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Understanding electronic properties that violate the Landau Fermi liquid paradigm in
cuprate superconductors remains a major challenge in condensed-matter physics. The
strange metal state in overdoped cuprates that exhibits linear-in-temperature scattering
rate and direct current (dc) resistivity is a particularly puzzling example. Here, we
compute the electronic scattering rate in the two-dimensional Hubbard model using
cluster generalization of dynamical mean-field theory. We present a global phase diagram
documenting an apparent non-Fermi liquid phase, in between the pseudogap and Fermi
liquid phase in the doped Mott insulator regime. We discover that in this non-Fermi
liquid phase, the electronic scattering rate γk(T) can display linear temperature depen-
dence as temperature T goes to zero. In the temperature range that we can access, the
T -dependent scattering rate is isotropic on the Fermi surface, in agreement with recent
experiments. Using fluctuation diagnostic techniques, we identify antiferromagnetic
fluctuations as the physical origin of the T -linear electronic scattering rate.
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The non-Fermi liquid states emerging from strongly correlated electron systems have
been one of the central research topics in condensed-matter physics (1). One of the most
profound problems in this field is the strange metal state in cuprates, characterized by a
linear temperature dependence of direct current (dc) resistivity, and a scattering rate 1/τ
reaching a putative universal “Planckian limit,” �/τ = kBT (2–7). Since the discovery
of strange metallicity in cuprates (8–10) and other materials (4, 11–13), enormous
effort has been aimed at tracing its physical origin, including phenomenological theories
(14, 15); considerations on quantum critical fluctuations in the vicinity of a quantum
critical point (QCP) (16–22); and also studies of microscopic models (23, 24) in the
absence of a nearby QCP, such as the Sachdev–Ye–Kitaev (SYK)-type models with
random interactions (23–25). To date, however, the rigorous relevance of these models
to overdoped cuprates is still far from clear, since little is known about the underlying
mechanism of the strange metal state.

The two-dimensional Hubbard model, which is prevalent in modeling correlated
materials, can capture various signature features of hole-doped cuprates, such as d-wave
superconductivity (26–29), pseudogap (30–35), and stripe order (36, 37). Recently, in
studies at very high temperatures (T ∼ bandwidth W ), the so-called “bad metal” regime
of the Hubbard model has been reported (38–41). In those studies, the high-temperature
T -linear resistivity stems largely from a change in effective carrier number with tem-
perature (40, 42). This is in stark contrast to cuprate materials, where the T -linear dc
resistivity occurs at low temperature, the so-called “strange metal” regime. In this regime,
it is argued that linear-in-temperature resistivity originates from a scattering rate 1/τ
that scales linearly with temperature (43) and reaches a putative fundamental limit set by
“Planckian dissipation” (3). Whether the Hubbard model can provide a proper description
of the cuprate strange metal at low temperatures is therefore still a crucial open question.

To address these problems, in this work we solve the two-dimensional Hubbard at low
temperatures on a square lattice, in the doped Mott-insulator regime using the dynamical
cluster approximation (DCA) (44). We demonstrate that the T -linear electronic scattering
rate at low temperatures, found in the strange metal state of hole-doped cuprates (2,
45), can emerge from the overdoped Hubbard model. The inelastic part of the T -linear
electronic scattering rate is the same at the node and at the antinode. Our results suggests
that although the scattering rate is close to the Planckian one, that rate does not seem to
be a limit for reasons that we explain. More importantly, we explicitly identify that short-
ranged antiferromagnetic correlations, despite being greatly suppressed in the overdoped
regime, are at the origin of the T -linear scattering rate characterizing strange metallicity.

We consider the Hubbard model Hamiltonian,

H=
∑

ij ,σ

−tij c
†
i,σcj ,σ + U

∑

i

ni↑ni↓ − μ
∑

i,σ

niσ, [1]

Significance

Most metals display an
electron-scattering rate 1/τ that
follows 1/τ ∼ T2 at low
temperatures, as prescribed by
Fermi liquid theory. But there are
important exceptions. One of the
most prominent examples is the
“strange” metal regime in
overdoped cuprate
supercondcutors, which exhibits a
linear T dependence of the
scattering rate 1/τ ∼ T that
reaches a putative Planckian limit.
Here, using cutting-edge
computational approaches, we
show that T-linear scattering rate
can emerge from the overdoped
Hubbard model at low
temperatures. Our results agree
with cuprate experiments in
various aspects but challenge the
Planckian limit. Finally, by
identifying antiferromagnetic
fluctuations as the physical origin
of the T-linear scattering rate, we
discover the microscopic
mechanism of strange metallicity
in cuprates.
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where μ is the chemical potential, and the tij s are nonzero for
nearest-neighbor hoppings t and next–nearest-neighbor hoppings
t ′, which vary in different cuprate compounds (46). U is the
onsite Coulomb repulsion, which is taken asU /t = 7 throughout
this work. We work in units where t = 1, the lattice spacing,
Boltzmann’s constant kB , and Planck’s constant � are also set equal
to unity. The DCA method is a cluster extension of the dynamical
mean-field theory (DMFT) (47) that treats quantum and short-
ranged spatial correlations exactly, while longer-range correlations
beyond the cluster are incorporated in a dynamical mean-field way
(Materials and Methods).

Results

Phase Diagram. We first display two characteristic energy scales
of the doped normal-state Hubbard model, the pseudogap tem-
perature T ∗ and the Fermi liquid temperature TFL, as a function
of doping levels p in Fig. 1A. HereT ∗ is defined as the temperature
T where the antinodal zero-frequency spectral function starts
to decrease with T, and TFL is identified as the temperature
where the paramagnetic susceptibility (Knight shift) becomes T
independent (SI Appendix, Fig. S4). Extrapolating T ∗ and TFL

to zero, one finds two critical dopings: p∗, where the pseudogap
disappears for p > p∗, and pFL where Fermi liquid emerges
for p > pFL. Repeating this calculation for several t ′ values, we
obtained a zero-temperature phase diagram in the p − t ′ plane, as
shown in Fig. 1B, which consists of three different phases: 1) the
pseudogap (PG) phase in the underdoped regime where p < p∗

(and T ∗ > 0); 2) the canonical Fermi liquid (FL) phase on the
heavily overdoped side for p > pFL (where TFL > 0); and finally
3) in between the PG and FL phases, there exists a non-Fermi
liquid (NFL) phase where the extrapolated T ∗ and TFL both
vanish in the p∗ < p < pFL interval. Namely in the NFL phase,
there is no pseudogap at the Fermi level but the physical properties
disagree with expectations for a Fermi liquid. It is remarkable that
for all the t ′ values we have studied, the NFL resides in a finite
range of dopings. In fact, as the value of |t ′/t | increases, the NFL

A

B

Fig. 1. PG, NFL, and FL phases of the doped Hubbard model in normal
state. (A) Pseudogap temperature T∗ and Fermi liquid temperature TFL as a
function of hole-doping value p for two typical t′ values, t′ = 0 (triangles) and
t′ = −0.2 (diamonds). The finite-temperature data points are extrapolated to
zero temperature (lines), yielding two critical dopings p∗ and pFL. For example,
for t′ = −0.2, p∗ � 0.16 and pFL � 0.28. For the definition of T∗ and TFL please
refer to main text and SI Appendix, section C. The gray symbols mark the data
points that are further analyzed in Fig. 4 at t′ = −0.2t. (B) Zero-temperature
phase diagram in the p − t′ plane. The above extrapolated p∗ and pFL define
the PG/NFL and NFL/FL phase boundaries, respectively.

regime becomes broader in doping, as one can see from Fig. 1A.
This result suggests that upon hole doping, the pseudogap state
does not directly transit to the Fermi liquid phase via a single
quantum critical point at zero temperature.*

Comparing with experiments, we note that in the La2−xSrx
CuO4 (LSCO) compound (t ′/t ∼−0.2), it is found that the
PG ends at p∗ � 0.18, and Fermi liquid shows up at pFL �
0.3 [where pFL is defined as where the temperature-dependent
resistivity becomes ρ(T )∝ T 2 (8, 48)]. This is in good agree-
ment with our result that the NFL exists in the doping range
p ∈ (p∗ = 0.16, pFL = 0.28) at t ′/t =−0.2. Recall that here
the spontaneous symmetry-breaking phases, such as the d-wave
superconductivity (SC), are suppressed to simulate transport ex-
periments in a high magnetic field.

T-Linear Scattering Rate. The electronic scattering rate γk ≡
−ImΣ(k ,ω = 0) in the NFL phase is the primary focus of this
work. We find that in the NFL, the Matsubara data for the
self-energy Σ(k, iωn) are consistent with the hypothesis that
the imaginary part of the self-energy in real frequency space
Σ

′′
(k ,ω)≡ ImΣ(k ,ω) follows an ω/T scaling (14, 25, 49–51)

at low energies (SI Appendix, Figs. S5 and S6). Hence, we assume
that Σ

′′
(k ,ω) can be written as Σ

′′
(k ,ω) =−Tαφ(ω/T )− b

(45, 50) at low energies, where φ(ω/T ) is an analytic function
of ω/T , while α and b are constants. With this assumption, the
imaginary part of the self-energy at zero frequency that follows
from a second-order polynomial extrapolation in Matsubara fre-
quencies γ′

k ≡−ImΣ(2)(k ,ω = 0) =−Im[1.875Σ(k , iω0)−
1.25Σ(k , iω1) + 0.375Σ(k , iω2)] = aTα + b will have exactly
the same T dependence of the true scattering rate γk , since the
scaling hypothesis implies that γk = φ(0)Tα + b. Therefore,
one can find the exact exponent α describing the T dependence
of γk from analyzing the γ′

k data, despite the fact that the fit
leaves the constant coefficient φ(0) unknown [if Σ

′′
(k ,ω) is ω−

independent over the frequency range |ω|� 4T , φ(0)≈ a ; see
SI Appendix, section D for details].

Throughout the following, we use the typical value t ′ =−0.2
as an example to study the T -linear scattering rate. Fig. 2 displays
γ′
k as a function of temperature T for different p values, where

one can see that at high temperatures, the scattering rate γ′
k is

linear in temperature in a remarkably large doping range, from
an underdoped (p = 0.12, Fig. 2A) to a heavily overdoped side
(p = 0.34, Fig. 2G) (48).

When T is decreased, focusing on the antinodal γ′
k at k=

(0,π) as shown in Fig. 2 A and B, at small dopings (p =
0.12, 0.14, in the PG), γ′

k deviates from its high-temperature T
linearity, developing a prominent upturn when the pseudogap
temperature T ∗ is reached. This resembles the upturn seen in
the dc resistivity curves in transport experiments (52) and in
other calculations (53, 54), which characterizes the opening of the
pseudogap. As the doping level p increases, the upturn of γ′

k at the
antinode shifts to lower temperatures in the PG phase, reflecting
the decreasing T ∗. Finally, when the NFL phase is reached, a
possible upturn of γ′

k moves outside of the accessible temperature
range. The linear T dependence of γ′

k at the antinode extends
to T → 0, as shown in Fig. 2D. For the node, γ′

k preserves the
linear-in-T behavior, crossing the PG–NFL transition. Thus, for
a typical doping close to p∗ in the NFL, p = 0.18 (Fig. 2D)
for example, both the node and the antinode display a T -linear

*The first-order transition found in Sordi et al. (32) is related to the end of the pseudogap
regime. At larger doping, a correlated metal phase is found in that work, but how the cross-
over to the Fermi liquid occurs was not investigated.
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Fig. 2. (A–H) Temperature dependence of the electron-scattering rate. Here γ′
k ≡ −ImΣ(2)(k, ω = 0) is shown as a function of temperature T for different

dopings. Dashed lines show linear fittings γ′
k = aT + b, while solid lines show quadratic fittings γ′

k = aT2. For example, at p = 0.18, for antinode γ′
k ≈ 3.13T +

0.17 and for node γ′
k ≈ 3.45T , while γ′

k ≈ 9T2 for nodal γ′
k at p = 0.4. Note that in G and H, γ′

k data are enlarged for clarity. The pseudogap temperature T∗ and
the temperature T∗

o where γ′
k starts to deviate from linearity are marked by arrows in A and B. In G and H the Fermi liquid temperature (TFL) is also indicated by

arrows. For the definition of T∗ and TFL, please refer to main text and SI Appendix, section C.

scattering rate in the full temperature regime. On the heavily
overdoped side, the Landau Fermi liquid paradigm is restored at
small T when p > pFL. As shown in Fig. 2 G and H, the scattering
rates cross over from high T linearity to a clear T -square behavior
(55) as T < TFL.

In essence, at low dopings γ′
k has upturns that characterize the

PG, while at large dopings it follows the T 2 law that characterizes
the FL. In the NFL, where T ∗ and TFL are both vanishingly
small, γ′

k (T ) obeys γ′
k (T ) = aT + b in a broad T range. Nev-

ertheless, we point out that in the NFL, when doping p is close
to p∗ or pFL, the precursor effects of pseudogap or Fermi liquid
at small T can also break the T linearity of γ′

k (T ), even if T ∗ or
TFL appears to vanish (SI Appendix, Fig. S7). As a result, in the
T → 0 limit, γ′

k (T ) = aT + b is obeyed only in a part of the
NFL regime. For example, at t ′/t =−0.2, while our definition
suggests that the NFL exists in 0.16� p � 0.28 at vanishing T
(see discussions in SI Appendix, section E), the perfect linear-in-
T behavior of γ′

k (T ) [or equivalently the linear-in-T behavior of
γk (T )] occurs in the doping range of 0.17� p � 0.20 asT → 0.

Up to now, we have investigated the electron-scattering rate
γk =−ImΣ(k ,ω = 0). In the FL regime, this differs from
the quasiparticle scattering rate by a temperature-independent
quasiparticle weight zk . In the NFL regime, it is worthwhile to
investigate the phenomenological marginal Fermi liquid (MFL)
interpretation of the scattering rate 1/τk = zkγk with γk =
−ImΣ(k,ω) = αmax(|ω|,πT ) + b (5, 14). The procedure
for finding τk from fitting the Matsubara Green’s function is
explained in SI Appendix, section F. We find 1/τk ∼ CT , with
C ∈ (1∼ 2) (SI Appendix, Figs. S8–S10) for two doping levels,
p = 0.18 and p = 0.2, in the T -linear regime. We stress that
here C is found dependent on doping p and momentum k.
It decreases as p increases, contrary to what we found for the

electron-scattering rate, which is nearly independent of doping in
the NFL regime.

Origin of the NFL and T Linearity. To reveal the physical origin of
the T -linear scattering rate in the overdoped Hubbard model, we
turn to the fluctuation diagnostic technique (56), which uses the
Dyson–Schwinger equation of motion (DSEOM) to decompose
the self-energy at the two-particle level (56–59). Simply explained,
the essential idea of this approach is to find how collective modes
in different channels [spin (sp), charge (ch), or particle–particle
(pp)] contribute to the self-energy. As depicted by the Feynman
diagram for the spin channel in Fig. 3 B, Inset, the self-energy
(with Hartree term Un/2 subtracted) can be written as (56)

Σ(k)− Un

2
=

− U

g(k)β2N

∑

k ′,Q

Fsp(k , k
′,Q)g(k ′)g(k)g(k ′ +Q)g(k +Q),

[2]

where wavevectors k stand for k = (k, iωn) and g(k) is the full
single-particle Green’s function. Here Fsp is the full two-particle
scattering amplitude in the transverse spin channel. Hence the
right-hand side of Eq. 2 can be rewritten in terms of the spin op-
erators S+

k (−Q) = C †
k↑Ck+Q,↓ and S−

k ′ (Q) = C †
k ′+Q↓Ck ′,↑,

Σ(k)− Un

2
=

−U

g(k)β2N

∑

k ′,Q

〈S+
k (−Q)S−

k ′ (Q)〉 [3]

and we can introduce a new quantity ΣQ
sp(k) = [−U /g(k)]∑

k ′〈S+
k (−Q)S−

k ′ (Q)〉 such thatΣ(k)− Un/2 =
∑

Q ΣQ
sp(k),

which has a clear physical meaning: The ratio |ImΣQ
sp(k)/ImΣ(k)|
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Fig. 3. Imaginary part of the self-energy in PG, NFL, and FL phases and the spin–spin correlator 〈Si · Si+1〉 on nearest-neighboring sites 〈i, i + 1〉 as a function
of doping p. (A) ImΣ(k, iωn) as a function of ωn. From bottom to top, p = 0.08 (PG); p = 0.18, p = 0.24 (NFL); and p = 0.4 (FL). (B) Spin correlator 〈Si · Si+1〉 at
two neighboring sites (i, i + 1) as a function of doping p. Two arrows indicate PG/NFL and NFL/FL phase boundaries, respectively. (Inset) Feynman diagram that
sketches the DSEOM decomposition of the self-energy in the spin channel. Here U = 7t, t′ = −0.2t, T = 0.05t.

tracks the relative importance of the spin excitation with the
momentum/frequency transfer Q to the electronic scattering. The
above analysis can also be straightforwardly applied to charge
and particle–particle representations to estimate the impacts of
the corresponding two-particle excitations on the self-energy
(SI Appendix, section I).

In Fig. 3A, ImΣ(k, iωn) is shown as a function of ωn in
different states. Focusing on the low-energy scattering, we perform
the fluctuation diagnostic on the imaginary part of the self-energy
at the first fermionic Matsubara frequency ImΣ(k , iω0). The
decompositions in the spin channel, ImΣQ

sp(k, iω0) is displayed
in Fig. 4, as a function of Q = (q, iΩn) for two typical dopings
in the T -linear regime in NFL, p = 0.18, 0.2. For comparison,
the results at p = 0.08 (PG) and p = 0.4 (FL) are also shown.

We consider first the p = 0.18 case. For both antinode
[k= (0,π), Fig. 4 A2] and node [k= (π/2,π/2), Fig. 4 B2],
−ImΣq

sp(k, iω0) at different q is extremely uneven. The antifer-
romagnetic (AFM) wavevector q= (π,π) component accounts
for most of the low-energy scattering −ImΣ(k, iω0). This means
that in the NFL, most of the electronic scatterings are due to AFM
fluctuations, since Σq

sp(k)∝
∑

k ′〈S+
k (−q)S−

k ′ (q)〉. Moreover,
from Fig. 4 C2, one learns from the frequency decomposition
that the Ω= 0 component dominates, suggesting the long-lived
nature of the well-defined AFM fluctuations at this doping.

At a larger doping p = 0.20, the weight of the q �= (π,π)
components grows, as shown in Fig. 4 A3 and B3. However,
the predominant role of the q= (π,π) mode is not changed.
In fact, we find that the q= (π,π) component always has the
largest contribution to −ImΣq

sp(k, iω0) among different q in the
NFL, even when p is further increased (SI Appendix, Fig. S15).†
This result is somewhat surprising, as one would intuitively expect
negligible AFM correlations in the overdoped regime. To clarify
this problem, in Fig. 3B we plot the spin–spin correlator 〈Si+1 ·
Si〉 between a pair of neighboring sites (i , i + 1) as a function of
doping p. This shows that, although largely reduced by doping,
the strength of AFM correlations remains significantly nonzero in
the NFL. For example, at p = 0.2, 〈Si+1 · Si〉 ≈ −0.06, which
is about 40% of the value at p = 0.08 in the PG. Neutron-
scattering studies on LSCO show that at p = 0.25 in the NFL, the
dynamical magnetic susceptibility still has fairly large intensity at
finite energy, whose magnitude is about half of that at p = 0.125
in the PG (60). Resonant inelastic scattering studies also reveal the
persistence of spin excitations in the overdoped regime (61). This

†We have checked that the spin structure factor 〈S(−q)S(q)〉 remains short range despite
the large peak at q = (π, π) in −ImΣq

sp(, iω0) (SI Appendix, Fig. S14).

emphasizes again that the short-ranged AFM correlations should
not be overlooked in the overdoped regime.

The decompositions for the PG and the FL are shown,
respectively, in Fig. 4, Left and Right columns. In the PG,
−ImΣQ

sp(k, iω0) is similar to the NFL case, revealing again
the importance of scattering off AFM fluctuations (52, 56, 57).
By contrast, in the FL phase, a clear distinction between the NFL
and PG cases is observed: −ImΣ

q/Ωn
sp (k) with different q/Ωn are

more or less comparable. There is no individual mode in q/Ωn

space that provides a dominant contribution to scattering. This is
expected, since scattering in Fermi liquids should be seen as single-
particle collisions rather than scattering off collective modes.
Hence the two-particle spin representation becomes inappropriate
to identify the source of scattering in the FL.

We also performed DSEOM decompositions in other channels
and found no indication of any significant charge or particle–
particle collective modes in the NFL (SI Appendix, section I and
Fig. S13). Therefore, we conclude that in the NFL, most of the
T -linear electronic scattering comes from AFM fluctuations.

Discussion

In recent angle-resolved photoemission spectroscopy (ARPES)
measurements of Bi2212, it is found that the ARPES spectra near
p∗ can be well fitted by a marginal Fermi liquid form for the
self-energy −ImΣ(k ,ω) = Tφ(ω/T ) + b (45), which supports
our assumption of ω/T scaling in the NFL state. Moreover, we
note that γ′

k (T ) has similar slopes in T at the node and at the
antinode, which means that the inelastic part (T -dependent part)
of the scattering rates, γin

k (T )≡ γ′
k (T )− γ′

k (0), is isotropic in
our study. For example, at p = 0.18, γin

N (T )/γin
AN (T )≈ 1.1, as

shown in Fig. 2. This agrees with early ARPES results (62) and very
recent angle-dependent magnetoresistance (ADMR) experiments
on LSCO (43). We note that an immediate consequence of γk (T )
being perfectly linear in T in the NFL is that the dc resistivity
ρT without vertex corrections can also have linear temperature
dependence, since the band dispersion is found T independent
here (SI Appendix, section G).

This is in contrast to the T -linear dc resistivity found in pre-
vious studies on the doped Hubbard model at high temperatures
(40, 55, 63) or in some studies of SYK models (25, 64), where
the effective band dispersion does bring T dependence to the dc
resistivity.

Finally, we emphasize that in our study no specific functional
form of the self-energy is assumed, except a generic ω/T scaling.
It is notable that a previous DCA study (65) assuming the MFL
type of self-energy on the doped Hubbard model at smaller U and
higher temperatures suggested a finite-temperature MFL regime
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Fig. 4. The fluctuation diagnostic (Dyson–Schwinger equation of motion decomposition) of the self-energy in the spin channel, ImΣ
q/Ωn
sp (k, iω0) at different

dopings. (A1–A4) ImΣ
q
sp(k, iω0) as a function of transfer momentum q for the antinode [k = (0, π)]. (B1–B4) ImΣ

q
sp(k, iω0) as a function of transfer momentum

q for the node [k = (π/2, π/2)]. (C1–C4) ImΣΩn
sp (k, iω0) as a function of transfer frequencies Ωn = 2nπT for the antinode [k = (0, π)] [values are renormalized

by ImΣ
Ω0
sp (k, iω0)]. Values of indexes for transfer momenta q are labeled in A1 and A2. ImΣΩn

sp (k, iω0) for the node, not shown here, is similar to that for the
antinode (C1–C4).

emanating from a zero T QCP. This result differs essentially from
ours since here we find a finite-doping range displaying T linearity
as T → 0.

Where does the linear T dependence come from? In the case
of phonons, when temperature T is larger than about one-third
of the Debye frequency (6), The scattering rate increases like T
because the number of bosonic scatterers grows linearly with T
(66). In the case of an antiferromagnetic QCP (16, 18–21), the
characteristic spin fluctuation frequency plays the role of the De-
bye frequency in the phonon case and it indeed vanishes. However,
it does not explain the T -linear scattering rate in the case of weak
interactions, since the electrons–spin fluctuations scattering will
be strong only at hot spots on the Fermi surface so that, barring
disorder effects (67), the resulting resistivity will be short circuited
by Fermi-liquid–like portions of the Fermi surface (68).

For the strong interaction, U = 7t that we considered, it can
be speculated that the lack of well-defined fermion quasiparticles
leads to spin fluctuations with overall vanishing characteristic
frequency. Then, the argument that the number of scatterers
scales like T should hold. Since the magnetic correlation length
is small in the overdoped regime (69), the electrons on remains
of the Fermi surface can be all effectively scattered. Then the

argument that the linear T dependence of the scattering rate
is isotropic on the Fermi surface will also hold. In this case,
dimensional analysis and Kanamori–Brückner screening (70, 71)
suggest (SI Appendix, section L) that the coefficient of the linear
T dependence of the scattering rate can be of order unity. But
it does not need to be unity. In fact, we find a number about
equal to 3 for the electron-scattering rate and about (1∼ 2) for the
quasiparticle-scattering rate with the current parameters. So we
call the strong-interaction case that we studied a “nearly Planckian
liquid” and we argue that Planckian dissipation is likely not a
fundamental limit to the inelastic electron-scattering rate (66, 72).

Conclusion

We investigated the two-dimensional Hubbard model in the
intermediate to strong interaction limit where a non-Fermi liquid
phase is found to exist in the overdoped regime. We found
that the electronic scattering rate γk (T ) can have a perfectly
linear T dependence when doping p is close to the pseudogap
critical doping p∗. We also discovered that the antiferromagnetic
fluctuations are responsible for the T -linear electron scattering at
low temperatures.
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Materials and Methods

Our results for the two-dimensional Hubbard model are obtained using the DCA
(44), which is a cluster extension of the DMFT. (See SI Appendix, sections A–C
for details) The DCA method captures short-ranged spatial correlations within
the cluster exactly, while longer-range spatial correlations are taken into ac-
count by a dynamical mean field, which can be represented by a momentum-
and frequency-dependent Weiss field g0(k, iωn). The effective cluster impurity
problem starting from g0(k, iωn) is solved by the Hirsch–Fye quantum Monte
Carlo method (73), which in general has a slightly better average sign compared
to the continuous-time quantum Monte Carlo (CTQMC) method (74). Here we use
a discrete imaginary-time stepΔτ = 0.071. We have carefully verified that this
finite Δτ is small enough so that the Trotter errors do not affect our result and
conclusion (SI Appendix, Fig. S2). Comparison with the CTQMC result also shows
that our conclusion is not changed in the Δτ → 0 limit (SI Appendix, Fig. S3).
In this work, we typically use 60 DCA self-consistency iterations to get a converged
Weiss field g0(k, iωn) or equivalently a converged self-energy Σ(k, iωn).
In the 8-site DCA approximation, the lattice self-energy is approximated by a
patchwise-constant self-energyΣ(k, iωn) in the Brillouin zone with eight differ-
ent patches as shown in SI Appendix, Fig. S1. Note that the antinodal and nodal
regions are in distinct patches in this 8-site cluster scheme. We have verified

that the T-linear scattering rate also appears in 4-site DCA and 4 × 4-site DCA
calculations; namely, it can be checked explicitly for T > 0.1 that our results are
insensitive to the cluster size (SI Appendix, Figs. S16 and S17).

Data Availability. Data have been deposited in the Open Science Framework
repository, https://osf.io/zmnsd/.
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Canada

1. G. R. Stewart, Non-fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855
(2001).

2. A. Legros et al., Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat.
Phys. 15, 142–147 (2019).

3. J. Zaanen et al., Planckian dissipation, minimal viscosity and the transport in cuprate strange metals.
SciPost Phys. 6, 61 (2019).

4. B. Shen et al., Strange-metal behaviour in a pure ferromagnetic Kondo lattice. Nature 579, 51–55
(2020).

5. C. M. Varma, Colloquium: Linear in temperature resistivity and associated mysteries including high
temperature superconductivity. Rev. Mod. Phys. 92, 031001 (2020).

6. S. A. Hartnoll, A. P. Mackenzie, Planckian dissipation in metals. arXiv [Preprint] (2021).
https://arxiv.org/abs/2107.07802 (Accessed 18 March 2022).

7. J. Ayres et al., Incoherent transport across the strange-metal regime of overdoped cuprates. Nature
595, 661–666 (2021).

8. R. A. Cooper et al., Anomalous criticality in the electrical resistivity of La2 − xSrxCuO4 . Science 323,
603–607 (2009).

9. R. Daou et al., Linear temperature dependence of resistivity and change in the Fermi surface at the
pseudogap critical point of a high-Tc superconductor. Nat. Phys. 5, 31–34 (2009).

10. N. E. Hussey et al., Dichotomy in the T-linear resistivity in hole-doped cuprates. Philos. Trans. R. Soc. A
369, 1626–1639 (2011).
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