Leg (L) and Torso (T) representing the locations
of the sensor placement. Each channel contained three separate signals, with each of
the signals corresponding to a single axis of the accelerometer. The axes were horizontal
forward (X), vertical (Y) and horizontal lateral (Z). Thus, a set τ of nine signals was recorded
for each of the patients with a sampling frequency ( fs) of 64, as illustrated in Equation (1).

τ = {{AX , AY, AZ}, {LX , LY, LZ}, {TX , TY, TZ}} (1)

Magnitude of acceleration is the relative value of the overall acceleration at any given
time instance, calculated as shown in Equation (2), combining the signals for each of three
axes (x, y, z) into a signal.

αC =
√

α2
X + α2

Y + α2
Z, where αX , αY, αZ ∈ τ, αC ∈ τC (2)

The three signals (x, y, z) originating from each channel (A, L, T) were combined to
calculate the magnitude of acceleration denoted by τC in Equation (2), resulting in three
signal streams with one from each of the sensors as shown in Equation (3).

τC = {AC, LC, TC} (3)

3.4. Data Augmentation

We applied small non-overlapping windows to extract data from the original contin-
uous signal. The window data immediately before the start of a FOG event was labelled
with a new class PreFOG, which is essential for predicting FOG events before they occur.
The number of Non-FOG samples vastly outnumber the PreFOG and FOG samples, making
Non-FOG our majority class. In order to solve the issue of class imbalance, the minority
classes, PreFOG and FOG, were over sampled to match the number of samples from the
Non-FOG class.

3.4.1. Signal Segmentation

Non-overlapping 1-dimensional windows of length fs × w time-steps were used to
extract signal αC ∈ τC, where w is the length of the signal window in seconds.

αC = [ α1 α2 . . . αw× fs ]w× fs (4)

Since the windows were non-overlapping, shorter window lengths provided a larger
dataset. Signals were segmented into window lengths ranging from 1 to 4 s.

3.4.2. Labeling PreFOG class

Mazilu et al. [62] proposed that gait cannot enter into FOG state directly from normal
walking without first going through a state of deterioration. They define this state as
PreFOG, which is a transition period with variable duration. Identifying this transition
state would be valuable for both FOG detection and prediction. Since the duration of
PreFOG might not be the same from patient to patient, for our experiment the immediate
window (w × fs time steps) before the onset of a FOG event was labeled as PreFOG.
The final dataset thus had three annotations,

• 0—Non FOG
• 1—FOG
• 2—Pre FOG

Figure 3 presents an illustration of combined accelerometer signal from Ankle that
contains normal gait, PreFOG and FOG. PreFOG is highlighted in yellow and the FOG
episode is highlighted in red.



Sensors 2021, 21, 6446 11 of 33

Figure 3. Example of combined Accelerometer signal from Ankle, capturing the motor variations in
the gait of a PD patient, containing Normal gait, followed by a window of PreFOG period (Yellow),
and then a FOG event (Red).

3.4.3. SMOTE Oversampling

At this stage, the dataset was hugely imbalanced, with the majority of the data being
from the Non-FOG class. Such imbalanced data would lead to most architectures ignoring
the minority classes and over-classifying the majority class, although the performance
on the minority classes is much more significant in this case. There are multiple ways
to address this issue. One approach is to under-sample the majority class to match the
number of samples in the minority classes. However, in our case, the minority samples
are sparse, and under-sampling the majority class would lead to a drastic decrease in the
total number of training samples. Neural Network architectures require a large number of
training samples in order to perform satisfactorily, and therefore under-sampling would
lead to poor performance. An alternative method is to over-sample the minority class. It
involves duplicating the samples of the minority class to match the number of samples in
the majority class. Although this method balances the class distribution, it does not provide
the networks with any new information to learn. We decided to choose the approach
proposed by Chawla et al. [63] to synthesize new samples from existing samples. This
Synthetic Minority Over-sampling Technique (SMOTE) creates new synthetic plausible
samples that are in the same feature space as other minority class samples.

3.5. Feature Extraction

After data augmentation, our final feature set consisted of 5 different modalities
extracted from the same source signal in addition to original signal itself, αi ∈ αC as shown
in Equation (5).

Featuresi = {αi, Fi, RPi, STFTi, DWTi, PWVDi}, αi ∈ αC (5)

where:

• αi = Moving window extracted from signal αC.
• Fi = Manually extracted feature set from αi.
• RPi = Recurrence Plot representation of αi.
• STFTi = Short Time Fourier Transform representation of αi.
• DWTi = Discrete Wavelet Transform representation of αi.
• PWVDi = Pseudo Wigner Ville Distribution representation of αi.
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3.5.1. Time and Frequency Domain Features

For each moving window αi ∈ αC, 27 features relating to the time and frequency
domain were extracted, as explained in Table 2. Some of the features were selected based
on previous works done by Mazilu et al. [62] who added additional features to the work of
Bachlin et al. [28] including Min, Max, Range, Median, Mode, Trimmed Mean, Standard
Deviation, Variance, Root Mean Square, Skewness, Kurtisis, Normalized Signal Magnitude
Area, Mean Crossing Rate and Signal Vector Magnitude. Additional time domain features
such as Mean Absolute Value, Median Absolute Deviation, 25th and 75th percentile values,
Interquantile Range and Peak of Fourier Transform were added. Furthermore, sensor and
frequency based features such as Energy, Entropy, Peak Frequency, Freeze and Locomotion
Band Power, Freeze Index and Band Power were added in accordance to the work done by
Gokul et al. [64].

Table 2. Fi Features extracted for each αi ∈ αC.

Time Domain Features Description

Min, Max Minimum and Maximum value of the signal

Range Difference between the minimum and maximum value
of the signal

Mean Average value of signal
Median Median value of the signal

Mode Modal value of the signal
Trimmed Mean Trimmed/Truncated mean of the signal

Standard Deviation Deviation of a signal compared to its mean
Variance Square root of the standard deviation of the signal

Root mean square Square root of the mean of the squared signal
Mean absolute value Mean of absolute value of the signal

Median absolute deviation Median over the absolute deviations from the median
25th Percentile 25th percentile value of the signal
75th Percentile 75th percentile value of the signal

Interquantile range Difference between the 75th and 25th percentile of
the signal

Normalized Signal Magnitude Area Sum of standardized acceleration magnitude
normalized by window length

Skewness The degree of asymmetry in the signal

Kurtosis The degree of peakedness in the signal, signals with
high kurtosis have more outliers

Mean Crossing Rate
The number of times the signals goes from above
average value to below average value normalized by the
window length

Signal Vector Magnitude Sum of euclidean norm over the window normalized by
window length

Peak of Fourier Transform Maximum magnitude of Discrete Fourier Transform of
the signal normalized by the window length

Frequency Domain Features Description

Entropy Measure of random distribution of frequency

Energy Sum of squared magnitude of FFT of the signal divided
by window length

Peak Frequency Maximum frequency value in the power spectrum

Freeze Band Power The sum of power in Freeze band of frequencies divided
by sampling frequency

Locomotion Band Power The sum of power in Locomotion band of frequencies
divided by sampling frequency

Freeze Index Power of signal in freeze band (3-8Hz) divided by its
Power in locomotion band(0.5-3Hz)

Band Power Sum of the power in freeze band and in
locomotion band
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3.5.2. Recurrence Plots

Recurrence Plots (RP) are used to represent temporal correlations of univariate series
data defined in a square matrix [65]. For time series data, the matrix elements represent
the times at which the amplitude of the signal recurs. If i and j are two time instances,
and x(i) and x(j) are values in the time series at two recurrence time instances, the formula
to compute the recurrence plot [66] is given in Equation (6)

R(i, j) =

{
1, if ||x(i)− x(j) ≤ ε||
0, otherwise

, (ε is a custom similarity threshold) (6)

Recurrence plots are often robust against outliers and noisy data for periodic signals.
Some examples of recurrence plots for our signals can be seen in Figure 4. The plots were
generated with a window length (w) of 2. It was observed that for w = 2, Non-FOG events
had no distinct pattern when represented as a recurrence plot, PreFOG events show clear
distinct patterns and FOG events had patterns that were more defined than Non-FOG but
less defined than PreFOG. Both x and y axes represent time for RP.

(a) (b) (c)

Figure 4. Examples of recurrence plot for (a) signals representing Normal walking or Non-FOG,
(b) signals representing PreFOG and (c) signals representing FOG.

3.5.3. Short Time Fourier Transform

A Short Time Fourier Transform (STFT) is a Fourier transform that quantifies the phase
content and the sinusoidal frequency of signal segments changing over time [65]. STFT is
useful in capturing the time and frequency characteristics in the signals. Rajoub et al. [67]
mentioned that STFT does not perform well in capturing sharp signals and patterns with
varying duration. Figure 5 shows some example spectograms generated using STFT,
describing magnitude over time for each of our signal types over a 2 s time window. x axis
represents time and y axis represents frequency for STFT.

(a) (b) (c)

Figure 5. Examples of Short Time Fourier Transform plot for (a) signals representing Normal walking
or Non-FOG, (b) signals representing PreFOG and (c) signals representing FOG.

For w = 2, STFT captured the difference between Non-FOG and other classes, with the
spectograms for PreFOG and FOG classes being almost clear compared to that of Non-FOG.
However, it was difficult to visually differentiate PreFOG and FOG from STFT alone.
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3.5.4. Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is a process of decomposing a signal sequence
into subsets, with each subset being a time series consisting coefficients that represent the
time evolution in the corresponding frequency band [68]. A main advantage of DWT is
the ability to capture both frequency and location characteristics in a time series. Haar
Transform is the simplest of wavelet transforms. We used Haar sequence proposed by
Haar et al. [69], which is the first known wavelet basis. The Haar wavelet can be used to
analyze signals with sudden transitions, because of its non-differentiable property. Figure 6
shows sample plots of the approximation and detail coefficients of transforms for a 2 s time
window, with 2 subsets. For DWT, x axis represents time and y axis frequency.

(a) (b) (c)

Figure 6. Discrete Wavelet Transformation plot for (a) signals representing Normal walking, (b) sig-
nals representing PreFOG and (c) signals representing FOG.

DWT representation plot for w = 2 is useful for visually identifying the Non-FOG
class compared to PreFOG and FOG classes. For Non-FOG events, the approximation
and detail coefficient plots are almost flat, without any large fluctuation in value, which
is distinctly identifiable. The representations for PreFOG and FOG events are harder to
differentiate as both representations show sudden rise and drop in their values.

3.5.5. Pseudo Wigner Ville Distribution

Pseudo Wigner Ville Distribution (PWVD) is a method to represent transient phenom-
ena in three dimensions, i.e., time, frequency and amplitude [70]. PWVD has been proven
to be effective in generating accurate time frequency representation, since its frequency and
time resolutions are determined by the resolution of the signals and not by the duration [70].
Figure 7 shows some examples of PWVD computed on signals with 2 s time window from
our data. For PWVD, x and y axes represent time and frequency respectively.

(a) (b) (c)

Figure 7. Examples of Pseudo Wigner Ville Distribution plot for (a) signals representing Normal
walking, (b) signals representing PreFOG and (c) signals representing FOG.

The Non-FOG and FOG gaits can be clearly distinguished from PWVD representations
for w = 2, as Non-FOG gaits have a clear central section compared to FOG events. Both
PreFOG and FOG classes have patterns appearing in the central section, which makes it
difficult to differentiate them visually.

Finally, we can conclude that since RP shows a clear distinction between Normal and
PreFOG states, and STFT, DWT and PWVD show a clear distinction between Normal and
FOG states, if we combine RP with any one of STFT, DWT or PWVD, it can be possible
to visually identify Normal, FOG or PreFOG states. This can be utilized to identify the
resumption of Normal Gait after an FOG event.
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3.6. Model Structure

Based on the findings obtained from the four feature visual representations, RP,
STFT, DWT, PWVD discussed above, we introduced a Convolutional Neural Network
(CNN) based model architecture. A Long Short Term Memory (LSTM) based architecture
was proposed for the original signal α and the corresponding feature set F. For each
data modality ∈ Features, an instance of the corresponding model was trained and its
performance was recorded. Then, the trained model instances were combined in three
ensemble network architectures, M7, M8 and M9, as explained below. Our objective is to
demonstrate that properly designed ensemble models can provide better performance than
individual constituent models.

3.6.1. Basic Convolutional Neural Network

Convolutional Neural Networks (CNNs) are known for their ability to identify com-
plex non-linear relationships between data points without hand crafted feature engineering.
To complement our techniques to present time series data visually, a CNN architecture
was designed, which is presented in Figure 8. The input is passed through four 2D
Convolutional layers with filter sizes 64, 32, 16 and 8 respectively, a kernel size of (4, 4)
and LeakyReLu activation function with a negative slope coefficient and alpha value of 0.3.
Each of the Convolutional layers was followed by a 2D MaxPooling layer with a pool size
of (2, 2) and a Dropout layer having a dropout rate of 0.25. The data was then flattened
and passed through two Dense layers with 100 and 50 units respectively. Each of the
Dense layers had LeakyReLu activation function with alpha value of 0.3 and was followed
by 2 Dropout layers having a dropout rate of 0.2. Finally, a Dense layer with So f tmax
activation function of 3 units for our three output classes was added. The model was
compiled with a RMSProp optimizer with an initial Learning rate of 0.0001. For our four
visual feature types, RP, STFT, DWT and WV, a separate instance model was trained and
validated, which are labeled M1, M2, M3 and M4 respectively.

Figure 8. Proposed basic CNN Architecture with 4 recurring 2D Convolution blocks, followed by 3
Dense layers.
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3.6.2. Basic Bidirectional LSTM

Long Short Term Memory (LSTM) network is a type of recurrent neural network
architecture, which is suitable for learning and remembering a long sequence of input
data, automatically extracting features from the raw sequence and providing comparable
performance to using handcrafted features. Bidirectional LSTMs add a duplication of
the first recurrent layer. The first layer is trained on the original input sequence and
the duplicated layer is trained on a reversed copy of the input sequence. For our data,
the use of Bidirectional LSTM is justified because the context of the whole signal sequence,
instead of a linear interpretation, is relevant for FOG identification and prediction. Our
Bidirectional LSTM architecture is illustrated in Figure 9. The input is passed through four
Bidirectional LSTM layers stacked on top of each other with tanh activation function and
nlayers hidden layers. The value of nlayers is computed by Equation (7) where linput is the
length of the input sequence and σ is the multiplication coefficient. The value for σ was set
to 3 based on trial and error as it generated the best result. The output of LSTM was passed
through a Dense layer with So f tmax activation function. The final Dense layer had 3 units
to classify between the three output classes. An Adam optimizer with an initial learning
rate of 0.0001 was used to compile the model. One instance of this model, M5, was trained
on the original signal αC and another instance, M6, was trained on the handcrafted feature
set FC corresponding to the signal αC.

nlayers = linput × σ (7)

Figure 9. Proposed basic Bidirectional LSTM Architecture with 4 recurring Bidirectional LSTM blocks,
followed by a Dense Layer.

3.6.3. Ensemble Architectures

Ensemble Learning is a neural network training approach, where the predictions
from multiple trained networks are combined to solve a problem [71]. In this work, three
ensemble network architectures are examined (Figure 10). The constituent model set is
defined as,

Mconstituent = {M1, M2, M3, M4, M5, M6} (8)
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Figure 10. Proposed Ensemble Architectures, (1) M7 concatenates the output all constituent models,
followed by a Dense Layer, (2) M8 Averages the outputs of all constituent models and (3) M9
calculates the majority prediction of all models using mode.

Stacked Ensemble Model—M7

This model architecture is designed by combining the output predictions of all Mi ∈
Mconstituent. The models have already been trained on their respective data, and all layers
of constituent models are set as non-trainable before adding them to the ensemble model.
The outputs of the models are passed through a Concatenation layer and then two Dense
layers with 10 and 3 units respectively. The first Dense layer has a ReLu activation function
and the final Dense layer has a So f tmax activation function. An Adam optimizer is used
with a learning rate of 0.0001.

Average Ensemble Model—M8

This model architecture takes the average of the predicted outputs of all Mi ∈
Mconstituent. The constituent models pre-trained on their respective data are set as non
trainable, and the outputs are passed through an Average layer. M8 is compiled with an
Adam optimizer having a learning rate of 0.0001.

Majority Voting—M9

For majority voting, the output is based on the majority vote of the constituent models
Mi ∈ Mconstituent. The hard voting approach is used to calculate the final outcome, where
every constituent model votes for an output class and the majority vote is selected as
the final prediction. In statistical terms, this is equivalent to calculating the Mode of the
predictions from all constituent models.

4. Results

The focus of this work is to analyze how well our proposed solution can detect and
predict the characteristics embedded in the given data. We use collected data, which
already has ground truth defined, i.e., True Positive (TP), and therefore do not need to
obtain user opinions to validate the outcome. Instead, we compare the model generated
results with the ground truth. We follow the assessment metrics based on TP, False Positive
(FP), True Negative (TN) and False Negative (FN), used in related work in order to make
fair comparisons.
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4.1. Evaluation Criteria

In cases, where a majority class dominates the dataset, it might be possible that the
detection accuracy is very high despite the model failing to identify the minority classes.
To ensure that the performance of our model is properly evaluated and it is not over
classifying the majority class, a number of evaluation metrics were utilized in our study.

4.1.1. Detection Accuracy

Detection accuracy is the most widely used evaluation metric. It is defined as the
fraction of predictions by a model that are accurate. Detection accuracy can be computed
as in Equation (9). The output of this metric ranges between (0, 1), with 0 being completely
inaccurate and 1 representing perfect prediction.

Accuracy =
Number o f correct predictions

Total number o f records
(9)

4.1.2. Precision, Recall/Sensitivity, Specificity, Fβ Score

Precision, Recall/Sensitivity, Specificity and Fβ Score are very important in under-
standing the performance of a model. Since we are evaluating a multi-class classification
model, each of these metrics computes an individual class and then their weighted average
is calculated.

Precision for a class is the measure of the classifier’s ability to not classify a negative
sample as positive, as defined in Equation (10).

Precision(Ak, Bk) =
|Ak ∩ Bk|
|Ak|

(10)

Recall/Sensitivity of a class measures how well the classifier can identify positive
samples of a class, as defined in Equation (11).

Recall(Ak, Bk) =
|Ak ∩ Bk|
|Bk|

(11)

Specificity for a class is defined as the ability of a classifier to reject samples that are not a
member of that class.

Speci f icity(Ck, Dk) =
|Ck ∩ Dk|
|Dk|

(12)

The Fβ score is calculated as the weighted harmonic mean of Precision and Recall,
ranging between (0,1), with 1 being the best possible value, as presented in Equation (13).

Fβ(Ak, Bk) = (1 + β2)
Precision(Ak, Bk)× Recall(Ak, Bk)

β2Precision(Ak, Bk) + Recall(Ak, Bk)
(13)

where,

• Ak is the predictions for class k.
• Bk is the occurrences for class k.
• Ck is the predictions for samples not in class k.
• Dk is the occurrences for samples not in class k.
• k represents a class in range 1 : K, in our case K = 3.

4.1.3. Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC), also known as Phi Coefficient, was pro-
posed by Matthews et al. [72] in 1975. MCC offers a balanced measure of quality for
both binary and multi-class classifications, which can be used even if the classes are im-
balanced. The value of this metric ranges from (−1,+1). A MCC value of +1 indicates
perfect prediction, 0 indicates random prediction and −1 indicates inverse predictions.
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Gorodkin et al. [73] generalized MCC for multiple classes as the RK statistic, defined with
respect to confusion matrix C for K classes following Equation (14) presented below [74].

MCC =
c× s−∑K

k pk × tk√
(s2 −∑K

k p2
k)× (s2 −∑K

k t2
k)

(14)

where,

• tk = ∑K
i Cik, the number of occurrences of class k.

• pk = ∑K
i CKi, the number of predictions for class k.

• c = ∑K
k ckk, total correct predictions.

• s = ∑K
i ∑K

j Cij, total number of samples.

4.2. K-Fold Cross Validation

In order to get an accurate estimate of the model performances, Stratified K-fold
cross validation technique was utilized to separate the data into training and testing sets,
with 80% of the data being used for training and the rest for testing, preserving the ratio of
samples of each class. Since neural network models take a long time to train and evaluate,
it is difficult to use high values for K. For this experiment, K was set to 5. The dataset was
first shuffled, and then it was split into K unique (train, test) combinations. For each fold,
a new instance of each of our models was trained using the training set and its performance
on the testing set was evaluated and recorded. The evaluation performances were retained
while the instances of the models were discarded. Finally, the average performance of the
models across all K folds was recorded.

4.3. Normalization

The visual feature representations in RPi, STFTi, DWTi, PWVDi are normalized using
Equation (15). Since the range for RGB values in images is (0–255), each channel is normalized
to the range of 0–1. Then the values are centered through division with the mean.

pnormalized =
po − 255.0
mean(po)

, po ∈ RPi, STFTi, DWTi, PWVDi (15)

4.4. Experimental Setup

For each of the training sets, it was further divided into (train,validation) sets with
80% being used for training and the rest for validation. Validation using unseen data was
crucial to evaluate whether the model was learning over time by comparing its performances.
Each of the models was trained for 500 epochs. The training was stopped if the validation
accuracy did not improve over 50 epochs. All the experiments were done on a Machine with
Ubuntu OS, 4 core Intel Xeon Processor, 62 Gigabytes of RAM and Nvidia Tesla GPU with
16 Gigabytes memory. The algorithm was tested with data from all three wearable sensors
αC ∈ τC, but we achieved the best performance with data from the ankle mounted sensor
AC. All results presented here are based on AC. In order to train Convolutional Neural
Networks, all image features were adjusted to the shape of (3, 128, 128) and then normalized.
The runtimes presented include both training and testing of the model but do not include the
preprocessing and feature extraction time. Runtimes presented here for ensemble models do
not include the time for training the constituent models. All scores presented in Section 4.5
are average scores. Five instances of each model were trained and evaluated on five Folds of
(train, test) sets, and their scores and runtimes were averaged. Table 3 shows the reported
performance of some existing models on the same dataset, in a (0–100) range.
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Table 3. The Metric scores of some related works on similar data.

Model Window (s) Sensitivity Specificity Fβ Score

Mazilu et al. [62] (Unsupervised—20
Features) 3 76.86 86.21 81.56

Mazilu et al. [62] (Supervised—20
Features) 3 66.65 88.74 78.27

Mazilu et al. [62] (Unsupervised—25
Features) 3 76.86 85.52 80.82

Mazilu et al. [62] (Supervised—25
Features) 3 67.58 88.52 78.65

Decision Tree [64] 4 96.70 98.92 -

Random Forest [64] 4 98.91 99.44 -

AdaBoost [64] 4 97.99 99.56 -

KNN [64] 4 94.61 97.38 -

SVM [64] 4 97.54 98.64 -

ProtoNN [64] 4 95.25 99.66 -

Bonsai [64] 4 92.9 98.36 -

4.5. Metric Scores and Discussion

Since we used non-overlapping time windows, smaller window sizes yielded signif-
icantly larger amount of data, which led to better performance in neural network based
architectures. We experimented with widow sizes of 2, 3, 4 s. A window size of w seconds
means that our model is able to predict the start of a FOG event w seconds before it happens.
We believe that a window size of 1 would lead to much better detection performance since
it means more training examples for the model. However, we did not use a smaller window
size of 1 because it would also decrease the time window by which we can predict the FOG
event, leading to a higher resource consumption during training.

We also observed that the size to which the features in RPi, STFTi, DWTi, PWVDi are
reshaped also plays a vital role in model performance, with larger sizes producing better
results. Due to resource constraints, we set this size to be (3, 128, 128).

Section 4.5 presents the performance of for each model M ∈ M1, . . . M9 with signal
S ∈ τC (for each of Ankle(AC), Leg(LC) and Trunk(TC)) with Window Size w ∈ 2, 3, 4
(seconds). The tables report multiple evaluation metric scores including Accuracy, Precision,
Recall/Sensitivity, Specificity, Fβ score, MCC score and the Runtime taken for the model to
train in minutes. All scores are reported in the range of (0, 1), except MCC score, which
is in the range of (−1, 1). The scores are reported in Mean ± Standard Deviation format.
The best scores for each model using the same modality of data but with different window
sizes were reported in bold font.

From the metric scores presented in Table 4, it can be seen that Basic CNN M1 trained
on RP generated from signals performs reasonably well across all metric scores. In most
cases the smallest window size of 2 s yielded the best scores, but there was not a drastic
decrease in performance when we increased the window sizes. Comparing sensor locations,
data collected from Trunk sensor (TC) performed the best, followed closely by data collected
from Ankle (AC) and Leg (LC).
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Table 4. Results of Basic CNN M1 with RP.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.894 ± 0.021 0.929 ± 0.006 0.894 ± 0.021 0.933 ± 0.007 0.904 ± 0.016 0.687 ± 0.039 52.05

3 0.832 ± 0.023 0.905 ± 0.011 0.832 ± 0.023 0.926 ± 0.010 0.849 ± 0.021 0.648 ± 0.035 17:41

4 0.864 ± 0.030 0.901 ± 0.020 0.864 ± 0.030 0.925 ± 0.020 0.873 ± 0.027 0.695 ± 0.058 11:52

LC
(3)

2 0.891 ± 0.019 0.929 ± 0.008 0.891 ± 0.019 0.937 ± 0.008 0.902 ± 0.016 0.684 ± 0.037 57:31

3 0.873 ± 0.005 0.915 ± 0.006 0.873 ± 0.005 0.937 ± 0.006 0.883 ± 0.005 0.702 ± 0.014 22:41

4 0.840 ± 0.022 0.895 ± 0.013 0.840 ± 0.022 0.930 ± 0.014 0.853 ± 0.020 0.664 ± 0.037 9:25

TC
(3)

2 0.926 ± 0.013 0.942 ± 0.007 0.926 ± 0.013 0.944 ± 0.009 0.930 ± 0.011 0.755 ± 0.033 64:58

3 0.876 ± 0.021 0.921 ± 0.008 0.876 ± 0.021 0.924 ± 0.008 0.889 ± 0.017 0.649 ± 0.038 15:24

4 0.849 ± 0.000 0.911 ± 0.000 0.849 ± 0.000 0.934 ± 0.000 0.863 ± 0.000 0.667 ± 0.000 9:59

Table 5 presents the scores for Basic CNN M2 trained on STFT plots generated from
the signals. For STFT. window size of 3 seemed to provide comparatively better results,
although the scores were poor when compared to the scores from RP. The data collected
from Trunk sensor (TC) provided best results when using STFT, followed closely by data
collected from Leg (LC) and Ankle (AC).

Table 5. Results of Basic CNN M2 with STFT.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.678 ± 0.016 0.893 ± 0.008 0.678 ± 0.0176 0.860 ± 0.007 0.742 ± 0.011 0.407 ± 0.014 68.11

3 0.799 ± 0.030 0.883 ± 0.010 0.799 ± 0.030 0.897 ± 0.012 0.819 ± 0.026 0.585 ± 0.038 18:41

4 0.781 ± 0.030 0.877 ± 0.005 0.781 ± 0.030 0.905 ± 0.010 0.803 ± 0.025 0.588 ± 0.026 11:22

LC
(3)

2 0.719 ± 0.023 0.889 ± 0.009 0.719 ± 0.023 0.864 ± 0.017 0.762 ± 0.019 0.452 ± 0.035 127:59

3 0.815 ± 0.025 0.902 ± 0.006 0.815 ± 0.025 0.921 ± 0.008 0.834 ± 0.021 0.633 ± 0.030 21:02

4 0.746 ± 0.036 0.865 ± 0.010 0.746 ± 0.036 0.894 ± 0.013 0.770 ± 0.031 0.550 ± 0.032 8:55

TC
(3)

2 0.781 ± 0.010 0.899 ± 0.002 0.781 ± 0.010 0.894 ± 0.003 0.813 ± 0.008 0.516 ± 0.008 57:19

3 0.831 ± 0.037 0.911 ± 0.013 0.831 ± 0.037 0.914 ± 0.019 0.854 ± 0.030 0.586 ± 0.060 14:36

4 0.816 ± 0.005 0.905 ± 0.004 0.816 ± 0.005 0.927 ± 0.003 0.836 ± 0.004 0.629 ± 0.004 8:19

The metric scores of Basic CNN M3 using DWT are reported in Table 6. M3 achieved
the highest accuracy among our models using visual features (RP, STFT, DWT, PWVD).
The scores for varying window sizes were very similar, with a window size of 2 s providing
the best scores for Ankle (AC) and Trunk (TC) sensor data. For data collected from the
Leg (LC), a window size of 3 generated the best scores. Comparing the scores of the three
sensors’ locations, it was noted that Trunk (TC) provided the best scores, followed very
closely by Leg (LC) and Ankle (AC).

Table 6. Results of Basic CNN M3 with DWT.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.939 ± 0.002 0.948 ± 0.004 0.939 ± 0.002 0.947 ± 0.009 0.942 ± 0.002 0.785 ± 0.013 67.44

3 0.922 ± 0.031 0.940 ± 0.019 0.922 ± 0.031 0.949 ± 0.017 0.926 ± 0.028 0.796 ± 0.068 22:39

4 0.906 ± 0.022 0.923 ± 0.018 0.906 ± 0.022 0.941 ± 0.017 0.910 ± 0.021 0.766 ± 0.050 13:48

LC
(3)

2 0.923 ± 0.005 0.941 ± 0.001 0.923 ± 0.005 0.944 ± 0.006 0.928 ± 0.004 0.748 ± 0.003 127:32

3 0.940 ± 0.010 0.951 ± 0.006 0.940 ± 0.010 0.963 ± 0.003 0.943 ± 0.009 0.834 ± 0.020 26:43

4 0.930 ± 0.020 0.940 ± 0.015 0.930 ± 0.020 0.958 ± 0.014 0.932 ± 0.019 0.817 ± 0.044 16:47

TC
(3)

2 0.946 ± 0.015 0.954 ± 0.010 0.946 ± 0.015 0.952 ± 0.010 0.949 ± 0.013 0.811 ± 0.042 55:17

3 0.938 ± 0.019 0.949 ± 0.012 0.938 ± 0.019 0.952 ± 0.008 0.941 ± 0.017 0.784 ± 0.048 22:12

4 0.943 ± 0.008 0.953 ± 0.005 0.943 ± 0.008 0.971 ± 0.003 0.945 ± 0.008 0.839 ± 0.019 12:39
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Table 7 notes the metric scores of Basic CNN M4 using PWVD. A window size of 3 s
provided the best scores for Ankle (AC) and Leg (LC) sensor data. For data collected from
the Trunk (TC), a window size of 4 generated the best scores. Comparing the best scores for
each sensor location, the scores for all three locations were pretty similar.

Table 7. Results of Basic CNN M4 with PWVD.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.831 ± 0.023 0.906 ± 0.006 0.831 ± 0.023 0.902 ± 0.011 0.852 ± 0.018 0.571 ± 0.035 74.00

3 0.865 ± 0.015 0.907 ± 0.009 0.865 ± 0.015 0.930 ± 0.010 0.876 ± 0.014 0.681 ± 0.031 32:34

4 0.825 ± 0.024 0.888 ± 0.010 0.825 ± 0.024 0.919 ± 0.010 0.839 ± 0.021 0.641 ± 0.035 17:46

LC
(3)

2 0.811 ± 0.011 0.901 ± 0.005 0.811 ± 0.011 0.897 ± 0.009 0.836 ± 0.009 0.545 ± 0.021 131:00

3 0.871 ± 0.020 0.912 ± 0.005 0.871 ± 0.020 0.930 ± 0.005 0.881 ± 0.016 0.695 ± 0.026 28:58

4 0.831 ± 0.025 0.895 ± 0.010 0.831 ± 0.025 0.923 ± 0.013 0.846 ± 0.021 0.657 ± 0.032 16:27

TC
(3)

2 0.805 ± 0.011 0.900 ± 0.010 0.805 ± 0.011 0.887 ± 0.017 0.832 ± 0.010 0.531 ± 0.036 68:28

3 0.842 ± 0.033 0.908 ± 0.009 0.842 ± 0.033 0.917 ± 0.013 0.861 ± 0.026 0.590 ± 0.052 29:24

4 0.864 ± 0.025 0.916 ± 0.010 0.864 ± 0.025 0.946 ± 0.012 0.877 ± 0.021 0.687 ± 0.040 15:50

Table 8 contains the scores of Bidirectional LSTM with extracted raw signal windows.
The overall performance is not as good as using visual features. The performance does
not experience a drastic change when the window size increases from 2 to 3 s, but we see
a significant drop in performance as the window size changes from 3 to 4 s. A window
size of 3 s provided comparatively better scores for Trunk (TC) and Leg (LC) sensor data.
For data collected from the Ankle (AC), a window size of 2 generated the best scores. Data
from Leg (LC) sensor provided the best overall scores when using bidirectional LSTM and
raw signals.

Table 8. Results of Bidirectional LSTM M5 with Raw Signals.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.797 ± 0.106 0.896 ± 0.027 0.797 ± 0.106 0.917 ± 0.048 0.827 ± 0.082 0.527 ± 0.149 302.21

3 0.784 ± 0.124 0.903 ± 0.018 0.784 ± 0.124 0.939 ± 0.053 0.817 ± 0.092 0.597 ± 0.152 149:31

4 0.695 ± 0.178 0.832 ± 0.053 0.695 ± 0.178 0.774 ± 0.074 0.715 ± 0.155 0.441 ± 0.168 73:22

LC
(3)

2 0.705 ± 0.106 0.877 ± 0.012 0.705 ± 0.106 0.836 ± 0.034 0.747 ± 0.088 0.418 ± 0.091 121:56

3 0.894 ± 0.021 0.929 ± 0.006 0.894 ± 0.021 0.933 ± 0.007 0.904 ± 0.016 0.687 ± 0.039 96.09

4 0.360 ± 0.380 0.315 ± 0.432 0.360 ± 0.380 0.806 ± 0.134 0.312 ± 0.419 0.246 ± 0.351 52:05

TC
(3)

2 0.715 ± 0.270 0.880 ± 0.071 0.715 ± 0.270 0.800 ± 0.120 0.744 ± 0.239 0.478 ± 0.314 199:10

3 0.778 ± 0.142 0.903 ± 0.032 0.778 ± 0.142 0.930 ± 0.060 0.814 ± 0.111 0.531 ± 0.181 105:22

4 0.441 ± 0.312 0.517 ± 0.372 0.441 ± 0.312 0.728 ± 0.059 0.411 ± 0.305 0.111 ± 0.157 74:20

The scores of Bidirectional LSTM with extracted features are presented in Table 9.
The performance is slightly better than using raw signals. The performance does not
experience drastic changes with changes in the window size. A window size of 2 s
provided comparatively better scores for Ankle (AC), Trunk (TC) and Leg (LC) sensor data.
Data from Ankle (AC) sensor provided the best overall score. The results when using Trunk
(TC) sensor data slightly outperformed the scores when using Leg (LC) sensor data.

The scores from LSTMs (M5 and M6) were moderate, but the issue was the very long
runtime. The time for training LSTMs on raw signals was almost 5 times and features was
almost 3 times of that for training the CNNs on visual features. All three of our ensemble
architectures M7, M8 and M9, improved the scores of individual models. The majority
voting model M9 had the best performance across all evaluation criteria without any extra
training or parameter tuning. The scores were high for all evaluation criteria. The reported
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runtimes for ensemble models do not include the training time needed to prepare the
constituent models.

Table 9. Results of Bidirectional LSTM M6 with Extracted features.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.846 ± 0.034 0.912 ± 0.015 0.846 ± 0.034 0.902 ± 0.023 0.865 ± 0.028 0.600 ± 0.067 179.36

3 0.815 ± 0.020 0.896 ± 0.007 0.815 ± 0.020 0.923 ± 0.009 0.834 ± 0.017 0.620 ± 0.026 91:14

4 0.803 ± 0.033 0.875 ± 0.010 0.803 ± 0.033 0.893 ± 0.009 0.821 ± 0.028 0.597 ± 0.040 49:37

LC
(3)

2 0.822 ± 0.013 0.907 ± 0.008 0.822 ± 0.013 0.904 ± 0.012 0.845 ± 0.010 0.563 ± 0.025 147:41

3 0.812 ± 0.011 0.897 ± 0.001 0.812 ± 0.011 0.917 ± 0.002 0.832 ± 0.008 0.620 ± 0.011 89:48

4 0.783 ± 0.070 0.859 ± 0.042 0.783 ± 0.070 0.855 ± 0.043 0.801 ± 0.062 0.557 ± 0.122 47:42

TC
(3)

2 0.840 ± 0.007 0.907 ± 0.014 0.840 ± 0.007 0.898 ± 0.025 0.859 ± 0.006 0.579 ± 0.039 190:06

3 0.773 ± 0.022 0.900 ± 0.001 0.773 ± 0.022 0.897 ± 0.004 0.807 ± 0.017 0.519 ± 0.019 61:44

4 0.770 ± 0.019 0.888 ± 0.013 0.770 ± 0.019 0.909 ± 0.019 0.797 ± 0.017 0.560 ± 0.035 40:11

Table 10 contains the scores of ensemble architecture M7 with all features. The overall
performance is vastly superior to using individual features. The performance does not
change significantly when the window size changes. A window size of 3 s generated the
best scores for Ankle (AC) and Leg (LC) sensor data and a window size of 2 generated the
best scores for data collected from the Trunk (TC). Data from Leg (LC) sensor provided the
best overall scores. We can see that for M7, the runtimes were very large with all window
sizes, which is a disadvantage considering this does not include the training time for indi-
vidual models that make up the ensemble architecture. Adding the runtimes for constituent
models, a significant amount of time was needed to train this model architecture.

Table 10. Results of Stacked Ensemble M7 with Extracted features.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.971 ± 0.007 0.972 ± 0.007 0.971 ± 0.007 0.956 ± 0.012 0.971 ± 0.007 0.885 ± 0.027 200.32

3 0.979 ± 0.002 0.979 ± 0.002 0.979 ± 0.002 0.977 ± 0.005 0.979 ± 0.002 0.934 ± 0.006 157:30

4 0.967 ± 0.005 0.967 ± 0.007 0.967 ± 0.005 0.967 ± 0.012 0.967 ± 0.006 0.905 ± 0.018 108:52

LC
(3)

2 0.967 ± 0.008 0.968 ± 0.008 0.967 ± 0.008 0.954 ± 0.013 0.967 ± 0.008 0.870 ± 0.032 200:29

3 0.980 ± 0.002 0.980 ± 0.002 0.980 ± 0.002 0.977 ± 0.005 0.980 ± 0.002 0.938 ± 0.006 132:45

4 0.965 ± 0.011 0.965 ± 0.011 0.965 ± 0.011 0.968 ± 0.014 0.965 ± 0.011 0.899 ± 0.032 118:05

TC
(3)

2 0.972 ± 0.009 0.973 ± 0.009 0.972 ± 0.009 0.956 ± 0.013 0.972 ± 0.009 0.889 ± 0.036 324:54

3 0.971 ± 0.006 0.971 ± 0.006 0.971 ± 0.006 0.960 ± 0.008 0.971 ± 0.006 0.882 ± 0.024 196:53

4 0.967 ± 0.009 0.971 ± 0.007 0.967 ± 0.009 0.979 ± 0.003 0.968 ± 0.009 0.900 ± 0.026 178:51

Table 11 reports the scores of ensemble architecture M8 with all features. This archi-
tecture is similar to M7, except it adds an Average layer and calculates the average of the
prediction of all constituent models, whereas M7 concatenates the predictions and uses
two Dense layers to reshape the output. The overall performance is superior to using
individual features and comparable to the performance of M7. The performance does not
change significantly when the window size changes. For this model, window size of 3 s
generated the best scores using Ankle (AC) and Leg (LC) sensor data and a window size of
2 generated the best scores for data collected from the Trunk (TC). Data from Trunk (TC)
sensor provided the best overall scores. The runtimes for M8 were not that large when
compared to M7, but the performances were comparable. Thus, adding the runtimes for
constituent models, M8 was able to produce similar results while needing a lot less time
for training.
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Table 11. Results of Average Ensemble M8 with Extracted features.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.979 ± 0.008 0.978 ± 0.009 0.979 ± 0.008 0.958 ± 0.013 0.978 ± 0.009 0.913 ± 0.034 103.09

3 0.980 ± 0.005 0.980 ± 0.005 0.980 ± 0.005 0.976 ± 0.007 0.980 ± 0.005 0.938 ± 0.015 43:36

4 0.967 ± 0.005 0.967 ± 0.006 0.967 ± 0.005 0.967 ± 0.012 0.967 ± 0.006 0.905 ± 0.018 32:09

LC
(3)

2 0.973 ± 0.008 0.973 ± 0.008 0.973 ± 0.008 0.956 ± 0.013 0.973 ± 0.008 0.893 ± 0.032 107:14

3 0.978 ± 0.003 0.978 ± 0.002 0.978 ± 0.003 0.976 ± 0.003 0.978 ± 0.003 0.931 ± 0.008 51:31

4 0.969 ± 0.008 0.970 ± 0.008 0.969 ± 0.008 0.969 ± 0.013 0.969 ± 0.008 0.911 ± 0.024 24:04

TC
(3)

2 0.983 ± 0.006 0.983 ± 0.006 0.983 ± 0.006 0.960 ± 0.012 0.983 ± 0.006 0.932 ± 0.026 64:56

3 0.975 ± 0.005 0.975 ± 0.005 0.975 ± 0.005 0.962 ± 0.009 0.975 ± 0.005 0.900 ± 0.019 32:55

4 0.976 ± 0.008 0.978 ± 0.007 0.976 ± 0.008 0.983 ± 0.003 0.976 ± 0.008 0.925 ± 0.024 38:40

Table 12 presents the scores of Majority voting architecture M9 with all features. This
architecture is different from M7 and M8; there is no training for this method. The overall
performance is similar to the performance of M7 and M8. The performance is not much
affected when the window size changes. For this model, window size of 3 s generated the
best scores using Ankle (AC) sensor data and a window size of 2 generated the best scores
for data collected from the Trunk (TC) and Leg (LC). Data from Ankle (AC) sensor provided
the best overall scores, very closely followed by Trunk (TC) and Leg (LC). However, the
main strength of this model lies with its runtime, as it only outputs the majority result
of its constituent models. Since there is no training time, it can generate the output in
milliseconds. It can produce scores similar to M7 and M8 while not needing any extra
training time.

The results were also compared with the performance of some state-of-the-art models
on the same dataset, as shown in Table 3. Mazilu et al. [62] compared feature learning
approaches based on time and statistical domain with unsupervised learning approaches
using principle component analysis for both FOG detection and prediction. Their average
sensitivity, specificity and Fβ score are presented for only the FOG class with both super-
vised and unsupervised approaches. Our proposed approach in this work outperforms
their results for the FOG class. Moreover, the result they presented is only for the FOG
class; their method had lower scores when identifying the PreFOG class.

Table 12. Results of Majority Voting M9 with Extracted features.

Data Type Window (s) Accuracy Precision Sensitivity Specificity Fβ Score MCC Runtime (min)

AC
(3)

2 0.981 ± 0.007 0.980 ± 0.007 0.981 ± 0.007 0.951 ± 0.015 0.980 ± 0.007 0.921 ± 0.029 < 1

3 0.985 ± 0.003 0.985 ± 0.003 0.985 ± 0.003 0.979 ± 0.006 0.985 ± 0.003 0.953 ± 0.010 < 1

4 0.969 ± 0.006 0.969 ± 0.007 0.969 ± 0.006 0.967 ± 0.012 0.969 ± 0.007 0.911 ± 0.019 < 1

LC
(3)

2 0.977 ± 0.008 0.977 ± 0.008 0.977 ± 0.008 0.958 ± 0.012 0.977 ± 0.008 0.907 ± 0.032 < 1

3 0.973 ± 0.008 0.975 ± 0.006 0.973 ± 0.008 0.974 ± 0.002 0.973 ± 0.007 0.917 ± 0.020 < 1

4 0.971 ± 0.008 0.972 ± 0.008 0.971 ± 0.008 0.967 ± 0.008 0.971 ± 0.008 0.917 ± 0.023 < 1

TC
(3)

2 0.983 ± 0.007 0.983 ± 0.007 0.983 ± 0.007 0.960 ± 0.012 0.983 ± 0.007 0.932 ± 0.030 < 1

3 0.977 ± 0.003 0.977 ± 0.004 0.977 ± 0.003 0.962 ± 0.008 0.976 ± 0.004 0.905 ± 0.015 < 1

4 0.976 ± 0.011 0.978 ± 0.009 0.976 ± 0.011 0.979 ± 0.004 0.976 ± 0.010 0.925 ± 0.032 < 1

Gokul et al. [64] presented a number of ML based techniques to detect FOG events and
evaluate their performances with sensitivity and specificity, which are also presented in
Table 3. They also experimented with multiple window sizes and achieved the best results
with a window length of 4 s. Although their performance is higher than our proposed
model, they solved a binary classification problem of only identifying the FOG event.
Their work does not have a prediction component. They achieved the best results with
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Random Forest classifier, with a sensitivity score of 98.91 and a specificity score of 99.44.
Our ensemble architecture results were very close to their scores, while being able to also
predict the onset of a FOG event. However, compared to Gokul et al. [64], one shortcoming
of our method would be the large size of the trained models, which might pose a problem
in deploying the models to wearable sensors.

5. Application of Trained Model on Data Collected from APDM™ Sensors

We were able to obtain an additional dataset in collaboration with the Arizona School
of Health Sciences, A.T. Still University. There were 14 PD patients in their experiments
where gait was monitored and sensor data was recorded using APDM™ wearable sensors.
Eight of the subjects were male and six were female. The subjects were aged between
55 and 77 years and the mean age of the subjects was 64.7. The average Hoenn & Yahr
score for the subjects was 2.2 which indicated mild symptoms. The data made available
to us was anonymous. Using the existing models trained on Daphnet [28] data and the
Majority Voting Ensemble Architecture, our goal is to detect the onset of FOG in this
real-world dataset.

5.1. Data Collection and Processing

The data was provided by the Arizona School of Health Sciences, A.T. Still University.
The study was supervised, with the prior knowledge that 7 out of the 14 patients were
Freezers, identified as a score > 0 on the New Freezing of Gait Questionnaire (NFOGQ)
and the rest being non-Freezers, with a score of zero on the NFOGQ [20]. There were two
different configurations of the Six-Minute Walk Test (6MWT), a common clinical assessment
of walking endurance [75]: 50 and 100 feet. For both configurations, the duration of the
study was fixed at 6 min. Each patient had to walk for 6 min continuously with a 180 degree
turn after either a 50 or 100 feet walk respectively. The number of turns was less for the
100 feet configuration. For each of the 14 patients, two datasets were generated with one
for each configuration. The data was cleaned and missing values were filled with zeros.
Twenty-eight data files were generated with 14 containing Freezer data and 14 containing
non-Freezer data.

Sensor Types and Locations

The sensors were placed in six locations on a patient’s body as illustrated in Figure 11.

Figure 11. Sensor placement for data collection.
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The sensors were placed in Left Foot (Ankle), Right Foot (Ankle), Left Wrist, Right
Wrist, Sternum and Lumber (Trunk).

For each location, the following five types of sensor were used to record data simulta-
neously:

• Accelerometer.
• Magnetometer.
• Gyroscope.
• Barometer.
• Temperature.

The recorded data were processed using Moveo Explorer™ and Mobility Lab™.

5.2. Workflow and Challenges

Figure 12 depicts our workflow for this part of the experiment. In order to make the
data consistent across both Moveo Explorer and Mobility Lab, MinMax normalization was
used. Since our purpose was only to monitor FOG, we discarded all the data where the
patient did not experience FOG. As the result, data of 7 out of the 14 patients was discarded.

Since there were multiple sensors in multiple locations, finding the appropriate sen-
sors suitable for our experiment was an initial step. There are multiple sensors producing
a large amount of data and processing them all can be both time and resource intensive.
Furthermore, it could lead to biased predictions or impacting the performance negatively.
Identifying the optimal combination of sensors which was the most useful in detecting
FOG posed a challenge. We decided to consider only sensor locations that overlap with
Daphnet [28] sensor locations, i.e., Left and Right foot (Ankle) and Lumber (Trunk). Al-
though data from multiple sensors as well as derived kinematic information like velocities
and displacements was available, we only considered accelerations. This was because
our training dataset, Daphnet [28], only provided acceleration data, and thus it was not
possible for our currently pretrained architecture to use data from additional sensors like
Magnetometer, Gyroscope or Barometer. Our training dataset also did not consist of data
from sensors placed on the wrist or sternum area of the patient. Therefore, signals from
those areas would not be helpful in this case. We combined the signals from all three axis
(X, Y, Z) using Equation (2).

The sampling frequency for the data was 128 Hz, which is double the sampling
frequency of Daphnet [28]. Since our models were trained on a sampling frequency of
64 Hz, the data needed to be down-sampled from 128 Hz to 64 Hz in order for the trained
models to be effective.

Although the data was labeled, the labels were for the whole time series. That means
we used one continuous 6 min time series, which had only one label indicating whether
FOG occurred in that series or not. However, the exact occurrence and number of FOG
were unmarked; we did not know when exactly the FOG event happened or how many
FOG events are there. FOG events usually last shorter than 1 min, so there might be
multiple occurrences FOG within one 6 min signal. Thus even if we did apply our models
trained on Daphnet [28] to this data, it would be difficult to verify the accuracy of the
results. No significant difference can be visually defined between the two types of signal
for this dataset, because the very short FOG episodes occur in between 6 min of regular
walking. So even the majority of Freezer data is basically similar to the non-Freezer data,
with some FOG episodes in between.

In order to detect the occurrence of even a small FOG, a window size of 2 was
selected. After selecting the appropriate sensors and down-sampling the data, non-
overlapping moving windows of 2 s were extracted from the source signal. Then the
relevant features were generated from the windows. We only chose to use visual features
RP, STFT, DWT, PWVD, since they have demonstrated good performance and were less
time consuming as explained in the previous part of our experiment using the Daphnet [28]
dataset.
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Figure 12. Workflow of monitoring FOG using models trained on Daphnet data.

After generating the features, the models M1, M2, M3 and M4 trained on Daphnet [28]
data were used to analyze the data. There were three instances of trained models. For data
from Left and Right foot, the instances of models trained on data from Ankle sensor of
Daphnet was used. For data from Lumbar, models trained on data from Trunk sensor of
Daphnet was used. Our training dataset Daphnet does not specify whether the sensors
were located at the left or right side of the body. So Left and Right foot data was used with
models trained on Ankle sensor. Finally, the results for each of the models were passed
through a modified majority voting model M9, which generated the result.

For comparison, Figure 13 shows a small four window chunk of the signals from
Accelerometer sensor of the right Ankle with a window size of 2 s. Since our data was
down-sampled, this signal sequence has a sampling rate of 64 Hz instead of 128 Hz.
The first Figure 13a shows a part of the sequence that does not contain any FOG or preFOG
according to our model. Figure 13b shows a 4 s where our model identified PreFOG and
FOG occurrences marked Yellow and Red respectively. When we compare the two figures,
we can visually identify some differences. For the preFOG region, all the peak heights
are smaller than that of non-FOG signals. The FOG region has higher peaks than that of
preFOG, but the average peak height still appears to be lower than that of non-FOG signals.
These patterns appear to be consistent with our observations from the Daphnet [28] data
presented in Figure 3.
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(a)

(b)

Figure 13. Comparison of Freezer vs. non-Freezer Accelerometer signals with (a) non-Freezer and
(b) Detected preFOG and FOG from the Right Leg (Ankle).

6. Conclusions

In this work, the performance of multiple time frequency representation techniques
was compared in detecting and predicting FOG using tri-axial accelerometer sensor data
from the publicly available Daphnet [28] dataset. We presented three ensemble neural
network architectures comprised of multiple modalities of data and analyzed their per-
formances. We were able to validate that ensemble network architectures significantly
improve the performance over individual models.

The novelty of this work lies in the usage of multiple time frequency techniques and
the usage of ensembling methodologies. Although there have been many experiments with
ML and DL based technologies and feature extraction methods for FOG detection, as far
as our results indicate and the literature review shows, this work is the first to apply time
frequency representation techniques, i.e., Recurrence Plots, Short Time Fourier Transform,
Discreet Wavelet Transform and Pseudo Wigner Ville Distribution, alongside captured
signals and extracted features for FOG detection and prediction. Based on these innovative
ideas, we have introduced effective ensemble architectures. Furthermore, the proposed
solution is able to both detect and predict FOG events while achieving high performance
scores based on multiple evaluation criteria. Our proposed ensemble methods outperform
or are competitive to existing methods as demonstrated in Tables 3–12. Mazilu et al. [50]
reported a sensitivity and specificity score of 66.25% and 95.23% respectively. Tripoliti et
al. [51] achieved 81.94% sensitivity, 98.74% specificity and 96.11% detection accuracy. Sama
et al. [55] used eight different classifiers achieving 91.7% and 87.4% for sensitivity and
specificity respectively. Gokul et al. [64] report the best scores with Random Forest (89.91%
Sensitivity and 99.44% Specificity), AdaBoost (97.99% specificity and 99.56% sensitivity),
SVM (97.54% Sensitivity and 98.64% Specificity) and ProtoNN (95.25% Sensitivity and
99.66% Specificity) using a window size of 4 to solve a binary problem of FOG detection
only. Comparatively, using a window size of 3, our Majority Voting Architecture M9
achieved accuracy, sensitivity and specificity of 98.5%, 98.5% and 97.9% solving a multiclass
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classification problem of both FOG detection and prediction. When we used a larger
window size of 4, the sensitivity and specificity were around 96.9% and 96.7%. We also
evaluated our models using MCC scores (i.e., 1 is the best), and the scores of our ensemble
architectures were always above 0.9 which indicates that our approach had excellent
performance in all confusion matrix categories for all classes. While solving a multiclass
classification problem, i.e., in both identifying and predicting FOG events, our architectures
achieve superior performance across all evaluation criteria.

We also applied the trained models to monitor the progression of real-world data,
i.e., FOG from accelerometer data captured using APDM™ wearable sensors, which demon-
strate that our approach is able to detect preFOG episodes in real world scenarios. In future
works, we will integrate more sensors and data modalities, investigate more model com-
binations for creating ensemble architectures, reduce size and complexity of the models
and finally apply the resultant models to more real-world data. More importantly, we will
extend our models in identifying the preFOG class, i.e., predicting FOG events, to use real-
world data from more practical wearable sensors, in order to test the potential of preventing
falls by initiating RAS even before the start of the event. One of the drawbacks of the
proposed system is that the performance was not verified when applied on some collected
data due to the lack of proper annotations. Thus, our future goals also include properly
testing the performance of our method with more precisely annotated data using wearable
sensors. The ultimate objective is to deliver a system that is capable of administering RAS
for the prediction of FOG and the prevention of falls.
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RP Recurrence Plot
STFT Short Time Fourier Transform
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PWVD Pseudo Wigner Ville Distribution
DL Deep Learning
ML Machine Learning
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LSTM Long Short Term Memory
CNN Concolutional Neural Network
RNN Recurrent Neural Network
ADL Activities of Daily Living
HAR Human Activity Recognition
WB Walking Band
FB Freezing Band
FTH Freezing Threshold
PTH Power Threshold
FI Freeze Index
PI Power Index
RF Random Forest
KNN K Nearest Neighbours
AUC Area Under Curve
ROC Receiver Operating Characteristic
SVM Support Vector Machine
LOSO Leave One Subject Out
GB Gradient Boosting
RBF Radial Basis Function
IMU Inertial Measurement Unit
SQA Speech Quality Assesment
MFCC Mel Frequency Cepstral Coefficients
EER Equal Error Rate
FFT Fast Fourier Transform
MCC Matthews Correlation Coefficient
TP True Positive
FP False Positive
TN True Negative
FN False Negative
2AFC Two-Alternative-Forced-Choice
DSCQS Double Stimulus Continuous Quality Scale
U-AMS Activity Monitoring System
GM Geometric Mean
SQA Speech Quality Assessment
HMM Hidden Markov Model
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