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A B S T R A C T

Altered sensory processing has been an important feature of the clinical descriptions of autism spectrum disorder
(ASD). There is evidence that sensory dysregulation arises early in the progression of ASD and impacts social
functioning. This paper reviews behavioral and neurobiological evidence that describes how sensory deficits
across multiple modalities (vision, hearing, touch, olfaction, gustation, and multisensory integration) could
impact social functions in ASD. Theoretical models of ASD and their implications for the relationship between
sensory and social functioning are discussed. Furthermore, neural differences in anatomy, function, and con-
nectivity of different regions underlying sensory and social processing are also discussed. We conclude that there
are multiple mechanisms through which early sensory dysregulation in ASD could cascade into social deficits
across development. Future research is needed to clarify these mechanisms, and specific focus should be given to
distinguish between deficits in primary sensory processing and altered top-down attentional and cognitive
processes.

1. Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental
disorder characterized by deficits in social communication and the
presence of restricted, repetitive behaviors (RRB) (American Psychiatric
Association, 2013); current estimates state that it affects 1 in 68 chil-
dren (Christensen et al., 2016). Despite the first scientific report of ASD
mentioning altered sensory perception as a characteristic feature
(Kanner, 1943), ASD research has historically been heavily focused on
social impairments (see Leekam, 2016 for a review), with many popular
theories construing it as a social disorder (including social motivation
hypothesis, Dawson et al., 2005; and the mindblindness account, Baron-
Cohen et al., 1985; Baron-Cohen, 1990). In recent years, however, re-
search focusing on the sensory domain has found that sensory proces-
sing abnormalities in ASD (see Baum et al., 2015; or Marco et al., 2011;
for reviews) are reported across all ages and levels of symptom severity
(Leekam et al., 2007) and adversely affect both daily functioning
(Suarez, 2012) and academic performance (Howe and Stagg, 2016).
Such abnormalities have been documented across all sensory modalities
(e.g., Kientz and Dunn, 1997), and up to 95% of parents of children
with ASD report some atypical sensory behavior in their child (e.g.,
seeming indifference to pain, avoidance of certain sounds or textures,

unusual smelling of objects, seeking out visual experiences of lights or
movement; Rogers and Ozonoff, 2005). Acknowledging this, the most
recent edition of the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-5; American Psychiatric Association, 2013) lists “hyper-
or–hypo-reactivity to sensory input or unusual interests in sensory as-
pects of the environment” as a type of restricted and repetitive beha-
vior. Thus, there is behavioral, neurophysiological and anecdotal evi-
dence of sensory impairment as a prevalent characteristic feature of
ASD.

While prior research has often focused on the sensory and social
features of ASD independently of one another, new theoretical and
empirical evidence suggests a stronger relationship between the two
than previously thought (Ronconi et al., 2016). Sensory and social be-
haviors may arise from a common underlying mechanism and/or may
exert reciprocal influence on each other in the course of a child’s de-
velopment (Gliga et al., 2014). This relationship is also evident from
findings of early abnormal sensory sensitivity to stimuli predicting later
joint attention and language development (Baranek et al., 2013), de-
velopment of social play (Miller Kuhaneck and Britner, 2013), in-
creased withdrawal and negative temperament (Brock et al., 2012), and
higher levels of social impairment in adults with ASD (Hilton et al.,
2010). Thus, the relationship between social and sensory features in
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ASD may be bidirectional and inter-dependent. For example, a child
that is overly sensitive to loud noises may withdraw from socio-com-
municative environments that are over-stimulating, leading to less
practice with social scenarios and ultimately resulting in a breakdown
of successful social interaction.

This review will examine the behavioral and neurobiological studies
on social and sensory processing in ASD to explore the relationship
between sensory and social impairments in ASD. Specifically, we will 1)
discuss the possible mechanisms by which atypical sensory processing
across the five basic senses could manifest in the social deficits char-
acteristic of individuals with ASD; 2) review the existing hypotheses
that have attempted to integrate these features; and 3) review evidence
from neuroimaging studies to highlight differences in sensory and social
representations often observed in ASD. We will also discuss how early
abnormalities in sensory processing can be compounded over time,
creating a maladaptive developmental trajectory of cascading delays
and deficits.

The relationship between sensory and social processing may occur
at many hierarchical levels. At the very basic level, sensory receptors
are stimulated by environmental stimuli. This sensory information is
then relayed to the brain to create a subjective neural representation, a
process known as perception (Perrone, 2007). Sensation and perception
are inter-related constructs. A breakdown of sensation results in a lack
of perception, and similarly, without perception the activation of a
sensory receptor is meaningless (Goldstein and Brockmole, 2017).
Often in research, perception is the behavioral output of interest, which
presumes sensation. A related confound in sensory research is attention.
Specifically, an individual may sense and perceive a stimulus, but can
fail to attend to it in an expected way (Heald and Nusbaum, 2014;
Näätänen et al., 1990). It can, thus, become problematic to disentangle
these constructs and know definitively if a sensory, perceptual, or at-
tentional deficit is underlying a given response. Thus, an atypical be-
havioral or neural outcome can reflect a breakdown at any point within
this adopted hierarchy. In many cases, the research has not progressed
enough to allow for a definitive disentangling of these concepts, but
evidence of sensory, perceptual, and attentional abnormalities in ASD
individuals will be outlined where possible. The study of these pro-
cesses in each sensory modality and their role in social functioning in
individual with ASD will be the primary focus of this paper.

2. Vision

Individuals on the autism spectrum often seek out or avoid intense
visual stimulation (Leekam et al., 2007). Atypical visual processing has
been widely documented in individuals with ASD (see Simmons et al.,
2009 for a review), with alterations in basic perceptual functions, in-
cluding contrast sensitivity (Behrmann et al., 2006; Bertone et al.,
2003), boundary detection (Vandenbroucke et al., 2008), field of view
size (Song et al., 2015) and color perception (Franklin et al., 2008).
Deficits in visual form processing (Spencer and O'Brien, 2006) and
motion perception (see Kaiser and Shiffrar, 2009 for a review), reduced
susceptibility to illusion (Happe, 1996; Bolte et al., 2007), superior
visual search (Jolliffe and Baron-Cohen, 1997), a local processing bias
(Dakin and Frith, 2005), spatial attention impairments (Haist et al.,
2005), and altered oculomotor function (Goldberg et al., 2002) are also
reported. Behaviorally, some differences manifest as enhanced per-
ceptual abilities in ASD, particularly in basic low level visual search
tasks; conversely, these may be disruptive to efficient processing in fast-
paced, complex visual environments (Happe and Frith, 2006; Mottron
et al., 2006; Pellicano and Burr, 2012). Differences in vision have also
emerged as one of the earliest stable markers of ASD, with saccade
duration in 7-month olds reliably distinguishing children later diag-
nosed with ASD (Wass et al., 2015). These differences may play a role in
social impairments in ASD, as perception of social cues drives visual
attention patterns, and thus is crucial in social development and in-
terpersonal interactions. Infants’ preferential attention to eyes and faces

(Maurer and Salapatek, 1976) reflects how early social understanding is
built on observation. The frequency of lateral glances and visual hypo-
responsivity predict poorer social skills and greater overall ASD
symptomology (Hellendoorn et al., 2014; Kern et al., 2007). Further,
children with visual impairments often have social deficits due to dif-
ficulties in social learning through visual cues, modeling, or feedback
(Kekelis, 1992; McGaha and Farran, 2001). In the subsections below,
we discuss the relevance of vision in important social functions widely
studied in autism (eye gaze, face processing, and biological motion) and
the developmental impact of early visual processing abnormalities.

2.1. Gaze processing

Previous research has questioned whether atypical visual processing
underlies poor eye contact and joint attention, impairments of both are
reported in ASD (Sigman et al., 1986; Charman et al., 1997; Stone et al.,
1994; Leekam et al., 1997). Joint attention (JA) involves two partici-
pants coordinating mutual engagement with their mutual focus on a
third entity (Tomasello, 1995). Developmentally, eye contact serves an
important early social function for infants (Stern, 1985), regulating
face-to-face interactions (Lee et al., 1998; Leekam et al., 1997) and
fostering emerging social skills. JA is also critical to social and cognitive
development, predicting language abilities (e.g., Gillespie-Lynch et al.,
2015), understanding intention (Mundy and Newell, 2007), and pre-
tend play (Rutherford et al., 2007b). Eye contact and JA are dependent
upon an intact ability to detect gaze and understand gaze cues. Many
studies suggest that individuals with ASD are able to determine the
direction of others’ gaze, but fail to effectively use this information
socially (Leekam et al., 1997; Pelphrey and Carter, 2008). However,
others have found ASD individuals to be less accurate in judging the
intent behind both direct and averted gaze, particularly in more am-
biguous situations (Senju et al., 2003; Ashwin et al., 2009; Forgeot
d'Arc et al., 2016). At the neurobiological level, a failure to shift from
the magnocellular to parvocellular pathway in ASD early in life (Mundy
et al., 2009; McCleery et al., 2007) could underlie delayed gaze de-
tection abilities, since these pathways coordinate distinct patterns of
visual preference. Additionally, poor gaze detection during JA has been
associated with decreased occipital pole activation in ASD participants
(Tanabe et al., 2012). Engagement in JA also involves extending gaze
detection to gaze following, requiring the regulation of visual attention.
Evidence for difficulties in oculomotor control and visual attention
regulation are more robust in ASD. An inability to visually disengage
from a central to a peripheral stimulus at 14-months was predictive of
later ASD diagnosis in high-risk infants (Elsabbagh et al., 2013a), and
poor visual disengagement is seen in ASD across various tasks and ages
(see Sacrey et al., 2014). Additional elements of oculomotor control,
such as smooth pursuit eye movements are also disrupted in ASD
(Takarae et al., 2004), possibly related to reduced functional con-
nectivity between V1 and inferior frontal areas (Villalobos et al., 2005).
Thus, difficulties perceiving gaze cues may contribute to joint attention
difficulties in individuals with ASD.

2.2. Face processing

Intact visual processing is a prerequisite for attending to and re-
cognizing faces, making face processing a social as well as perceptual
skill. Face processing abnormalities in individuals with ASD, including
less focus on eyes and increased looking to the mouth (Klin et al.,
2002), have been studied extensively (e.g., Schultz et al., 2000;
Teunisse and Gelder, 1994; Klin et al., 1999; Pierce et al., 2001; Nomi
and Uddin, 2015; Weigelt et al., 2012). In addition, poorer facial
identity recognition (e.g., Kirchner et al., 2011), facial memory (e.g.,
Wilson et al., 2010), face discrimination (e.g., Rutherford et al., 2007a),
and deficits in facial emotion recognition (e.g., Hobson, 1986; Baron-
Cohen, 1991; Harms et al., 2010) have also been reported in ASD. At
the neural level, individuals with ASD show hypo-activation in the
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fusiform face area (FFA), superior temporal sulcus (STS), and the oc-
cipital face area (Schultz et al., 2000; Humphreys et al., 2008). Atypical
face processing in ASD could arise from sociocognitive factors, or reflect
visual processing deficits more broadly, such as distinguishing between
both social and non-social stimuli that are visually complex or highly
similar, including upright faces, inverted faces, and cars (Ewing et al.,
2013); and poor ability to discriminate between novel, and perceptually
similar objects (Greebles) and faces (Scherf et al., 2008). Difficulties in
rapidly processing visual information are also seen in ASD, leading to
reduced attention to faces (Charrier et al., 2016). These studies suggest
that impairments perceiving certain visual characteristics (i.e., com-
plexity, higher frequency, higher distortion, fast-moving) contribute to
face processing and emotion recognition difficulties in ASD. These basic
impairments may be exacerbated by the rapid, complex visual in-
formation conveyed by human faces in social interactions, and further
compounded by social-cognitive impairments characteristic of ASD.

2.3. Biological motion processing

According to Johansson (1973), biological motion (motion of hu-
mans and animals) is characterized by distinct, highly complex spa-
tiotemporal movement patterns. Preferential attending to biological
motion has been reported in typically developing children by 2 days of
age (Simion et al., 2008). This plays an important role in developing
joint attention, imitation, emotion recognition, and social cognition in
general (Pavlova, 2012). However, studies have reported disruptions in
attending to and in recognizing biological motion in individuals with
ASD (Kaiser and Pelphrey, 2012). Studies using point-light displays,
which allow motion perception without the confound of form, reveal
that children with ASD fail to preferentially attend to biological over
non-social motion (Klin et al., 2009; Blake et al., 2003; Annaz et al.,
2012). Moreover, individuals with ASD have difficulty using informa-
tion from biological motion to infer emotions (Nackaerts et al., 2012),
recognize faces (O'Brien et al., 2014) and follow pointing (Swettenham
et al., 2013). Some evidence suggests that motion processing impair-
ments in ASD are specific to biological motion perception (e.g.,
Koldewyn et al., 2011), possibly stemming from a failure to modulate
posterior STS activity specifically for biological motion (Pelphrey et al.,
2007; Pelphrey and Carter, 2010). However, others have reported si-
milar impairments in ASD in coherent motion processing more broadly
(e.g., Manning et al., 2013; Freitag et al., 2008). Individuals with ASD
also show reduced activity in V1 and other early visual areas during
both coherent and biological motion processing (Robertson et al., 2014;
Kröger et al., 2014). Further, poorer recognition of basic motion pat-
terns in ASD has been found to be correlated with the ability to re-
cognize emotions from biological motion (Atkinson, 2009). There is
additional evidence that global motion processing abilities might de-
pend on task speed (e.g., Manning et al., 2013) or duration (Hadad
et al., 2015), raising the possibility that motion perception in ASD is
technically intact, but too inefficient to process complex, fast-paced
interactions in social scenarios. Thus, evidence suggests some deficits in
low-level visual motion perception in ASD, stemming from early visual
processing areas, which may contribute to biological motion processing
impairments, which in turn is central to the social impairments seen in
ASD.

2.4. Developmental consequences of atypical vision

Prospective studies of infants at high risk for ASD suggest atypical
visual processing is present within the first year of life. Infants later
diagnosed with ASD make faster saccades and have difficulty in visual
disengagement at 7 months of age (Wass et al., 2015; Elsabbagh et al.,
2013a). Superior visual-search abilities at 9 months were also pre-
dictive of later ASD symptoms (Gliga et al., 2015). Interestingly, such
alterations in visual processing may precede quantifiable differences in
social functioning. For example, gaze following is intact at 7 and 13

months in children later diagnosed with ASD (Bedford et al., 2012);
these infants also attend to faces as frequently or even more frequently
than typically developing children in the first year of life (Elsabbagh
et al., 2013b; Jones and Klin, 2013; Yirmiya et al., 2006), decreasing
this social attention thereafter and falling behind typical development
in the second year (Jones and Klin, 2013; Ozonoff et al., 2010). It is
possible that pre-existing visual processing deficits may disrupt devel-
oping social skills by preventing the perception of visual cues that
signal social rewards, making the cause and effect of social interactions
unpredictable. Over time, these infants might begin to lose interest in
these “unpredictable” social interactions, and instead seek out re-
petitive and predictable non-social stimulation (Gliga et al., 2014). This
view aligns with the findings that visual attention to social stimuli in
ASD is initially increased, as increased looking time in infants is in-
terpreted as a marker of an unexpected event (e.g., Csibra et al., 2016).
Moreover, altered eye contacts and visual social attention in children
with autism in early life can result in a practice effect and lead to a
secondary neurological assault, ultimately resulting in a brain-behavior
cycle with adverse effects on social life (Mundy and Crowson, 1997;
Klin et al., 2015). Thus, atypical visual processing in early development
in ASD could have cascading deleterious effects on subsequent social
and cognitive development through the ongoing process of experience-
dependent learning.

3. Auditory processing

Hearing, like vision, is an important aspect of successful participa-
tion in social-communicative interactions. The earliest exposure to
auditory stimuli occurs in the intrauterine environment; and postnatal
studies indicate infants’ recognition and preference for mother’s voice
(Purhonen et al., 2004). Infants engage in preferential orientation to,
and discrimination of speech versus non-speech sounds (see Moore and
Linthicum, 2007 for review), which is predictive of both receptive
language development (Paul et al., 2007) and expressive vocabulary
(Vouloumanos and Curtin, 2014). Early auditory inputs facilitate the
extraction of socially salient information from the environment. Thus,
altered sensation, perception, and attention to different auditory stimuli
may have direct implications for social functioning.

Atypical auditory processing is well-documented in ASD (see
O'Connor, 2012 for review) with a profile of enhanced pitch perception
(Bonnel et al., 2003, 2010; O'Riordan and Passetti, 2006), increased
sensitivity to loud noises (Khalfa et al., 2004), lack of auditory or-
ientation (Paul et al., 2007), impaired perception of prosody (Järvinen-
Pasley et al., 2008), and diminished auditory stream segregation
(Teder-Sälejärvi et al., 2005). Sensory level deficits within the central
auditory nervous system and relevant auditory pathways in ASD have
been reported using auditory brainstem response (ABR) paradigms
(Kwon et al., 2007); and this delayed response distinguishes ASD from
other neurodevelopmental disorders (Källstrand et al., 2010). Delayed
ABR has also been seen in response to phonemes, which are the basic
units that comprise language, but not to non-speech sounds such as
clicking which elicited a typical brainstem response (Russo et al.,
2009). These findings collectively indicate that change in pitch, ac-
companied by increased complexity of auditory stimuli, is an area of
significant deficit in ASD. The central hub of auditory processing is the
primary auditory cortex located within Heschl’s gyrus in the superior
temporal cortex (Belin et al., 2004). Structural imaging studies of adults
with ASD reveal increased cortical thickness in Heschl’s gyrus although
these findings were accompanied by global neuroanatomical differ-
ences in ASD (Hyde et al., 2010). With competing sources of auditory
information, individuals with ASD display limited ability to isolate
certain features of concurrent auditory information (Lepistö et al.,
2009) and are less able to focus auditory attention on the more salient
information in the environment compared to controls, even after con-
trolling for IQ and hearing ability (Teder-Sälejärvi et al., 2005). Thus,
even in the absence of a basic auditory sensory impairment, some
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individuals with ASD have difficulty filtering auditory information
which may underscore a general deficit in integrating information. This
deficit in auditory stream segregation interferes with the ability to
perceive or attend to social information in the presence of competing
auditory input. Thus, abnormal auditory processing is consistently re-
ported in ASD and stems from atypical sensation, altered perception,
and lack of preferential attention to auditory stimuli which directly
impacts successful social engagement.

3.1. Speech recognition

Possibly the most socially salient auditory stimuli in early devel-
opment is the mother’s voice. In contrast to typically developing peers,
infants with autism do not preferentially attend to mother’s speech or
child-directed speech (Dawson et al., 1998; Klin, 1991; Paul et al.,
2007). Infants at high-risk for ASD diagnosis respond to speech versus
non-speech sounds less than low-risk infants. This trend is associated
with ASD symptomatology in the high-risk group and with language
development in the low-risk group (Curtin and Vouloumanos, 2013).
Children with ASD who do not preferentially orient to child-directed
speech have poor sound discrimination, highlighting the role of basic
sensory impairment in social behavior (Kuhl et al., 2005). Children with
ASD display oversensitivity to local changes in auditory information
such as pitch at the expense of global auditory information such as
speech (Foster et al., 2016). There are conflicting reports, however,
finding both disrupted (Foxton et al., 2003) and intact (Heaton et al.,
2007; Mottron et al., 2000) global auditory processing. Research uti-
lizing a mismatch negativity (MMN) EEG paradigm found reduced
preference for social and affective auditory information in children with
ASD as well as decreased sensory discrimination between expected and
unexpected speech (Fan and Cheng, 2014) suggesting that social in-
formation is filtered out and ignored at a basic sensory or perceptual
level. Researchers have also reported delayed latencies of event-related
potentials (ERPs) in ASD in response to auditory stimuli using EEG and
MEG (Roberts et al., 2010; Whitehouse and Bishop, 2008), and this
pattern of auditory processing is associated with language functioning
(Oram Cardy et al., 2008). However, there is debate over whether
speech-related auditory impairment in ASD is a sensory deficit or an
orienting deficit (Ceponiene et al., 2003). Evidence supporting the role
of attention deficit in auditory processing in ASD comes from fMRI
studies of adults with ASD who show decreased activation in STG in
response to speech stimuli, a pattern not seen in response to non-social
sound stimuli (Gervais et al., 2004; Lai et al., 2011). Furthermore,
adults with ASD show greater recruitment of right STG, compared to
left, which was seen in typically developing participants passively lis-
tening to speech. The reduced activation in left hemispheric language
processing areas might underlie a core deficit in processing speech
which may inhibit the perception and production of language (Boddaert
et al., 2004). Altered recruitment of STG in ASD may indicate a sensory
level deficit or a breakdown of higher order functions such as attention
or language processing due to the dual roles of the STG in both lan-
guage and auditory processing (see Redcay, 2008 for review). There is
additional evidence supporting the role of attention in auditory dis-
crimination tasks (Dunn et al., 2008). However, it should be noted that
high functioning individuals with ASD score in the atypical range on
sensory processing behavioral measures and these scores predict the
severity of social functioning (Hilton et al., 2010). Thus, failure to
preferentially respond to speech early in development may be in-
dicative of a lower level sensory or perceptual deficit or a higher order
impairment in attention or language processing which can cascade into
impairments in speech recognition.

Enhanced pitch discrimination, well-documented in autism (Bonnel
et al., 2003, 2010; Bouvet et al., 2014; O'Riordan and Passetti, 2006),
extends to both music (Mottron et al., 2000) and speech (Järvinen-
Pasley and Heaton, 2007) and represents a relative area of strength in
auditory processing in autism (see O'Connor, 2012 for review). It

should be noted that language delays are reported among adults with
ASD who display enhanced pitch perception (Bonnel et al., 2010; Eigsti
and Fein, 2013; Jones et al., 2009). In addition, there is neural evidence
of enhanced pitch processing of non-speech sounds, but not speech
sounds in ASD (Yu et al., 2015) possibly suggesting that superior pitch
processing in childhood may lead to attentional exclusion of language-
related pitch and subsequent delays in language acquisition. For in-
stance, a child with superior pitch perception might be more attuned to
all changes in pitch in the environment without selectively attending to
speech-related changes in pitch. Enhanced auditory processing of pitch
and oversensitivity to loudness (Khalfa et al., 2004) can result in
heightened awareness of simple perceptual features of auditory in-
formation at the exclusion of complex auditory input such as speech
(Lin et al., 2016) and the inability to discriminate the salient social
information in the auditory environment, an ability known as auditory
stream segregation. Currently, the relationship between pitch percep-
tion and language ability or age is not explicitly clear. Nevertheless,
these factors are indicative of an early maladaptive auditory processing
profile in children with autism.

3.2. Prosody and evaluation of affect

Prosody is an expressive mechanism of speech that allows for
nuanced exchange of emotion and intention in communication
(Frühholz et al., 2012). Inappropriate use of prosody (Kanner, 1943;
Järvinen-Pasley et al., 2008; Wang et al., 2006) as well as difficulty
extracting socially salient features from speech such as vocal affect
(Järvinen-Pasley et al., 2008) is associated with worse social and
communication skills (Paul et al., 2005) and is consistently reported in
ASD. ABR research suggests that changes in pitch that are inherent to
affective prosody do not evoke a rapid brainstem response in ASD
participants which has ramifications for decoding pitch in affective
language (Russo et al., 2008). Although not a basic sensory mechanism,
the perception of and attention to emotionally-laden speech has im-
plications for social functioning. Prosodic differences in ASD may sug-
gest a breakdown of higher-order perceptual or attentional processes.
Additionally, altered sensory response to auditory stimuli coupled with
impaired integration of perceptual information may have cascading
effects on the use and understanding of language. Individuals with ASD
may have a deficit specific to affective prosody. This is supported by
findings of unimpaired perception of pragmatic prosody, but disrupted
perception of affective prosody despite intact pitch discrimination and
direction recognition in ASD (Globerson et al., 2015). Neuroimaging
studies of affective prosody reveal that, in addition to IFG and STG
activation seen in the control group, participants with ASD recruit the
right caudate nucleus and rate the stimuli as less emotionally intense
(Gebauer et al., 2014). Furthermore, more widespread activation of IFG
and pSTS is also noted in the ASD group compared to controls in re-
sponse to angry prosody perhaps indicating a lack of habitual proces-
sing or expertise in perception of affective prosody (Eigsti et al., 2012).
MEG studies have found longer response latencies and reduced re-
cruitment of the left hemisphere in individuals with ASD in response to
rapidly presented auditory stimuli. Additionally, this pattern of re-
sponse was associated with vocal affect recognition indicating that
impairments in affect recognition impact rapid processing of socially
salient auditory information (Demopoulos et al., 2015). Further evi-
dence of altered neural responses to prosody comes from studies of
irony (Wang et al., 2006), prosody perception (Hesling et al., 2010),
and word-level affective prosody (Korpilahti et al., 2007). Therefore,
problems in evaluating affect from auditory stimuli in individuals with
ASD can directly impact social reciprocity by limiting their ability to
extract socially relevant information from voices and respond appro-
priately. Although it is evident that many individuals with ASD ex-
perience basic sensory impairments, there are also important percep-
tual and attentional mechanisms that lead to problems in social
behavior. It is therefore likely that atypical sensation, altered
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perception, and inattention occur at varying levels across different
auditory paradigms and social settings.

3.3. Developmental considerations

Current evidence suggests that atypical auditory processing in ASD
occurs early in development. Certain auditory profiles (enhanced pitch
perception and discrimination) are seen predominantly in children with
ASD and to a lesser degree in adults with ASD. Enhanced pitch per-
ception is only reported in a subset of adults with ASD who pre-
dominantly have language delays (Bonnel et al., 2010; Eigsti and Fein,
2013; Jones et al., 2009). Conversely, the ability to process rapidly
presented speech decreases with age in both typical development and in
ASD; however, the decline in processing begins earlier in ASD (Mayer
and Heaton, 2014). This has direct implications for social functioning as
the interpersonal socio-communicative world is fast and dynamic.
Collectively, these areas of atypical auditory processing in ASD suggest
an auditory profile of oversensitivity to basic auditory features at the
expense of the ability to filter out background noise and selectively
attend to speech or other relevant social cues. Additionally, abnormal
perception of affective prosody has direct implications for decoding
intentions and reciprocating social exchanges. Thus, atypical auditory
processing in ASD is noted early in development and has cascading
effects on speech processing, social engagement, and language acqui-
sition.

4. Tactile processing

Touch is considered one of the most basic ways in which individuals
interact with the world around them (Barnett, 1972). Touch plays a
significant role in communication (Hertenstein, 2002; Hertenstein
et al., 2006; Langland and Panicucci, 1982), developing social bonds
(Dunbar, 2010; Langland and Panicucci, 1982), and overall physical
development (Field, 1998; Polan and Ward, 1994). Recent findings
suggest that touch also promotes the development and connectivity of
brain areas (Brauer et al., 2016; Björnsdotter et al., 2014) associated
with social cognition and the “social brain” (Adolphs, 2009; Brothers,
2002; Frith, 2007). Stimulation of C-tactile (CT) afferents, nerve fibers
that process affective and limbic touch (Wessberg and Norrsell, 1993),
have been shown to correlate with activation of regions of the social
brain (Kaiser et al., 2016; Gordon et al., 2013; Björnsdotter and
Olausson, 2011; Björnsdotter et al., 2009; Olausson et al., 2002, 2010),
supporting the hypothesis that skin is a “social organ” (Olausson et al.,
2002; Kaiser et al., 2016; McGlone et al., 2014; Löken and Olausson,
2010). Recent evidence supports both hypo-and-hyper-reactivity to
tactile stimuli in ASD, with these responses varying according to stimuli
and context (Lane et al., 2011; Crane et al., 2009; Ben-Sasson et al.,
2007; Tomchek and Dunn, 2007; Allely, 2013; Brown and Dunn, 2010;
Cascio et al., 2008). Individuals with ASD display abnormal detection of
tactile stimuli (Blakemore et al., 2006) as well as a lack of habituation
to tactile stimuli (Tannan et al., 2008). Mechanistically, some have
suggested that alterations in GABAergic feedforward loops might play a
role in atypical tactile responsivity in ASD (e.g., Tannan et al., 2008;
Puts et al., 2014; Tavassoli et al., 2016). Studies also suggest an ab-
normal functioning (hypo: Kaiser et al., 2016; hyper: Riquelme et al.,
2016) and abnormal numbers (less: Silva and Schalock, 2016) of CT
afferents in ASD populations. Thus, although individuals with ASD most
likely have an altered experience of touch and pain, it is not likely that
they always exhibit hypo or hyper reactivity.

4.1. Tactile processing and its role in social functioning in ASD

There is evidence to suggest that irregularities in touch and tactile
perception may be associated with broad levels of social dysfunction in
ASD. For example, touch-seeking behaviors have been found to predict
levels of social impairment, and tactile hyporesponsivity was associated

with both poorer social functioning and nonverbal communication
skills (Foss-Feig et al., 2012). Differences in tactile processing and
tactile preference behaviors in ASD are observed in early infancy
(Mammen et al., 2015). Further, several studies suggest that maternal
touch in early infancy critically influences a secure attachment later
(Weiss et al., 2000). Social touch has been found to increase self-es-
teem, well-being, health status, life satisfaction and self-actualization,
faith or belief, and self-responsibility (Butts, 2001), while a lack of
social touch can lead to higher levels of anxiety, stress, and depression
(Gupta et al., 1998; Hertenstein, 2002; Weiss et al., 2001), which are
commonly seen in ASD population (Wallace et al., 2016; Uljarević et al.,
2016; Kerns and Kendall, 2012; Ghaziuddin et al., 2002). Atypical
touch during infancy can develop into critical deficits later in life,
specifically in regards to attachment. While individuals with ASD are
capable of forming a secure attachment to their caregivers (Shapiro
et al., 1987; Teague et al., 2017), they tend to be less securely attached
than their typically developing peers (for a meta-analysis, see Rutgers
et al., 2004). Further, individuals with ASD who have secure attach-
ments tend to have less socially severe symptoms than individuals with
ASD who are not securely attached, suggesting symptom severity and
overall level of functioning could impact the strength of attachment
(Capps et al., 1994).Touch is important in developing attachment
during infancy through both maternal stimulation and orienting. In-
fants who are later diagnosed with ASD have been observed to have less
maternal touch stimulation (Baranek, 1999), and failure to orient has
been associated with poor attachment (Reece et al., 2016; Weiss et al.,
2000). Therefore, a lack of social touch early in development can have
important social and interpersonal implications.

Touch is also important in developing social bonding. Positive tac-
tile stimuli (touch, warmth, odors) can release oxytocin (Uvnäs-
Moberg, 1998), the neuropeptide primarily involved in social bonding.
Interestingly, oxytocin has been found to increase the perceived plea-
santness of the touch of opposite gender, along with activity in parts of
the social brain (Scheele et al., 2014). However, the behavioral and
neural effects of oxytocin were negatively correlated with autistic-like
traits, suggesting these effects to be blunted in individuals with autistic-
traits. This may lead to a limited seeking of touch in the interpersonal
interactions of individuals with ASD. Further evidence of attenuation of
oxytocin in ASD comes from abnormalities in oxytocin peptide and
plasma levels (Green et al., 2001; Modahl et al., 1998), and alterations
in: the gene that encodes the oxytocin receptor, OXTR, (Ebstein et al.,
2009; Hammock and Levitt, 2006), in oxytocin receptors (Campbell
et al., 2011; Liu et al., 2010; Skuse et al., 2014; Wermter et al., 2010;
Wu et al., 2005), and in epigenetic mechanisms (Gregory et al., 2009;
Kumsta et al., 2015). It should be noted that the use of oxytocin in ASD
individuals in clinical settings is becoming increasingly popular (for a
review see, Anagnostou et al., 2014).

In addition to the basic sensory and perceptual level tactile deficits
noted in ASD, failure to socially orient may also be dependent on touch.
Atypical tactile perception around the face and mouth could disrupt
tactile stimulation of the orienting reflex, reducing face-to-face or-
ienting and the positive social attention associated with it (Sokolov,
1963). A recent study (Silva et al., 2015) explored this concept using
the Autism Touch and Self-Regulation Checklist. In addition to finding a
relationship between overall severity of sensory abnormalities and the
severity of ASD symptoms, this study found that five questions related
to touch/pain responses on the face and mouth correctly identified 83%
of the ASD population from typically developing controls. Further,
when the researchers included all questions regarding failure to orient,
91% of the ASD population was correctly identified. Future research
should look further into the importance of tactile perception in or-
ienting and self-regulation in infancy, as well as its impact on other
social domains not previously explored.
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5. Olfaction and gustation

While there is relatively less research on olfaction and gustation in
ASD, there is evidence of atypical response, disrupted taste detection
(Tavassoli and Baron-Cohen, 2012), in these domains. The literature
available on olfaction is varied on whether ASD individuals are hypo- or
hyper − sensitive, with several studies reporting intact odor detection,
some finding problems with odor identification (OI; Suzuki et al., 2003;
Bennetto et al., 2007), and others reporting problems with odor de-
tection but intact OI (Dudova et al., 2011). Overall, difficulties in eating
behavior and sensitivity to smell are common concerns for individuals
with ASD. Youth with ASD have been found to be more selective re-
garding food groups, textures, tastes, and temperatures, and are more
likely to exhibit higher levels of food refusal (Bennetto et al., 2012;
Wiggins et al., 2009;). Individuals with ASD are also more likely to have
a body mass index (BMI) within the obesity or overweight range for
their ages (Bennetto et al., 2012), and their selective food preferences
have been related to patterns of restricted and repetitive behaviors and
olfactory functioning (Bennetto et al., 2012; Wiggins et al., 2009).
Moreover, in ASD, there is a relationship between OI and ratings of
initiation, maintenance, and social interchange during conversation
(Bennetto et al., 2007). Brang and Ramachandran (2010) suggest that
olfactory bulb dysgenesis, resulting in reduced vasopressin and oxy-
tocin receptor binding (related to social bonding) could be one of the
neural foundations of autism. Recently, Zou et al. (2016) reported a
positive relationship between olfactory sensitivity and the extent of TD
individuals’ social network. Interestingly, this study found that func-
tional connectivity of the amygdala with the orbitofrontal cortex, a
connection that has been suggested to impact the repetitive, stereo-
typical behaviors of ASD in socio-emotional cognition and behavioral
self-regulation (Bachevalier and Loveland, 2006), appeared to be re-
lated to both of these factors (olfactory sensitivity and the extent of the
social network). The impact of olfaction on emotion is further evident
from findings of impairments in olfaction and social cognition in pa-
tients with bipolar disorder (BD; Lahera et al., 2016). In the BD popu-
lation, there are relationships between OI and affect recognition and
theory of mind, all of which are consistently found to be deficits in
autism (Baron-Cohen, 1997; Baron-Cohen et al., 1985; Gallagher et al.,
2000; Harms et al., 2010; Bölte and Poustka, 2003). These findings
suggest that future studies should further examine the relationship
between olfaction and the social symptoms of ASD.

6. Multisensory integration

The integration of multisensory stimuli is essential for the percep-
tion of complex social information. For example, social interactions
require the integration of another person’s voice, face, lip movements,
and gestures, failure of which may lead to misinterpretation and ab-
normal social response. Even if the perception of each individual sense
is intact, the integration of these senses into a perceptual whole may fail
(Iarocci and McDonald, 2006), and the integration affords more in-
formation than the sum of its components (Stein and Stanford, 2008).
The automatic integration of multimodal stimuli creates a predictable
social environment out of “noise” and inevitably influences how an
individual interacts socially within that environment. Multisensory in-
tegration begins early in the stream of processing (Foxe and Schroeder,
2005) and is influenced by feed-forward operations before reaching
higher-level processing centers of the brain (Stein and Stanford, 2008).
Alterations in basic sensory integration have been reported in ASD
(Waterhouse et al., 1996), with evidence of abnormal integration of
auditory and visual stimuli during the flash-beep illusion, either per-
ceiving the illusion over a longer temporal window (Foss-Feig et al.,
2010), or being less susceptible to the illusion (Stevenson et al., 2014b).
There is evidence of a relationship between ASD symptoms and a bias to
perceive auditory stimuli that occur before visual stimuli as concurrent
(Donohue et al., 2012). Individuals with ASD benefit less from the

addition of auditory information to a visual search task (Collignon
et al., 2013), show decreased multisensory facilitation to audiovisual
inputs (Brandwein et al., 2013), and exhibit altered cortical recruitment
during simultaneous audio-visual stimuli presentation (Russo et al.,
2010). In addition, ASD individuals are less susceptible to visual-tactile
illusions (Cascio et al., 2012; Greenfield et al., 2015) and struggle to
integrate visual stimuli into motor planning and execution (Dowd et al.,
2012). Multisensory integration has also been related to social func-
tioning in ASD. For example, a recent study found the ERP response
associated with multisensory integration to be reduced as a function of
ASD symptom severity (Brandwein et al., 2015). In addition, social
communication in ASD has been associated with abnormal upregulation
of visual regions during auditory processing (Jao Keehn et al., 2016),
indicating altered neural recruitment among the senses. Moreover,
impairments in perceptual-motor integration also have been associated
with communication and social deficits in ASD (Linkenauger et al.,
2012). In summary, individuals with ASD show altered integration of
senses across multiple domains, which may impact their social func-
tioning.

6.1. Language development

The atypical language development in ASD (Tager-Flusberg et al.,
2005) is an important contributor to social functioning and may be
impacted by deficits in multisensory integration. In TD individuals,
information about a speaker’s facial movements and gestures facilitates
speech comprehension (Rosenblum, 2008; MacLeod and Summerfield,
1987; Butcher et al., 2000). Individuals with ASD often struggle to
appropriately integrate additional visual information to auditory
speech (Iarocci et al., 2010; Mongillo et al., 2008; Smith and Bennetto,
2007), which may impair comprehension. For example, infants at high-
risk for ASD do not show differential looking during congruent and
incongruent speech and lip-movement; this indicates difficulty
matching auditory and visual information (Guiraud et al., 2012). Less
susceptibility to the McGurk effect in children with ASD (Williams
et al., 2004a,b; Bebko et al., 2014; de Gelder et al., 1991; Stevenson
et al., 2014a) (although this appears to normalize at older age ranges
(Taylor et al., 2010)) may demonstrate limited influence of visual sti-
muli on the perceived speech phoneme (McGurk and Macdonald,
1976). There is also evidence of impaired lip-reading ability in ASD
(Foxe et al., 2015), which depends on proper detection and integration
of congruent audio-visual speech information (Dodd, 1979). While lis-
tening to auditory speech, individuals with ASD struggle to integrate
previous exposure to speaker-specific facial information to optimize
auditory speech recognition (Schelinski et al., 2014). Lastly, individuals
with ASD do not benefit from the addition of gestures to auditory
speech (Silverman et al., 2010) and do not properly synchronize ges-
tures with their own speech to aid comprehension (de Marchena and
Eigsti, 2010). Recruitment of regions such as the STG and STS during
concurrent speech and beat gestures is found to be absent in children
with ASD, with increased activity in visual areas; this was associated
with increased social deficits (Hubbard et al., 2012). Altogether, there
is evidence that individuals with ASD fail to integrate visual cues to
speech, which may negatively impact speech comprehension, a func-
tion critical to social behavior.

6.2. Emotion recognition

The ability to accurately perceive and recognize emotions is es-
sential to appropriate social functioning and involves the integration of
facial expressions, vocal tone, posture, and gestures. In TD, there is
evidence that visual and auditory stimuli (Massaro and Egan, 1996;
Piwek et al., 2015; Stienen et al., 2011; de Gelder and Vroomen, 2000)
as well as visual and olfactory stimuli (Novak et al., 2015) are in-
tegrated in emotion detection. Several studies have indicated that in-
dividuals with ASD do not appropriately integrate multisensory
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information in the context of emotion recognition. For example, adults
with ASD struggle to discriminate whether faces and voices have con-
gruent or incongruent emotion (O'Connor, 2007) and receive less
benefit from bimodal (audio-visual) information when differentiating
fear and disgust (Charbonneau et al., 2013) or identifying other emo-
tions (Xavier et al., 2015). There is evidence of an altered temporal
phase response to paired fearful faces and voices (Magnée et al., 2008),
along with evidence that such altered neural responses may be modu-
lated by attention (Magnée et al., 2011). Individuals with ASD recruit
alternate brain regions in the parietofrontal network during the audio-
visual integration of emotion cues, compared to controls, which recruit
regions in frontal and temporal association cortices (Doyle-Thomas
et al., 2013a). While not all studies have found TD-ASD differences in
multimodal processing of emotion (Vannetzel et al., 2011; Magnée
et al., 2007), overall, there is great evidence that deficits in multi-
sensory integration may hinder emotion recognition in ASD.

6.3. Imitation

Motor imitation requires the integration of a stimulus with one’s
own proprioceptive movements. The act of imitation has been proposed
to provide a substrate for the development of theory of mind, empathy
(Meltzoff and Decety, 2003), and peer relationships (Rubin et al.,
2011). Many studies have observed imitation deficits in ASD (Williams
et al., 2004a,b; Edwards, 2014), and ASD symptom severity has been
negatively associated with imitation abilities (Edwards, 2014). These
deficits in imitation could potentially be influenced by weaknesses in
integrating external inputs with one’s own proprioceptive behavior.
The rubber hand illusion has been used as a paradigm to investigate
visual-tactile integration (essential for imitation) in ASD. Among non-
clinical adults, increased ASD traits have been associated with de-
creased susceptibility to the rubber-hand illusion (Palmer et al., 2013).
Individuals with ASD also take longer to show the effects of the illusion
(Cascio et al., 2012), are less sensitive to aspects of the illusion (Paton
et al., 2012), and may rely more on proprioceptive inputs than visual
cues (Paton et al., 2012; Izawa et al., 2012). Among individuals with
ASD, decreased sensitivity to the illusion has been associated with low
levels of empathy (Cascio et al., 2012). At the neural level, there is
evidence for asynchrony between intrinsic motor and visual brain
networks in ASD; such neural differences were related to social func-
tioning and have been postulated to underlie the imitation deficits in
this population (Nebel et al., 2016). Alterations in the ability to in-
tegrate proprioceptive cues with visual inputs could greatly impact
imitation, which is crucial for the development of many social func-
tions.

6.4. Developmental considerations of impairments in multisensory
integration

The real impact of a deficit in multisensory integration likely lies in
its cascading effects on the ability to detect and focus on salient social
information throughout development. There is converging evidence
that infants can detect amodal information − such as space, time, and
intensity − at very young ages (Lewkowicz, 2000; Lewkowicz, 2010;
Bahrick and Pickens, 1994) and find stimuli particularly salient when
amodal information is synchronously available to multiple senses
[known as inter-sensory redundancy] (Bahrick and Lickliter, 2000;
Bahrick et al., 2004). It has been proposed (Bahrick, 2010; Bahrick and
Todd, 2012) that social stimuli − such as speech, faces, voices − in-
herently provide large amounts of inter-sensory redundancy, resulting
in preferences for social over nonsocial stimuli in infants (Farah et al.,
1998); there is evidence that these preferences are altered in ASD
(Swettenham et al., 1998). Thus, the ability to detect amodal in-
formation is a prerequisite for sensory integration; alterations in early
integration abilities could limit the salience of social stimuli and cas-
cade into social deficits across development.

Interoception, which involves processing of self in terms of bodily
functions and their sensory integration, might produce a more basic,
lower-order processing of self in terms of bodily functions, visceral
sensations (such as temperature, stretch and pain from the gut, light
nondiscriminatory touch, itch tickle, and hunger; Quattrocki and
Friston, 2014) and their sensory integration in constituting self-relat-
edness and identity (Zaytseva et al., 2014). Poor recruitment of these
regions in individuals with ASD may underlie their failure to adopt the
bodily-anchored psychological and communicative stance of another
person (Hobson and Meyer, 2005). Thus, this physical self might be a
precursor for developing a more abstract sense of self, and a lack of
ability to integrate in ASD populations might be an obstacle in forming
the sense of self needed for mastering theory-of-mind (ToM) skills.

7. Theoretical models integrating sensory and social features of
ASD

7.1. Temporal binding hypothesis

The temporal binding hypothesis (Brock et al., 2002) has previously
been used to explain altered sensory functioning in ASD. It is based on
the premise that sensory stimuli that occur in close temporal proximity
are more likely to be integrated and perceived as emanating from the
same source; thus, timing information is crucial to binding and in-
tegrating associated stimuli (Shams et al., 2000; McGurk and
Macdonald, 1976; Stevenson et al., 2012). There is converging evidence
that the “temporal binding window” is extended in individuals with
ASD, which may give rise to alterations in sensory processing (see
Wallace and Stevenson, 2014 for a review; Foss-Feig et al., 2010;
Kwakye et al., 2011; Stevenson et al., 2014b). A longer temporal
binding window could create a “fuzzier”, unpredictable sensory en-
vironment (Wallace and Stevenson, 2014), as unrelated stimuli become
bound together. Throughout development, important social cues may
fail to become integrated or salient. For example, the concurrent lip
movement and voice of a parent calling a child’s name may not become
salient over the other co-occurring stimuli in the environment. This
would affect social responses and potentially lead to a preference for
restrictive, repetitive behaviors as a refuge from the unpredictable so-
cial environment (Johnson et al., 2015). An altered temporal binding
window could also impact social learning, such as those involving re-
wards. Reward learning requires critically timed and predictable co-
occurrence of stimuli, and an abnormal ability to bind neutral cues with
rewards and punishments would be detrimental to social development.
There is evidence of altered stimulus-reward associations in ASD
(Dawson et al., 2001; Dawson et al., 2002; Zalla et al., 2009; Kohls
et al., 2011). Thus, an extended temporal binding window could ne-
gatively impact social behavior in ASD through altered binding of social
cues.

7.2. Intense world theory

The Intense World Theory offers another mechanism for how the
sensory and social features of ASD may be related (Markram et al.,
2007; Markram and Markram, 2010). This neurobiologically-informed
theory proposes that there is excessive functioning of neural circuits,
such that the neural circuits are hyper-reactive, hyper-plastic, and
generally up-regulated. This creates an intense world, a fragmented
world (with focus on individual components of the environment), and
an aversive world. Low-level sensory perception is enhanced (intense
world), coupled with deficits in sensory integration (fragmented
world). Such perceptual up-regulation results in an avoidance of highly
emotional and unpredictable cues, such as eyes, faces, and social in-
teractions. This results in eye gaze aversion, social withdrawal, limited
communication, and a focus on stable, predictable cues instead
(Markram and Markram, 2010). Throughout development, this could
lead to an over-specialization for perceiving primary sensory cues at the
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expense of the ability to navigate in a socially complex world (Markram
and Markram, 2010). In this way, the Intense World Theory explains
both the unique sensory and social features of ASD and offers a me-
chanism for how an up-regulation in primary sensory perception results
in social avoidance and withdrawal.

7.3. Atypical hierarchical information processing

Atypical hierarchical information processing may hinder sensory
and social functioning in individuals with ASD. To efficiently perceive
and operate in a dynamic world, humans use both incoming sensory
information (bottom-up processes) and inference from prior experience
and context (top-down processes) (e.g., Knill and Pouget, 2004). Re-
search has suggested that under-utilization of top-down processes such
as context or experience (e.g., Pellicano and Burr, 2012) or an over-
reliance on bottom-up sensory perception (e.g., Brock, 2012a; Mottron
and Burack, 2001; Mottron et al., 2006) characterizes perception in
ASD. Predictive coding, hypo-priors, Weak Central Coherence, and
Enhanced Perceptual Functioning accounts characterize perception in
ASD as under-utilizing top-down processes (context, prior knowledge,
or global coherence) or over-functioning of bottom-up sensory pro-
cesses (Pellicano and Burr, 2012; Van Boxtel and Lu, 2013; Van de
Cruys et al., 2012; Lawson et al., 2014; Frith, 1989; Happe and Frith,
2006; Mottron and Burack, 2001; Mottron et al., 2006). These models
all predict the superior perception seen at times in ASD, such as reduced
susceptibility to illusions, and superior visual search and pitch per-
ception (Happe, 1996; Bonnel et al., 2003; Jolliffe and Baron-Cohen,
1997; Pellicano et al., 2006; Muth et al., 2014), but inefficient per-
ception of ambiguous or complex sensory information. At the neural
level, this profile may reflect hyper-activation of primary sensory cor-
tices, decreased prefrontal activity, and reduced neural habituation
during sensory processing (Ring et al., 1999; Lee et al., 2007; Kana
et al., 2013; Guiraud et al., 2011; Green et al., 2015). This information
processing profile may hamper social functioning, as the interpersonal
world demands strong central coherence, integration of context, and
utilization of prior knowledge. This is supported by evidence that local
processing biases and enhanced perceptual abilities negatively predict
social skills (Meaux et al., 2011; Russell-Smith et al., 2012). Predictive
coding may also underlie mentalizing (Palmer et al., 2015), as in-
dividuals with ASD are impaired in using social information to predict
others’ actions (von der Luhe et al., 2016). Thus, over-functioning of
bottom-up sensory processing coupled with under-utilizing top-down
perception in ASD could explain both enhanced sensory processing and
inefficient social functioning in this population.

8. Neurobiology of the sensory-social axis in ASD

The neurobiological underpinnings of sensory abnormalities in the
context of social cognition in autism have been less addressed in the
literature. However, many of the atypical functional and anatomical
circuits that underlie sensory processing are also implicated in social
processing impairments in autism. While several primary sensory and
association cortex areas may be involved in sensory processing and
integration of that information, we will focus on a few important areas
and address their role in sensory and social processing in individuals
with ASD. These regions are the: 1) Thalamus, Insula, and Cingulate
Cortex; 2) Superior Temporal Sulcus; and 3) Cerebellum.

8.1. Thalamus, insula, and cingulate cortex

The thalamus and basal ganglia form circuits throughout the brain
that are connected to cognitive, motor, and emotional functioning
(Schuetze et al., 2016). The thalamus is a relay center in subserving
both sensory and motor mechanisms, and awareness (Smythies, 1997),
attention (Büchel et al., 1998) and other neurocognitive processes such
as memory and language (Engelborghs et al., 1998; Johnson and

Ojemann, 2000). All sensory input with the exception of olfaction
passes through the thalamus before reaching their associated primary
cortical areas. The thalamus is also believed to have a complex feed-
forward and feedback connectivity with cortical and subcortical areas
(Sherman, 2007). Neuroimaging studies of the thalamus have found
atypical functional and anatomical connectivity (Horwitz et al., 1988;
Nair et al., 2013), decreased thalamic volume (Tsatsanis et al., 2003;
Tamura et al., 2010), lower levels of N-acetylasparate, phosphocrea-
tine, creatin, and choline-containing metabolites (Hardan et al., 2008;
Haznedar et al., 2006), and reduced neuronal integrity (Friedman et al.,
2003) in ASD. It should be noted that some of these findings, such as
lower levels of metabolites, were also associated with higher levels of
sensory abnormalities (Hardan et al., 2008). Abnormal connections
from thalamus or lesions to this area have been associated with major
depressive disorder, irritability, and sadness (Hamilton et al., 2014;
Gentilini et al., 1987). Thus, the thalamus may be an important struc-
ture in the pathobiology of autism, specifically in sensory and social
differences.

The anterior cingulate cortex (ACC) and insula receive input from
the thalamus, and are thought to be major nodes of the limbic system
which contributes to emotion processing (Hadland et al., 2003),
learning (Bush et al., 2000; Devinsky et al., 1995), and memory
(Frankland et al., 2004; Sutherland et al., 1988). These areas are also
involved in interoceptive awareness (Craig, 2003). Neuroanatomical
alterations (Ebisch et al., 2011; Uddin and Menon, 2009; Doyle-Thomas
et al., 2013b; Haznedar et al., 1997; Henderson et al., 2006) of these
areas in ASD may result in poor ability to integrate the physical self into
a self-identity, possibly creating the stereotypical deficit in ToM in
autism. This metabolic activity could also play a part in the regulation
of affective reactions and forming associations between sensory stimuli
and their emotional values (Strata et al., 2011). Relationships between
the ACC and insula activation and social interaction in ASD have also
been reported (Schmitz et al., 2008; Doyle-Thomas et al., 2013b). These
findings suggest the role of ACC and insula in both the sensory and
social impairments observed in ASD.

8.2. Superior temporal cortex

The superior temporal cortex (STC), including the superior temporal
sulcus and gyrus, is considered a hub of the “social brain” network
(Pelphrey and Carter, 2008), with important roles in emotion recogni-
tion (Narumoto et al., 2001), understanding intention (Pelphrey et al.,
2004a; Castelli et al., 2002; Kana et al., 2009, 2015), biological motion
perception (Allison et al., 2000) and gaze detection (Pelphrey et al.,
2004b; Mosconi et al., 2005; Saitovitch et al., 2016), amongst other
social-cognitive skills. The STC may be abnormally developed in ASD,
with reductions in overall volume, decreased activity during social
tasks, and decreased connectivity with other regions (Boddaert et al.,
2004; Patriquin et al., 2016; Venkataraman et al., 2015; Shih et al.,
2011). Further, the functional connectivity difference in STC has been
found to predict emotion recognition and other social difficulties in
ASD (Chien et al., 2015; Alaerts et al., 2014). STC dysfunction during
social interactions is seen across sensory modalities and in many of the
sensory-linked social impairments discussed above; for example, STC
hypo-activation has been documented in ASD during biological motion
detection (Pelphrey et al., 2007), speech perception (Redcay, 2008),
processing affective touch (Kaiser et al., 2016), and integrating auditory
and visual speech information (Stevenson et al., 2011; Loveland et al.,
2008).

The STC also underlies many non-social sensory and perceptual
functions, including conscious perception of visual motion, listening to
both meaningful and non-meaningful sounds, and multisensory in-
tegration (Becker et al., 2013; Lewis et al., 2004; Lapenta et al., 2012).
Reduced STC activity or connectivity has also been documented in non-
social sensory processing in ASD, including listening to tones and per-
ceptual integration (Samson et al., 2011; Edgar et al., 2014; Peiker
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et al., 2015). In addition to the role of STC in sensory and social pro-
cesses, it has been hypothesized that the many connections of the STC
with primary sensory cortices, multimodal associative systems, and the
limbic system, may explain its role in a diverse range of functions
(Boddaert and Zilbovicius, 2002). It has also been proposed that the
STC may play a common role across its many associated functions such
that it processes and integrates various modes of incoming sensory in-
formation in order to assign meaning to one’s world (Redcay, 2008; Jou
et al., 2010). Thus, the critical role of the STC in perceptual and social
functioning in ASD makes it an important candidate for understanding
the complex symptomatology of autism.

8.3. Cerebellum

The cerebellum, consistently implicated in ASD neuropathology
(Fatemi et al., 2012), perhaps explains the co-occurrence of sensory and
social deficits in ASD. An overarching description is that the cerebellum
is a “co-processor”, modulating diverse regions and functions of the
brain through feedback loops (Wolpert et al., 1998; D'Angelo and
Casali, 2012); in this way, it can impact both sensory and social func-
tions. The cerebellum has been proposed to enhance and depress sen-
sory stimuli and could contribute to abnormal sensory perception in
ASD (Kern, 2002). The cerebellum is functionally connected with dif-
ferent cortical nodes, allowing it to modulate diverse functions −
ranging from sensory to social − through feedback loops (Wolpert
et al., 1998; D'Angelo and Casali, 2012). Specifically, the interaction of
the cerebellum with higher-order intrinsic connectivity networks
(Habas et al., 2009; Krienen and Buckner, 2009) could similarly mod-
ulate executive function, mentalizing, and salience detection − func-
tions critical for social cognition and social interaction (Menon, 2011).
In fact, the cerebellum is involved in language, emotion, and social
cognition specifically (Stoodley and Schmahmann, 2009; Van
Overwalle et al., 2014). The cerebellum also forms feedback loops with
multisensory regions such as the superior colliculus (SC). Abnormal
cerebellar-SC connectivity could lead to altered eye contact and or-
ientation to stimuli, functions controlled by the SC (Kern, 2002; Quaia
et al., 2012). Thus, extensive connections of the cerebellum with brain
regions and networks primarily associated with sensory and social
processing could allow it to simultaneously modulate behaviors within
each domain.

The cerebellum also has an important role in timing, prediction, and
learning (Ivry and Keele, 1989; Baumann et al., 2015). Alterations in
timing could impair integration of temporally synchronous stimuli
(Wallace and Stevenson, 2014), which would have profound effects on
sensory perception and ultimately social responses (D'Angelo and
Casali, 2012). Such abnormalities in timing are apparent in the ex-
tended temporal binding window in ASD (Foss-Feig et al., 2010). The
role of the cerebellum in prediction and learning also critically impacts
sensory and social processes. The cerebellum operates in a feed-forward
manner (Wolpert et al., 1998; Miall et al., 1993), making predictions
about the environment and learning from error signals (Marr, 1969) to
optimize behavior. In this way, the cerebellum utilizes internal models
to dynamically coordinate behavior during social interactions in a way
similar to motor control (Wolpert et al., 2003; Ito, 2008; D'Angelo and
Casali, 2012). Inability of the cerebellum to either integrate social cues,
or to form internal models based on these cues, would have ultimate
effects on social behavior.

9. Conclusion

Sensory abnormalities are one of the earliest emerging markers of
infants later diagnosed with ASD, with differences noted as early as 6-
months of age (Clifford et al., 2013). The sensory characteristics seen
across ASD are heterogeneous, with many features ranging from intact,
enhanced, or impaired from one sample to the next. Despite these in-
consistencies, dysregulated sensory processing can be considered

universal in ASD. This paper consolidated the evidence emerging from
behavior, neuroscience, and other modalities of research on sensory to
social processing in ASD in order to establish their inter-relationship
and impact on ASD symptomatology. Abnormal sensory sensitivity in
ASD has significant clinical and social implications. Clinically, atypical
sensory processing in ASD can interfere with obtaining an accurate
assessment of skills, progression of therapy, and treatment outcomes.
Oversensitivity to perceptual level sensory features can come at the
expense of inability to filter out extraneous information and selectively
attend to instruction in the therapeutic environment. Conversely, hy-
posensitivity to sensory stimuli in the environment can result in delayed
visual and auditory processing, lack of appropriate response, and poor
multisensory integration. Socially, this profile of sensory sensitivity can
impact selective attention to social stimuli, decoding intentions, social
reciprocity, and adherence to social norms of behavior. In general,
sensory issues, which may differ across individuals on the autism
spectrum, take an important role in social and communicative diffi-
culties in ASD, and hence future research needs to consider it seriously
while designing treatment plans for children with ASD.

There are several cognitive and neurobiological mechanisms
through which sensory processing abnormalities might either cause or
exacerbate many of the social impairments seen in autism. Functional
and anatomical differences seen in the thalamus of individuals with
ASD may be central to this considering the role of thalamus as a relay
station for most senses. Furthermore, abnormalities found in regions
such as the ACC, insula and STC in ASD also point to a network of
regions at the intersection of sensory processing and social cognition.
The cerebellum also plays a complex role in sensory feedback and in-
tegration of social cues within the environment. We find that altered
sensory processing and sensory integration in autism affect language,
communication, emotion, response to reward, and interpersonal func-
tioning in individuals with ASD. Early intervention is instrumental in
altering the developmental progression of ASD (see Reichow, 2012),
suggesting the need for early identification of sensory abnormalities as
well as other predictors of the disorder. It is also important to continue
building models of ASD that incorporate both the social and non-social
features of the disorder, and also to design individualized interventions
which address both social/communicative and sensory processing. In
this way, the two core symptom domains of autism are interrelated and
require intervention that targets both domains in conjunction.
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