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Abstract

Introduction: The most striking feature of depression is sadness and a loss of interest

in activities, which represents a major cause of disability globally. Therefore, it is nec-

essary to identify novel antidepressants for clinical practice. Ginsenoside Rh2 (Rh2)

is one of the major bioactive ginsenosides that can be extracted from Panax ginseng

and has been demonstrated to improve bothmemory and learning. The purpose of this

study was to provide broad insight into the mechanisms underlying depression and

gain greater insights into antidepressant therapy.

Methods: In this study, we first established an effective and feasible depression animal

model of chronic unpredictable mild stress (CUMS) and behavioral testing was eval-

uated by the forced swim test (FST), the tail suspension test (TST) and the sucrose

preference test. Following pretreatment with Rh2 (10 and 20 mg/kg), the immobility

time ofmicewas reducedwithout affecting locomotor activity in both the FST and TST.

Western blotting and immunofluorescence were used to investigate the activation of

the hippocampal BDNF signaling pathway and hippocampal neurogenesis.

Results: Different concentrations of Rh2 significantly reduced depressive-like symp-

toms in CUMS-induced mice and downregulated the effects of the BDNF signaling

cascade and neurogenesis in the hippocampus. Furthermore, the administration of

K252a completely prevented the antidepressant-like activity of Rh2 inmice.

Conclusion: The results indicated that Rh2 possesses the antidepression action via the

positive regulation of the BDNF-TrkB pathway.
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1 INTRODUCTION

Depression is a common clinical mood disorder that affects more than

350 million people at a high recurrence rate around the world, which

results in heavy public health and a serious social burden (Ledford,
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2014). However, most of the classic antidepressants used in the clinic

at present are designed to improve the levels of monoamine neuro-

transmitters. These drugs can have some undesirable side effects, such

as substantial side effects, slow onset, and high recurrence (Schechter

et al., 2005). Thus, it is imperative and necessary to elucidate the
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pathogenesis of depression and develop novel drugs that are efficient

and safe (Shafiee et al., 2018).

BDNF, a member of the neurotrophin family, plays a critical role in

neurogenesis, neuronal survival, and brain homeostasis (Begni et al.,

2017). BDNF and the mechanisms underlying its actions are cur-

rently being used to treat these diseases, such as antidepressants and

antipsychotics (Autry & Monteggia, 2012). BDNF binds TrkB, a mem-

ber of the family of Trk receptors, to regulate many different cellular

processes involved in the development of brain function (Colucci-

D’Amato et al., 2020). For example, Asparagus cochinchinensis extract

has been confirmed to exert antidepressant effects in an animal model

of menopausal depression by activating the hippocampal BDNF-TrkB

pathway (Kim et al., 2020). The activation of AMPK produces a range

of anti-depressant effects that can mediate hippocampal neurogene-

sis via the BDNF/TrkB/CREB signaling pathways in neurons (Odaira

et al., 2019). Recent animal studies have proven that chronic unpre-

dictable mild stress can significantly reduce the expression of BDNF in

the pathogenesis of depression (Duman et al., 2021; Gudasheva et al.,

2019; Peng et al., 2018).

Evidence indicates that natural products can be an alternative and

cost-efficient complementary medicine for the treatment of depres-

sion, largely due to their multitarget efficacy and low toxicity (Chong

et al., 2019). Ginseng is a traditional neuroprotective herbal medicine.

The major active ingredients of ginseng are ginsenosides, which have

been confirmed to improve cognitive and memory abilities in animal

models (Kezhu et al., 2017; F. Li et al., 2016; Zhu et al., 2015). Gin-

senoside Rh2 (Rh2) is one of the major bioactive ginsenosides from

Panax ginseng. Rh2 has been demonstrated to possess antimetastasis,

antiproliferation, and anti-invasion effects and can promote differenti-

ation (X. Li et al., 2020). In 2018, Luet al. (2018) found that ginsenosides

Rh2 may protect against the spatial and nonspatial memory deficits

induced by SD mice. Later, Lv et al. (2021) demonstrated that Rh2

exhibited neuroprotective effects in a model of Scop-induced memory

dysfunction inmice. Thus far, therehavebeenno investigations relating

to the possibility of Rh2 as a potential antidepressant. Therefore, we

investigated the mechanisms by which Rh2 can exert antidepressant

actions in CUMS-inducedmice.

2 MATERIALS AND METHODS

2.1 Animals

Seven-week-old of adultmalemice (20–22 g) were purchased from the

Experimental Animal Centre ofMedical College atNantongUniversity.

Before the start of the study, the animals were divided into five groups

per cage and kept under a 12-h dark/light cycle, in a room tempera-

ture of 24 ± 1◦C. Food and water were provided ad libitum for 1 week

(Jiang et al., 2019). Prior to the experiments, the mice were acclima-

tized for 7 days. All animal protocols and procedures were approved

by the Institutional Animal Ethical Committee of Nantong University

(approval No., 20171220-005) and conducted according to the NIH

Guidelines.

2.2 Materials

The ginsenosideRh2 (Rh2)was obtained fromPudaBiological Technol-

ogy Co. Ltd. (Suzhou, China). Fluoxetine was purchased from Sigma–

Aldrich (St. Louis, MO, USA). K252a was obtained from Alomone

Laboratories (Jerusalem, Israel). Rh2, fluoxetine and K252a were dis-

solved in 1%dimethyl sulfoxide in normal saline (vehicle) and intraperi-

toneally (i.p.) injectedwith different doses. The dosages of Rh2 (10 and

20 mg/kg), fluoxetine (20 mg/kg), and K252a (25 μg/kg) were chosen

basedonprevious reports (Muet al., 2019; J. J. Zhang,Gao, et al., 2019).

2.3 Chronic unpredictable mild stress

The chronic unpredictable mild stress (CUMS) procedure was per-

formed as described with a slight modification (Mavrakis et al., 2010;

J. Xu et al., 2015).Micewere subjected to a random sequence of unpre-

dictable and mild stressors for 42 days. Different stressors are listed

as follows: water or food deprivation (23 h), overnight illumination,

restraint (2 h), cage shaking (15 min), tail pinching (2 min), remaining

in the cage at a 45◦ tilt (17 h), and remaining in a soiled cage (5 h).

After 4 weeks, the CUMS model was prepared, while administration

of Rh2, fluoxetine, and K252a was performed during the last 2 weeks.

The depression-like behavior of themicewas detected using the forced

swim test (FST), tail suspension test (TST), and sucrose preference test

(SPT).

2.4 Forced swim test

FST was performed according to Jiang et al. with some modifications

(Jiang, Huang, Chen, et al., 2015; Jiang, Huang, Zhu, et al., 2015; Ren

et al., 2017; D. Xu et al., 2018). The equipment for the FST consisted of

a transparent glass cylinder (45 cm height × 30 cm diameter) contain-

ing 22 cmofwater (room temperature), andmicewere floated inwater

for a total of 6min. The total immobility time was recorded for the last

4 min by the automatic analyzer system. The water in the cylinder was

replaced at the end of each trial.

2.5 Tail suspension test

The TST is another widely used pharmacological in vivo model for the

evaluation of depression-like behavior in mice. During the experiment,

each mouse was individually suspended on a metal rod by tail 50 cm

above the floor for 6 min. During the last 4 min, the immobility time

of themicewas automatically recordedwith behavioral software (Leng

et al., 2018;Wu et al., 2018).

2.6 Open field test

An open field test (OFT) was conducted to eliminate the influence of

mice locomotor activity and evaluated by the time spent in predefined
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central or peripheral areas (P. Xu et al., 2017). Mice were gently placed

in the center of anopen field (awoodenbox, 100×100×40 cm)with its

floor divided into25 squares for 5min. The total distanceof the animals

was recorded by the camera system for 5 min under dim light condi-

tions. The apparatus ground was cleaned for each trial (Jiang, Huang,

Zhu, et al., 2015; L. Y. Lin et al., 2016; D. Xu et al., 2018).

2.7 Sucrose preference test

Before the test, the mice were adapted to the environment with 1%

(w/v) sucrose solution and tap water for 24 h (Stepanichev et al.,

2016; Zhao et al., 2019). Afterward, the animals were not given food

and water for 18 h, and then given preweighed bottles containing 1%

sucrose solution and tapwater for 6 h testing (two-bottle test, 2-h peri-

ods) (Gao et al., 2020; J. L. Wang, Wang, et al., 2020). Preference value

is given as (%) = sucrose intake (g)/(sucrose intake (g)+water intake

(g))×100%.

2.8 Western blot analysis

Total proteins from the hippocampus were homogenized on ice in

100 μl lysis buffer (Thermo Fisher Scientific, Waltham, MA, USA) plus

protease inhibitors. The extract was centrifuged, and the supernatant

was collected. Protein concentrations weremeasured by the BCA Pro-

tein Assay Kit (Beyotime Biotechnology, China). Equivalent amounts

of protein were loaded in sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) gels. Proteins were transferred to

polyvinylidene difluoride membranes (Millipore, Billerica, MA, USA).

The membranes were blocked with TBST containing 5% skim milk for

2 h at room temperature. Then, themembraneswere treated overnight

at 4◦C with the different antibodies: β-actin (1:2000; Cell Signaling),

rabbit anti-BDNF (1:500;Abcam), rabbit anti-ERK1/2 (1:1000;Cell Sig-

naling), rabbit anti-pERK1/2 (1:500; Cell Signaling), rabbit anti-AKT

(1:1000; Abcam), rabbit anti-pAKT (1:500; Abcam), rabbit anti-CREB

(1:1000; Cell Signaling), and rabbit anti-pCREB (1:500; Cell signaling).

Next, the membranes were incubated with the respective secondary

antibodies for 2 h at room temperature. Then, the membrane was

detected using enhanced chemiluminescence reagent (Guan et al.,

2017, 2021).

2.9 Immunofluorescence

As we have frequently described (Jiang, Huang, Chen, et al., 2015;

Jiang, Huang, Zhu, et al., 2015; Jiang et al., 2017), the mice from

each group were anesthetized with 0.5% sodium pentobarbital (Mack-

lin, Shanghai), pericardial perfused with 0.9% saline, and then fixed

in 800 ml of 4% paraformaldehyde (PFA) overnight. The brain was

removed and placed in 4% PFA for postfixation (24 h, 4◦C). The brain

was dehydrated in 30% sucrose (48 h, 4◦C), and opti-mum cutting tem-

perature compound (OCT) was then embedded. Next, the 25-μm-thick

sectionswere cut by using a Leica freezingmicrotome and immediately

adhered to the slide. First, the slides were washed in phosphate-

buffered salinewith 0.5%TritonX-100 (Beyotime, China) for 5–10min.

Second, the slices were incubated in a blocking solution containing 3%

bovine serum albumin (BSA) for 30 min at room temperature, and the

following primary antibodies diluted in 3% BSA: DCX (1:100; Cell Sig-

naling) were incubated overnight. Third, the FITC-labeled secondary

antibody (1:50; Thermo Fisher, USA)was added for 2 h at 37◦C. Finally,

the nuclei were stainedwith DAPI (Sun et al., 2020).

2.10 Statistical analysis

The statistical analyses and bar graphs were generated with Graph-

Pad Prism6.0. The differences among treatment groupswere analyzed

using SPSS software including one-wayor two-way analysis of variance

(ANOVA) as appropriate, by post hoc Bonferroni’s test for multiple

comparisons. The results were considered significant when p< .05.

3 RESULTS

3.1 Rh2 treatment exerts antidepressant-like
feasibility in the behavioral experiments

Behavioral tests involving the FST and TST were used to evaluate

the antidepressant activity in mice (Cryan et al., 2005; Yankelevitch-

Yahav et al., 2015). Compared with the untreated vehicle group, the

FST and TST results demonstrated that the groups treated with flu-

oxetine and Rh2 significantly reduced the immobility time of the mice

(Figure 1a,b). FST data revealed a significant effect of Rh2 treat-

ment (ANOVA: F3, 36 = 25.428, p < .01) similar to the TST (ANOVA:

F3, 36 = 34.516, p< .01). To eliminate the effects of enhancing locomo-

tor activity in mice after Rh2 treatment (Guan et al., 2021), the OFT

was performed later. Fluoxetine or Rh2 showed no significant differ-

ences in all the tested mice, indicating that neither Rh2 nor fluoxetine

affected the locomotor hyperactivity of mice (Figure 1c). Therefore,

Rh2 displayed antidepressant-like potential based on the FST and TST.

3.2 Effects of Rh2 on depression-like behaviors in
CUMS-exposed mice

CUMS is a rodent model of depression and used to simulate the

main symptoms of depression in mice (Antoniuk et al., 2019; Will-

ner, 2017). Behavioral evaluations in the FST, TST, and SPT were also

performed on days 43 to 48 to demonstrate the antidepressant-like

effects of Rh2 against CUMS. Compared to CUMS mice, Rh2 adminis-

trationmarkedly shortened the immobility time in the FST and TST and

notably improved sucrose consumption (Figure 2b–d). For the FSTdata

(ANOVA: [interaction: F3, 72 = 24.783, p < .01; CUMS: F1, 72 = 37.594,

p< .01; Rh2: F3, 72 =18.149, p< .01]). For the TST data (ANOVA: [inter-

action: F3, 72 = 19.257, p < .01; CUMS: F1, 72 = 30.226, p < .01; Rh2:
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F IGURE 1 Rh2 improved depression-like behavior without
affecting the locomotor activity of mice. The forced swim test (FST) (a)
and the tail suspension test (TST) (b) showed that the immobility time
of mice taken by the Rh2 and fluoxetine groups was lower than the
vehicle. The open field test (OFT) (c) showed that neither Rh2 nor
fluoxetine groups affected the locomotor activity of mice. Data are
shown asmean± SEM. **p< .01when compared to the vehicle, n= 10.
The Comparisons weremade by one-way analysis of variance
(ANOVA) followed by Tukey’s test

F3, 72 = 25.163, p < .01]). A significant difference in the SPT was found

(ANOVA: [interaction: F3, 72 = 15.249, p < .01; CUMS: F1, 72 = 23.473,

p< .01; Rh2: F3, 72 = 14.464, p< .01]).

3.3 Effects of Rh2 treatment on the activation of
the BDNF signaling pathway in the hippocampus of
CUMS-exposed mice

Subsequently, the levels of the BDNF protein signaling pathways in

the hippocampus were determined by western blotting. The relative

levels of BDNF, pERK, pAKT, and pCREB proteins were lower in tis-

sue homogenates from the hippocampus in theCUMSgroup. However,

the CUMS-exposed changes in protein were considerably increased by

exposure to Rh2, and fluoxetine also showed the same effect at a dose

of 20 mg/kg. BDNF (ANOVA: [F3, 17 = 29.247, p < .01]), ERK (ANOVA:

[F3, 17 = 28.124, p < .01]), AKT (ANOVA: [F3, 17 = 24.173, p < .01]), and

CREB (ANOVA: [F3, 17 = 28.443, p< .01]) were indicated in Figure 3.

3.4 Rh2 administration prevented CUMS-induced
decreases in neurogenesis

Depression is often accompanied by behavior despair and hippocam-

pal neurogenesis reduction, which is effectively reversed by common

antidepression drugs, including fluoxetine and citalopram (Boldrini

et al., 2012; Dranovsky &Hen, 2006). DCX is amicrotubule-associated

protein that is a marker of cellular growth and is expressed in new-

born neurons in the DG (Brown et al., 2003). As presented in Figure 4,

a lower number of DCX cells were counted in the CUMS group than

in the vehicle group in the DG region, while the decreased number of

DCX cells was completely reversed by Rh2 treatment (ANOVA: [inter-

action: F3, 17 = 29.971, p < .01; CUMS: F1, 17 = 40.276, p < .01; Rh2:

F3, 17 = 25.824, p< .01]).

3.5 Blockade of BDNF-TrkB signaling abolished
the antidepressant effects of Rh2 in CUMS-exposed
mice

To explore whether hippocampal BDNF-TrkB signaling contributes to

the antidepressant effects of Rh2, we coinjected CUMS-treated mice

withRh2 (20mg/kg), andK252a, a specific inhibitor of theBDNFrecep-

tor (TrkB), was used (H. C. Yan et al., 2010). K252a (25μg/kg) and Rh2
(20mg/kg, 1 h later) were injected into mice for 2 weeks, and then

behavioral tests (FST, TST, and SPT) were conducted. K252a signifi-

cantly blocked the antidepressant effects of Rh2 in CUMS-exposed

mice in the FST, TST, and SPT (Figure 5a–c).

Next, the impact of K252a infusion on the BDNF-TrkB signaling

pathway and the immunoreactivity of DCX after Rh2 administra-

tion in mice (exposed to CUMS) were determined. It was observed

that (Rh2 + K252a) treatment inhibited the effect of Rh2 on the

expression of BDNF, p-ERK, p-AKT, and p-CREB in the hippocam-

pus of CUMS-exposed mice (Figure 6). Similarly, Figure 7 indicates

that compared to the Rh2 group, the increased numbers of DCX-

positive cells in the DG were reversed by the (K252a + Rh2) group

in the mice (exposed to CUMS). To summarize, the hippocampal

BDNF-CREB system is required for the antidepressant mechanism of

Rh2.

4 DISCUSSION

In our research, we demonstrated that Rh2 exerted neuroprotective

effects in chronic stress mice and has potential in the treatment of

depression. We carried out a series of behavioral tests, and the FST

and TST are two of the most extensively used tests for evaluating dif-

ferent depressive-like behaviors (Cryan et al., 2005; Petit-Demouliere

et al., 2005) and screening antidepressants. The SPT is also com-

monly used to analyze depressive-like behavior since this test provides

information relating to anhedonia, one of the main depressive-like

symptoms (Goñi-Balentziaga et al., 2018). As a widely applied animal

model for depression, theCUMSmodel presentsmany core depressive
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F IGURE 2 Rh2 treatment remarkably ameliorated the depression-like behaviors in chronic unpredictable mild stress (CUMS)-inducedmice.
The timeline of the experimental design (a). The less immobility duration was taken by the (CUMS+ Rh2)-treatedmice than the CUMS-induced
mice in the forced swim test (FST) (b) and in the tail suspension test (TST) (c). The sucrose preference test (d) showed the (CUMS+Rh2)-treated
mice consumed higher sucrose preference than the CUMS-treatedmice. Data are presented as themeans± SEM, n= 10. **p< .01when compared
to the Vehicle; ##p< .01 when compared to the CUMS. The comparisons weremade by two-way analysis of variance (ANOVA) followed by
Bonferroni’s test

F IGURE 3 Rh2 promoted BDNF-CREB signaling cascade in the hippocampus in themodel of chronic unpredictable mild stress (CUMS). BDNF,
ERK, AKT, and CREB protein levels were assessed bywestern blotting in the hippocampus. All data are expressed as themeans± SEM, n= 5.

**p< .01 when compared to the vehicle; ##p< .01 when compared to the CUMS. The comparisons weremade by two-way analysis of variance
(ANOVA) followed by Bonferroni’s test

behaviors, including helplessness, anhedonia, and reduced locomotor

activity (Z. Zhang et al., 2020). In particular, K252a, a TrkB antagonist

was injected into mice exposed to CUMS and completely blocked the

BDNF-TrkB signaling cascade.

Rh2 is a major bioactive constituent of the traditional Chinese

medicine ginseng with multiple pharmacological effects, such as

antitumor, antifatigue, and antimicrobial effects, along with the ability

to enhance immunity (M. Wang et al., 2017; B. Yan et al., 2018; X.

Yang et al., 2017). Recent studies have reported that ginsenoside may

improve depressive behavior and induce neuroprotective effects in

rodents. For example, J.Wanget al. (2016) reported thatmice receiving

Rh2 treatment showed a significant improvement in their behavioral

tests and increased the survival time of CRC-mice. Chen et al. showed

that (24R)-pseudoginsenoside HQ (R-PHQ) significantly reduced the
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F IGURE 4 Rh2 treatment revert the hippocampal neurogenesis in the chronic unpredictable mild stress (CUMS) depressionmodel.
Immunofluorescences images containing of the DCX in green. Scale bar: 100 μm. All data are shown as themeans± SEM, n= 5. **p< .01 when
compared to the vehicle; ##p< .01 when compared to the CUMS. The comparisons weremade by two-way analysis of variance (ANOVA) followed
by Bonferroni’s test

F IGURE 5 K252a decreased the antidepressant action of Rh2 in chronic unpredictable mild stress (CUMS)-stressedmice. Co-treatment with
(K252a+ Rh2) of themice against CUMS showed the longer immobility time than the (CUMS+Rh2)-treatedmice in the forced swim test (FST)(a)
and tail suspension test (TST) (b). K252a blocked the reversing effects of Rh2 on sucrose consumption of the CUMS-treatedmice (c). All data are
expressed as themeans± SEM, n= 10. **p< .01 when compared to the Vehicle; ##p< .01 when compared to the CUMS. The comparisons were
made by two-way analysis of variance (ANOVA) followed by Bonferroni’s test

immobility time of mice in the FST and TST and produced promising

antidepressant-like effects in mice. These effects may be related to

the Sirt1/NF-κB or BDNF/TrkB signaling pathways (Chen et al., 2019).

H. Zhang et al. (2016) provided evidence that ginsenoside Rb3 exerted

antidepressant effects by promoting themonoamine neurotransmitter

system. Although the mechanisms by which Rh2 exerts its neuro-

protective effects in depression remain largely uncharacterized, our

study indicated that as well as the ginsenoside derivatives described

above, Rh2 also possesses antidepressant-like efficacy. Over recent

years, some studies have clearly supported a relationship between

the neuroprotective effect of Rh2 and its antioxidant activity. Hsieh

et al. (2018) suggested that Rh2 ameliorated lipopolysaccharide

(LPS)-induced oxidative stress by regulating signaling pathways

(HO-1/Trx-1/KAP-1/Nrf2) in mice. In another study, Rh2 suppressed

oxidative stress, had antioxidant activity in vivo, and restored the

balance of the antioxidant defense system (Qi et al., 2019). Therefore,

these results suggest that Rh2 has potential as a new antidepressant

candidate to treat depression in clinical practice.
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F IGURE 6 The enhancing influence of Rh2 on the expression of BDNF-CREB signaling pathwaywas blocked by the inhibitor K252a inmice
exposed to chronic unpredictable mild stress (CUMS). BDNF, pERK/ERK, pAKT/AKT, and pCREB/CREB protein levels were lower in (CUMS+ Rh2
+K252a)-treatedmice than the (CUMS+ Rh2)-treatedmice. The obtained data are expressed as themeans± SEM, n= 5. **p< .01 when
compared to vehicle; ##p< .01 when compared to CUMS. The comparisons weremade by two-way analysis of variance (ANOVA) followed by
Bonferroni’s test

F IGURE 7 K252a blocked the enhancing effects of Rh2 on neurogenesis. Compared to the (chronic unpredictable mild stress [CUMS]+
Rh2)-treated group, the increase of DCX+ neurons in the DG ofmice exposed to CUMSwere significantly blocked by K252a. Scale bar: 100 μm.
The results of analysis are expressed as themeans± SEM, n= 5. **p< .01 when compared to vehicle; ##p< .01 when compared to CUMS. The
comparisons weremade by two-way analysis of variance (ANOVA) followed by Bonferroni’s test

BDNF is associated with adult neurogenesis and reduced lev-

els of BDNF have been implicated in depression (Szuhany & Otto,

2020). In addition to depression, BDNF also represents a promising

therapeutic agent for Parkinson’s disease and epilepsy while

also providing cardiovascular protection, and response to exer-

cise (T. W. Lin et al., 2020; Palasz et al., 2020; Trombetta et al.,

2020). Therefore, Rh2 may exert further pharmacological effects

involving BDNF; this possibility needs to be investigated fur-

ther. By searching the existing literature, we found that mice

receiving Rh2 treatment exhibited significantly improved behav-

iors in the FST, TST, and SPT. These effects appear to be related

reductions in depression-associated cytokines, such as tumor

necrosis factor-alpha (TNF-α), interleukin-18 (IL-18), and IL-6 (J.

Wang et al., 2016). It is important to mention that depression

is accompanied not only by BDNF dysfunction and “depression-

like” symptoms but also by proinflammatory cytokines (Clark
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et al., 2009). Many antidepressants, including notoginsenoside R1,

Hericium erinaceus, lipopolysaccharide, and baicalin, have been shown

to reverse the positive effects on the expression of TNFα, caspase-3,
and IL-6 in the hippocampus against CUMS-induced animals (Chong

et al., 2019; Guo et al., 2019; B. Zhang, Wang, et al., 2019). In addi-

tion, some reports have shown a negative correlation between the

expression levels of TNFα, caspase-3, IL-6, and BDNF in the brain

(Liu et al., 2017; L. Wang, Wei, et al., 2020; Y. Zhang et al., 2018).

Collectively, we propose that Rh2 produces antidepressant effects and

enhances hippocampal BDNF expression by inhibiting the expression

levels of TNFα, caspase-3, and IL-6 in mice; this possibility requires

further explanation.

The present study has some limitations that need to be consid-

ered. First, we used a CUMS model of depression. Apart from CUMS,

there are some other establishedmodels of depression such as chronic

restraint stress and chronic social defeat stress. Furthermore, although

depression is accompanied by dysfunction in the BDNF-TrkB system

and neurogenesis, many other pathological symptoms including neu-

roinflammation, the HPA axis and monoaminergic deficiency are also

involved (Blier, 2016; Krishnan & Nestler, 2008). It is possible that

Rh2 might ameliorate these symptoms. Furthermore, we observed

that BDNF plays an important role in other central nervous system

(CNS) disorders in addition to depression, such as schizophrenia and

Parkinson’s disease (W. Yang et al., 2020).We plan to investigate these

possibilities in our future research. Collectively, our data provide more

insights into the pharmacological effects of Rh2, which will contribute

to the development of the next generation of more effective and safer

antidepressants.

5 CONCLUSIONS

These findings indicate that Rh2 has antidepressant effects by regulat-

ing the BDNF/CREB signaling.
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