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Abstract: Restoring posterior teeth with resin-based composite materials continues to gain 

popularity among clinicians, and the demand for such aesthetic restorations is increasing. Indeed, 

the most common aesthetic alternative to dental amalgam is resin composite. Moderate to large 

posterior composite restorations, however, have higher failure rates, more recurrent caries, 

and increased frequency of replacement. Investigators across the globe are researching new 

materials and techniques that will improve the clinical performance, handling characteristics, 

and mechanical and physical properties of composite resin restorative materials. Despite such 

attention, large to moderate posterior composite restorations continue to have a clinical lifetime 

that is approximately one-half that of the dental amalgam. While there are numerous recom-

mendations regarding preparation design, restoration placement, and polymerization technique, 

current research indicates that restoration longevity depends on several variables that may be 

difficult for the dentist to control. These variables include the patient’s caries risk, tooth posi-

tion, patient habits, number of restored surfaces, the quality of the tooth–restoration bond, and 

the ability of the restorative material to produce a sealed tooth–restoration interface. Although 

clinicians tend to focus on tooth form when evaluating the success and failure of posterior 

composite restorations, the emphasis must remain on advancing our understanding of the clini-

cal variables that impact the formation of a durable seal at the restoration–tooth interface. This 

paper presents an update of existing technology and underscores the mechanisms that negatively 

impact the durability of posterior composite restorations in permanent teeth.
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Clinical performance of composite versus dental 
amalgam restorations
In the United States, 166 million dental restorations were placed in 2005,1 and clinical 

studies suggest that more than half were replacements for failed restorations.2 It is 

anticipated that the emphasis on replacement therapy will increase with the phasing 

out of dental amalgam. Global concerns regarding mercury in the environment are the 

primary driver for the discontinuation of dental amalgam. Identified as one of the top 

five mercury-added products, dental amalgam is ranked fifth behind batteries, measur-

ing devices, electrical switches and relays, and mercury-containing light bulbs.3

Resin composite is the most common alternative to dental amalgam,4 but 

numerous studies report that composite restorations have more recurrent caries, 

higher failure rates, and increased frequency of replacement.2,4–10 Simecek et  al 

reviewed the dental records of more than 3000 patients and concluded that there 

was a significantly higher risk of replacement for posterior composite restorations 
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as compared to amalgam.4 In a study of posterior restora-

tions placed by 243 Norwegian dentists, failed amalgam 

restorations had a mean age of about 11 years, while the 

mean age of failed composite restorations was statistically 

significantly lower at 6 years.8 A study of composite and 

amalgam restorations in the pediatric population indicated 

that the need for additional treatment was 50% greater in 

children receiving composite restorations.11 Depending on 

factors, including the size of the restoration, tooth location, 

and patient type, the lifetime of large to moderate posterior 

composite restorations is approximately one-half that of 

dental amalgam.12

The use of composite to restore form and function for 

posterior teeth damaged by disease, age, or trauma is gain-

ing wide acceptance by the dental community. A myriad of 

factors can influence the clinical success of class II com-

posite restorations. Clinical parameters, including patient 

characteristics, tooth preparation, matrix utilization, and 

composite composition–dentin bonding will be the focus of 

this review article.

Patient selection
The popularity and demand for resin-based posterior resto-

rations has been increasing steadily since the introduction 

of these materials in the mid-1950s. The societal focus on 

aesthetics as well as the worldwide move toward eliminat-

ing amalgam restorative materials has contributed to this 

phenomenon.3 Unfortunately the success and/or failure of 

resin-based composite restorations is dependent upon vari-

ables that may be difficult for the operator to control. For 

example, restorations placed in patients with high caries risk 

have restoration failure rates two times those of patients with 

low caries risk.13 These findings have been documented in 

the adult as well as the pediatric dental patient population.14 

Clinical data indicate that regardless of which preparation 

design is adopted or the type of posterior resin-based res-

toration that is utilized, the practitioner must give careful 

consideration to the caries status of the patient and adjust 

recommendations for restorative materials accordingly.

Tooth preparation
Posterior resin restorations have been indicated for 

various types of tooth preparations. In particular, resins are 

utilized to maximize aesthetics and minimize the loss of 

tooth structure during preparation. Due to the location of 

the caries and thus the need to restore proximal surfaces in 

class II restorations, a number of tooth preparation designs 

have been advocated. The underlying goal of all of these 

tooth preparation designs is a reduction in the loss of sound 

tooth structure.

The “tunnel” technique, as reported by Hunt15 and 

Knight,16 has been used to remove proximal caries while leav-

ing the marginal ridge intact. Although potentially promising, 

the lack of long-term clinical studies limits wide adoption 

of this technique.17 The ability to access and restore a proxi-

mal carious lesion directly represents the most conservative 

proximal restorative technique available.17 This technique 

is relatively successful in preserving intact tooth structure 

(Figures 1 and 2).

The ability to access proximal carious lesions directly is 

usually limited. Minibox or “slot” preparations for the res-

toration of proximal lesions in posterior teeth have also been 

recommended by clinicians and researchers. These prepara-

tion designs have been described as minimally invasive and 

relatively successful with a reported 70% success rate over 

an average of 7 years.18

The aforementioned tooth preparation designs success-

fully limit the removal of sound tooth structure and take 

advantage of appropriate etching techniques in bonding to 

intact enamel and dentin. However, depending upon the 

location and extent of the caries, traditional preparation 

designs, which involve access through the carious marginal 

ridge and the removal of infected occlusal enamel and den-

tin, may be required. These more invasive preparations are 

indicated in this clinical situation (Figure 3) and are well 

documented in the literature.19 Whenever possible, conser-

vative structure-sparing preparation techniques should be 

used. When restoring proximal surfaces with resin-based 

composite.

Considerable attention has been devoted to the relation-

ship between cavity type, cavity size, number of surfaces 

restored, and the risk of restoration failure. As the number 

of restored surfaces increases, the risk of restoration 

Figure 1 Proximal carious lesion with direct access.
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Figure 2 Tooth preparation with direct proximal access.

Figure 3 Traditional class II tooth preparation. Figure 4 Pre-operative class II amalgam restoration.

failure also increases.20–22 For example, as reported in 

the 2012  review by Demarco et  al,23 single-surface and 

class I restorations are less likely to fail as compared to 

multisurface restorations, and class II restorations. To 

minimize restoration failure and mitigate the effects of 

bonding multiple tooth surfaces, most clinical strategies 

have focused on methods to decrease the ratio between 

the bonded surface area to the nonbonded surface area, 

also described as the cavity configuration or C-factor. The 

higher the C-factor the less chance for relaxation of polym-

erization shrinkage. Some studies have indicated that the 

increase in C-factor is also associated with decreased bond 

strength.24,25 However, recent investigations have suggested 

that this finding may not be valid for the newer low-shrink 

resin-based composites.26

Along with preparation design and extent of tissue 

removal, the position of the tooth in the mouth directly 

influences the overall clinical performance and longevity 

of the restoration. Studies suggest that restorations placed 

in premolars fail less often than similar restorations placed 

in molars.20,21 Intuitively this finding makes sense in that 

the masticatory forces and stresses placed on restorations 

in molar teeth are higher than those placed in premolars. 

Nonetheless, the findings in terms of tooth position and 

number of restored surfaces indicate that clinicians should 

utilize posterior resin composites in areas where aesthetics is 

deemed essential and should maintain as much tooth structure 

as possible. Figures 4 and 5 illustrate the aesthetic results 

obtained when replacing a proximal amalgam restoration 

with a resin-based composite restoration.

Polymerization and matrices
The techniques used to fill and cure resin-based compos-

ites, particularly in areas of high masticatory stresses, 

have received considerable attention. The debate among 

researchers as well as practitioners regarding bulk cure 

versus incremental cure continues. Incremental filling tech-

niques (Figure 6) have long been recommended due to the 

polymerization shrinkage associated with dental composites. 

Reducing the volume of composite that is polymerized at 

each stage of the restorative procedure minimizes shrinkage 

and maximizes the conversion of monomers to polymer. 

This is achieved, in part, by decreasing the attenuation of 

the curing light.27 While incremental filling techniques have 

been taught and utilized for decades, some studies indicate 

that incremental filling of resin-based composites produces 

higher shrinkage stress.27,28 In direct contrast, more recent 

studies report that incremental filling produces lower shrink-

age stress when compared to bulk filling techniques.29,30 

These diverse and contradictory conclusions are likely due 

to different testing methods.31 Currently, manufacturers are 

striving to produce resin-based composite systems that have 
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filling and curing of posterior composites may no longer be 

recommended. However, until the long-term clinical success 

of the lower shrinking composite resin systems is confirmed, 

using an incremental filling technique in deep cavity prepara-

tions is recommended.26

The influence of matrix type on the quality of the proximal 

contact and the ease of placement of class II resin restora-

tions has also been evaluated. The ability to reproduce an 

appropriate, functional, proximal contact with a class II resin 

restoration is important to minimize food impaction and thus 

maintain healthy periodontal tissues. In addition, a poorly 

adapted and finished proximal restoration may have an “open 

margin” through which oral fluids, eg, saliva, enzymes, water, 

and cariogenic bacteria, may penetrate. This marginal leak-

age can lead to recurrent caries, which is the most often cited 

reason for composite restoration failure.2,4–10

Manufacturers have introduced various types of matri-

ces into the dental market with the goal of affecting or 

influencing the direction of composite shrinkage during 

polymerization.32 The literature no longer supports the 

concept of “directional polymerization,33 but these matri-

ces still exist. Although there are a myriad of different 

shapes and sizes, the majority of matrices fall into one of 

two basic types: (1) metal matrices, which are straight or 

circumferential/precontoured and (2) transparent matrices 

which are either straight or circumferential/precontoured. 

Despite the theory that transparent matrices will enhance 

polymerization at the gingival margin, the recent literature 

suggests that the choice of matrix does not influence the 

clinical success of class II posterior resins.32

In addition to matrix type, there are numerous tooth 

separation (wedging) products and techniques. These include 

wooden wedges and separation rings. The literature suggests 

that the type of matrix material/wedge does not influence 

the clinical performance of class II composite restorations.34 

However, the literature does indicate that no matrix/wedge 

combination can accurately reproduce an intact proximal 

surface contact at the precise location of the natural intact 

tooth.35

Composite restoration failures
Researchers and industry continue their efforts to modify 

composite resin restorative materials in order to improve their 

handling characteristics, mechanical and physical properties, 

and clinical performance. The majority of the current resin 

composites have mechanical properties that make them 

suitable for use in all areas of the mouth. The functionality 

of these restorations, however, in areas of high masticatory 

Figure 5 Post-operative class II resin restoration.

Figure 6 Incremental filling technique representation.

less polymerization shrinkage (,2%) and, more impor-

tantly, reduced polymerization shrinkage stress. Strategies 

to improve shrinkage include utilizing new low-shrinking 

monomers or those with an increased molecular weight.26 

As the low-shrinking composite resins improve, incremental 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

36

Bohaty et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical, Cosmetic and Investigational Dentistry 2013:5

stress is still a concern. Resin restorations that are placed in 

areas of high function are more prone to exhibit excessive 

wear and/or marginal fracture despite the advances in the 

current materials. Clinicians must exercise caution when 

placing large resin-based composite restorations in areas of 

high function. The longevity of posterior resin restorations 

placed in patients who have a history of clenching or grinding 

may be particularly limited.35

While resin composition, tooth preparation design, and 

matrix systems may influence the lifetime of posterior com-

posite restorations, the primary factor in the clinical failure 

of moderate to large composite restorations is secondary 

caries at the margins of the restorations.8 As an example, in 

a study of radiographs from 459 adults, age 18–19 years, the 

investigators reported that, among interproximal restorations, 

the failure rate as a result of secondary or recurrent caries was 

43% for composite as compared to 8% for amalgam.7 In a 

separate study of amalgam and composite restorations placed 

in 8–12-year-old children, the primary reason for failure of 

both materials was secondary caries, but secondary caries 

was 3.5 times higher in composite restorations.5

An increase in secondary caries at the margins of 

composite restorations suggests that the seal at the com-

posite–tooth interface is not adequate to resist the physical, 

chemical, and mechanical stresses that are present in the 

mouth. The failure of moderate to large composite restora-

tions has been linked to the degradation of the bond at the 

tooth surface–composite material interface12,36–41 and an 

increase in the concentration of the cariogenic bacterium 

Streptococcus mutans at the perimeter of these materi-

als.42–46 Degradation of the bond at the interface between the 

tooth and composite has been associated with the failure of 

adhesives to form an impervious seal with the dentin.2,41–50 

Failure of the adhesive/dentin (a/d) bond leads to open pores 

at the composite–tooth interface and bacterial enzymes, oral 

fluids, and even bacteria can penetrate these open pores.51 

Data from in vivo and in vitro studies indicate that the 

infiltration of these agents into the voids between the tooth 

and composite will lead to recurrent caries, hypersensitiv-

ity, and pulpal inflammation.41,47,52,53 Results from clinical 

studies indicate loss of retention, poor marginal adapta-

tion, and marginal discoloration when the a/d interface is 

exposed to the oral cavity.54 Effective mechanical bonding 

between the composite restoration and treated enamel has 

been achieved using appropriate acid-etching protocols, 

but failure of the bond at the a/d interface threatens the 

long-term clinical survival of moderate to large posterior 

composite restorations.39,41,43,52,55–57

Bonding failures have been commonly tracked to the 

gingival margin of class II composite restorations.58 A sepa-

ration between the composite material and tooth surface has 

been noted at the gingival margin.55 In class II composite 

restorations, there is generally little enamel available for 

bonding at the gingival margin; therefore, the bond at this 

site depends on the integrity of the seal formed with dentin. 

Gaps at the gingival margin have been attributed to unreliable 

dentin bonding.55,57 In a study comparing the microtensile 

a/d bond strength of gingival and proximal walls of class II 

composite restorations, the adhesive bond to the gingival wall 

was significantly weaker.59 A complementary spectroscopic 

study reported a twofold difference in the extent of dentin 

demineralization at the proximal and gingival margins.50 

The difference in demineralization suggests less mineralized 

dentin at the gingival margin. The cumulative effect of less 

mineral, increased density, and size of the tubules60 would 

mean faster and deeper etching at the gingival margin as 

compared to the proximal wall. Although the etch was deeper 

at the gingival margin, there was considerably less adhesive 

infiltration of the demineralized dentin matrix at the gingi-

val margin.50 The discrepancy between etching depth and 

adhesive infiltration led to a large area of exposed collagen 

at the gingival margin.

Yoshiyama et al suggested that the increased number of 

tubules per unit area at the gingival margin would promote 

efficient adhesive infiltration at this margin.61 However, other 

variables, including water content, interfere with efficient 

adhesive infiltration at the gingival margin. Water content 

is higher in dentin at the gingival margin as compared to 

the proximal wall. Water content is increased because of 

the water present within the demineralized dentin matrix 

and patent tubules that contain a great deal of dentinal fluid. 

The presence of this fluid contributes to the contamination of 

the prepared surface.62 The increased water leads to reduced 

adhesive infiltration and lower monomer/polymer conversion 

of the adhesive at the gingival margin as compared to the 

proximal wall.50 The impact of water upon the effectiveness 

of bonding is further supported by in vitro investigations that 

indicate that adhesive monomers or oligomers and unpro-

tected collagen at the gingival margin of class II composite 

restorations undergo hydrolytic degradation after 90 days of 

aqueous storage.49

Wet bonding techniques were introduced in the early 

1990s to counteract the problems noted with collagen col-

lapse following drying of the demineralized dentin matrix.63–66 

Wet bonding means that the demineralized dentin matrix is 

fully hydrated throughout the bonding protocol. Using this 
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procedure, the channels between the demineralized dentin 

collagen fibrils are filled with water, solvent, conditioner, 

and/or oral fluids.67,68 Adhesive must diffuse into the fluid-

filled spaces of the substrate and along the collagen fibrils. 

Ideally, the solvent in combination with hydrophilic mono-

mers, eg, hydroxyethyl methacrylate (HEMA) conditions 

the collagen to remain expanded during adhesive infiltration. 

However, HEMA, a primary component in many single-

bottle, commercial, dentin adhesives, can dramatically reduce 

the evaporation of water.69 Hydrophobic monomers, such as 

2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] 

propane (BisGMA), would resist diffusing into these sites 

where there is residual water.70–72

In the in vivo situation, there may be little control over the 

amount of water left on the tooth. Thus, it is possible to leave 

the dentin surface so wet that the adhesive physically sepa-

rates into hydrophobic- and hydrophilic-rich phases.71,73,74 

Indeed, results from laboratory investigations indicate that 

excess moisture prohibited the formation of an impervious 

structurally integrated a/d bond at the gingival margin of 

class II composite restorations.49,50

Under clinical conditions, dentists must routinely attempt 

to bond to naturally wet substrates, eg, caries-affected dentin75 

or deep dentin.76–79 The water content of caries-affected dentin 

is 2.7 times greater than that of normal dentin.75 Exposed 

tubules account for 22% of the surface area in deep dentin. 

In contrast, exposed tubules account for 1% of the surface 

area of dentin close to the dentino-enamel junction.80 The 

large increase in exposed tubules in deep dentin means that 

pulpal fluid will contribute additional moisture to that already 

present within the demineralized dentin matrix. With the 

sensitivity of our current adhesives to excess moisture, it is 

obvious that bonding to these clinically relevant substrates 

is a formidable challenge.79,81–83 This difficulty highlights the 

potential limitations in utilizing resin-based composites to 

restore large, deep, carious lesions.

Sensitivity of adhesive to wet 
bonding conditions
Water blisters that form in adhesives placed on overly wet 

surfaces84–86 and adhesive phase separation that leads to very 

limited infiltration of the critical but hydrophobic dimethacry-

late component71,87,88 are two examples of the sensitivity of our 

current adhesives to excess moisture. The optimum amount 

of wetness varies as a function of the adhesive system.89 It is 

impossible to simultaneously achieve uniform wetness on all 

of the walls of the cavity preparation.90 In short, wet bonding 

is a very technique-sensitive procedure. Optimum bonding 

with our current commercial dentin adhesives occurs over a 

very narrow range of conditions, eg, water content.78

Strategies to promote bonding of the resinous materials to 

intrinsically wet dentin substrates include the incorporation 

of ionic and hydrophilic monomers into the adhesive.91

These adhesives etch and prime simultaneously, thus 

addressing the problems of collagen collapse and simplifying 

the bonding protocol. The hydrophilicity of these adhesives 

enhances water sorption, which can lead to hydrolytic break-

down in the mouth.85,90,92 With these systems, the bonded 

interface lacks a nonsolvated hydrophobic resin coating. The 

hybrid layers made with these adhesive systems behave as 

semi-permeable membranes; water is transferred throughout 

the bonded interface even after adhesive polymerization.54 The 

increase in the concentration of hydrophilic monomers in these 

systems has been associated with decreased structural integrity 

at the a/d interface.54,93 Deterioration of the a/d bond formed 

with these systems was noted after 1 year of in vivo aging.94 

These results suggest that hydrophilicity and hydrolytic stabil-

ity of resin monomers are generally antagonistic.90

Effects of function, fatigue,  
and degradation
When measured immediately, dentin-composite bonds are 

generally considered adequate to tolerate conditions in the 

mouth, but these bonds deteriorate with time. The two major 

mechanisms of deterioration are fatigue and hydrolysis.95 

Fatigue has been linked to stresses transmitted to the bond 

by occlusal forces, thermal expansion and contraction, and 

polymerization shrinkage of the composite. Chronic dete-

rioration of the dentin-composite bond is also related to 

hydrolysis and leaching of the adhesive that has infiltrated 

the tooth structure.70,79

Fatigue investigations have indicated that the overall 

time-dependent behavior of the composite–tooth interface 

is a complex function of the individual material phases. For 

example, microfinite element analyses have shown that each 

material phase at the a/d interface experiences different stress 

concentrations at functional loads.96,97 The overall failure 

behavior of the bond at the a/d interface is not determined by 

the weakest component but by the component whose stress 

concentration is closest to its failure strength. Similarly, the 

overall fatigue life of the a/d interface is governed by the 

material component with the shortest fatigue life under a 

given loading condition.98

Under masticatory function the material components at 

the composite–tooth interface are subjected to both chemi-

cal and mechanical stresses. The interplay between these 
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stresses can result in a deterioration of the properties of 

the material over time. The breaking of covalent bonds by 

addition of water to ester bonds is considered one of the 

primary reasons for deterioration of the adhesive at the 

interface between the composite and tooth.89,90 Interest-

ingly, degradation of methacrylate ester groups produces 

carboxylic acids – the same functional group that is the 

culprit in lactic acid-induced dental caries. The change in 

mechanical properties of the materials can be contributed to 

a variety of mechanisms that include proliferation of surface 

and subsurface flaws.95,97,99–101 These flaws in combination 

with the chemical and biochemical stresses that are present 

in the mouth can then lead to restoration failure.

In conclusion, the a/d bond can be the first defense against 

substances that may penetrate and ultimately undermine the 

gingival margin in composite restorations in vivo. It has been 

hypothesized that the in vivo degradation of the bond at the 

a/d interface follows a cascade of events that begins when 

the dentin is acid etched102,103 Disruption of the tooth structure 

by acid etching exposes and activates proteolytic enzymes, 

eg, matrix metalloproteinases (MMPs), that can degrade 

the exposed collagen component of the hybrid layer.104,105 

The following factors inhibit the formation of a durable a/d 

bond: (1) water sorption and hydrolysis of the adhesive resin; 

(2) inadequate monomer/polymer conversion of the infiltrat-

ing adhesive; (3) incomplete resin infiltration of the demin-

eralized dentin matrix; (4) incomplete solvent evaporation; 

and (5) enzymatic challenges within the cavity preparation 

through exposure to oral fluids.49,71,83,104–115 Although durable 

a/d bonds are critical for maintaining a seal at the tooth–

composite interface, the properties of the materials are only 

one part of an extremely complex problem.116

Summary
Restoring posterior teeth with resin-based composite mate-

rials continues to gain popularity among clinicians, and 

the demand for such aesthetic restorations is increasing. 

Manufacturers are working aggressively to improve resin 

composite materials by modifying components to decrease 

polymerization shrinkage, to improve mechanical and physi-

cal properties, and to enhance handling characteristics. The 

two main causes of posterior composite restoration failure 

are secondary caries and fracture (restoration or tooth).35 

A review and update of posterior resin composites in terms 

of preparation design, matrix choice, and resin systems 

demonstrate the limited extent to which these factors influ-

ence the overall clinical lifetime of resins placed in posterior 

teeth. Clinical and patient factors, including caries risk, cavity 

size, cavity type, number of restored surfaces, and position 

of the tooth in the mouth must be given careful attention in 

the selection of any restorative material including composite 

resins.

While clinicians tend to focus on tooth form and func-

tion when evaluating the success and failure of posterior 

resins, the emphasis must remain in advancing our under-

standing and knowledge of the intricate and complicated 

characteristics of the restoration–tooth interface. This paper 

presents an update in existing technology and underscores the 

mechanisms that negatively impact the durability of posterior 

composites in permanent teeth.
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