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Simple Summary: As part of the investigative process of “loss of athletic performance”, quantitative
data may help veterinary decision making when assessing equine back dysfunction. Ranges of
motion of differential rotational movement were quantified between adjacent inertial measurement
units, which were attached to the skin over the thoraco–lumbo–sacral area in 10 dressage horses.
Differential rotational movements were collected during trot in-hand and ridden in sitting trot/canter
during straight-line locomotion. For the thoracic area, differential heading values were smaller in
sitting trot and canter compared to trotting in-hand. Compared to trotting in-hand the thoraco-
lumbar differential pitch values were higher in sitting trot and canter. The lumbo-sacral region,
differential pitch values were increased in canter compared to trotting in-hand and differential
heading values were higher in sitting trot compared to canter. Compared to in-hand, reduced
heading values were measured in the cranial–thoracic area and increased in the caudal–thoracic
and lumbar area. Pitch values increased with ridden exercise from the caudal–thoracic to the sacral
area. Back movement alters when ridden compared to an unloaded condition. Understanding back
movement whilst being ridden will help advance our understanding on equine back movement and
assist with decision making.

Abstract: Assessing back dysfunction is a key part of the investigative process of “loss of athletic
performance” in the horse and quantitative data may help veterinary decision making. Ranges of
motion of differential translational and rotational movement between adjacent inertial measurement
units attached to the skin over thoracic vertebrae 5, 13 and 18 (T5, T13, T18) lumbar vertebra 3
(L3) and tuber sacrale (TS) were measured in 10 dressage horses during trot in-hand and ridden in
sitting trot/canter. Straight-line motion cycles were analysed using a general linear model (random
factor: horse; fixed factor: exercise condition; Bonferroni post hoc correction: p < 0.05). At T5-T13
the differential heading was smaller in sitting trot (p ≤ 0.0001, 5.1◦ (0.2)) and canter (p ≤ 0.0001, 3.2◦

(0.2)) compared to trotting in-hand (7.4◦ (0.4)). Compared to trotting in-hand (3.4◦ (0.4)) at T18-L3
differential pitch was higher in sitting trot (p ≤ 0.0001, 7.5◦ (0.3)) and canter (p ≤ 0.0001, 6.3◦ (0.3)). At
L3-TS, differential pitch was increased in canter (6.5◦ (0.5)) compared to trotting in-hand (p = 0.006,
4.9◦ (0.6)) and differential heading was higher in sitting trot (4◦ (0.2)) compared to canter (p = 0.02,
2.9◦ (0.3)). Compared to in-hand, reduced heading was measured in the cranial–thoracic area and
increased in the caudal–thoracic and lumbar area. Pitch increased with ridden exercise from the
caudal–thoracic to the sacral area.

Keywords: sensors; IMUs; markers; pitch; roll and heading; locomotion; skin

1. Introduction

Loss of athletic performance in the horse can be attributed to multiple factors, which
can be investigated using various diagnostic techniques. Back dysfunction is a key part of

Animals 2021, 11, 888. https://doi.org/10.3390/ani11030888 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0003-3942-4321
https://orcid.org/0000-0002-0702-4289
https://doi.org/10.3390/ani11030888
https://doi.org/10.3390/ani11030888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11030888
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11030888?type=check_update&version=1


Animals 2021, 11, 888 2 of 15

the investigative process of “loss of athletic performance” in the horse [1]. Diagnosing the
causes of back related dysfunction remains a diagnostic and therapeutic challenge in rela-
tion to the multifactorial aetiopathogenesis [2–4]. Across gaits and exercises, the vertebral
column shows different movements, which can be decomposed into three rotational move-
ments, categorized into flexion–extension, lateral bending and axial rotation, and three
translational movements, categorized into dorsoventral, mediolateral and craniocaudal
translation [5–8]. Initial in vitro studies quantified the extent to which the different parts of
the spinal column were able to move [1,9–12]. This was followed up with studies making
use of treadmill locomotion and with the insertion of Steinman pins into the tips of the
dorsal spinous processes, reporting differential vertebral kinematics in vivo for the tho-
racic, lumbar, and sacral regions showing the difference in amplitudes and the distribution
between the different rotational components in walk [8], trot [6] and canter [7].

The rotational movement of the thoraco–lumbo–sacral area was also measured with
3D optical motion capture making use of external, skin-mounted markers as a non-invasive
approach [13]. However, skin displacement is a well-recognised limitation with motion
capture, with increasing displacement in the proximal regions (distal scapula and greater
trochanter) when walking [14] and trotting [15]. The relative motion of the skin can be
distorted in relation to the underlying bony structures due to the non-rigid attachment
of the skin to the bony structure. Specifically for back movement, there is also a dis-
crepancy between the centre of rotation of the vertebral body and the position of the
skin-fixated marker over the dorsal spinous process [16]. Regarding thoraco–lumbo–sacral
movement in walk and trot with skin-mounted markers have been reported to determine
flexion–extension of the thoracolumbar spine and axial rotation of the sacrum satisfactorily.
In walk, lateral bending values were reported to be accurate for the vertebral segments of
the mid thoracic and the cranial lumbar vertebra, whereas in trot valid data were reported
for the thoracolumbar spine [16].

The presence of a rider can influence lameness scores [17], as well as variability of
velocity and acceleration in a forward direction [18] and can lead to systematic changes in
movement symmetry [19,20]. The horse’s back movement also alters with added weight,
increasing the overall extension of the lumbar spine in walk and trot with a saddle with a
dead weight (75 kg) [21]. Different riding positions also affect the movement of the back,
with the addition of a rider leading to an overall extending effect on the back in sitting
trot [22]. In rising trot, maximal flexion appears to be similar to the unloaded condition,
whilst maximal extension was similar to sitting trot and lateral bending of the lumbar spine
increased [22]. These changes in back movement, as a result of both a static mass and the
dynamic weight of a rider, emphasise the relevance of a ridden component as part of a
“loss of athletic performance assessment” as a way of visually (or ideally quantitatively)
assessing the response of an individual horse to a targeted “intervention”, for example not
too dissimilar to using flexion tests in order to elicit a change in limb-related lameness.

Changes in back movement have been reported during ridden exercise with camera-
based techniques. However, due to marker occlusion by tack (saddle) and rider, the
kinematics of the cranial thoracic spine have not been reported [21–23]. It seems likely that,
since rotational movements are altered caudal to the saddle [21–23], the cranial segments
(beneath the saddle and rider) will also undergo changes in movement in relation to the
added weight of the rider and the presence of the saddle. These movements can now be
measured—owing to the miniaturization of inertial measurement units (IMUs)—along the
midline of the back, including beneath the saddle [24–26].

The aim of this study was to quantify the external kinematics of the thoracolum-
bosacral area in horses in trot in an unloaded condition (in-hand) compared with when
ridden in sitting trot and seated canter with a dynamic load (rider). It is hypothesised
that: (1) pitch (differential pitch, rotation around transverse (lateral–lateral) axis) and
heading values (differential yaw, rotation around vertical axis) of the caudal thoracic and
lumbosacral area will increase when ridden in sitting trot and canter compared with the
unloaded condition; (2) differential pitch and heading values will alter in the cranial tho-
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racic region when ridden in sitting trot and canter compared to the unloaded condition
without a rider

2. Materials and Methods

This study was approved by the Royal Veterinary College ethics and welfare com-
mittee, project number URN 20181785-2. Informed, written consent was obtained prior to
participation in the study. At the time of the study, all riders were free from any injuries
and could withdraw their participation and that of their horses from the study at any point.

2.1. Horses

Ten elite dressage horses were used in this study. Eight geldings and two mares, with
a mean (±standard deviation) value for height at the withers of 1.70 ± 0.03 m, body mass
of 600 ± 24 kg and age 11 ± 1 years were recruited. Horses were housed at two different
facilities with data collection taking place at two locations. Horses were all part of an
extensive equine sports science and medicine programme including regular therapy and
veterinary assessments. On the day preceding data collection all horses were assessed
by their respective veterinarian—this assessment included visual observations in walk
and trot in a straight line on a firm level surface as well as flexion tests of all four limbs:
no lameness was observed. On the day of data collection the horses’ gait asymmetry
was quantified using a validated sensor system [27]. In addition, the horses underwent a
subjective physiotherapy examination by a chartered veterinary physiotherapist.

2.2. Riders

Two male and two female Grand Prix Dressage (FEI ranked) riders who were the horses’
regular riders were recruited with an average (±standard deviation) height 1.82 ± 0.08 m
and body mass 74 ± 1 kg. Three horses were ridden by one male rider, three horses were
ridden by one female rider, two horses were ridden by one male rider and two horses were
ridden by one female rider, each rider rode one horse once.

2.3. Saddles, Girths and Bridles

Horses were ridden in their usual saddle, girth and bridle. Static and dynamic saddle
fit was assessed independently by five Society of Master Saddlers Qualified Saddle Fitters.
Saddle details have been described elsewhere [28]. Seat size remained the same throughout
and the stirrup length which the rider was accustomed to was used throughout. A high
withered saddle cloth (H: 58 cm withers to base, 54 cm lowest point to base of cloth, W:
63 cm) was positioned beneath the saddle along with a 5-mm thick layer (Prolite half pad).
Girth design and features have been described elsewhere [29]. In brief, an anatomically
shaped girth not featuring any elastic was used throughout. All horses were ridden in a
snaffle bridle with a correctly fitted noseband.

2.4. Kinematics—Inertial Measurement Units

To measure range of motion, horses were instrumented with eight MTw inertial
measurement units (IMU) (Xsens) as part of a sensor-based system (Xsens MTw Awinda,
An Enschede, The Netherlands) validated for translational displacements derived from
internal tri-axial sensor accelerations rotated into a horse-based reference frame based on
the sensor orientation estimate and then double integrated to displacement [27,30]. The
IMUs were attached over the poll, withers (T5), vertebral segments of the thirteenth (T13)
and eighteenth thoracic vertebrae (T18), the third lumbar vertebra (L3), between the left and
right tubera sacrale (TS), and over the left and right tubera coxae. Skin-mounted sensors
were attached along the external landmarks of the thoracolumbar spine representing T5,
T13, T18, L3 and TS with glue onto the clipped hair using hair extension glue (Salon
Pro, London, UK). The remaining sensors (poll and tubera coxae) were attached using
custom-made pouches and double-sided tape (Figure 1). The same technician applied all
sensors throughout the study. Sensor data were collected at 60 Hz per individual sensor
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channel [31] and transmitted via a proprietary wireless data transmission protocol (Xsens)
to a receiver station (Xsens MTw Awinda, An Enschede, The Netherlands) connected to a
laptop computer running MTManager (Xsens, An Enschede, The Netherlands) software.
IMU specifications: internal sampling rate 1000 Hz; buffer time up to 30 s; dimensions
47 × 30 × 13 mm; mass 16 g; operating temperature range 0–50 ◦C; and dynamic accuracy
0.75 degrees root mean square (RMS) (roll/pitch) and 1.5 degrees RMS (heading).
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Figure 1. Inertial measurement unit (IMU) sensor locations along the midline of the thoracolumbar region beneath the
saddle and rider. Sensors were glued on to the skin over thoracic and lumbar vertebrae (T5, T13, T18, L3). Sensor pouches
were used for the sensors attached over the tubera sacrale and left and right tubera coxae.

IMU data were processed following published protocols [27]. In brief, tri-axial sensor
acceleration data were rotated into a gravity (z: vertical) and horse-based (x: craniocaudal
and y: mediolateral) reference frame and numerically double integrated to displacement.
Displacement data were segmented into individual strides based on vertical velocity of
the sacrum sensor [32], and median values for the following kinematic variables were
calculated over all available strides for each exercise condition.

Orientation–time signals for differential roll, pitch and heading values of T5, T13,
T18, L3 and TS were used to calculate differential rotational movements by subtracting
signals of adjacent sensors from each other (T5-T13, T13-T18, T18-L3, L3-TS). This method
was applied to differential pitch values, differential roll (rotation around longitudinal
(craniocaudal) axis) and differential heading values of the upper body landmarks of the
thoracolumbar spine and resulted in differential orientation–time signals in degrees in
analogy to the method introduced in [33] for flexion–extension (Figure 2).

Outcome parameters for the IMU derived data for the three conditions (in-hand trot,
sitting trot and canter) are differential pitch, roll and heading values for T5–T13, T13–T18,
T18–L3 and L3–TS.

2.5. Study Protocol
2.5.1. In-Hand Trot Data Collection

All horses were walked in-hand (unloaded) with a bridle on and walked in both a
clockwise and anticlockwise direction around the arena (20 × 60 m) for twenty minutes.
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IMUs were fitted to the poll and along the thoracolumbosacral regions and left/right TC
as discussed previously. Horses were then trotted in-hand wearing a snaffle bridle, in a
straight line in the arena capturing a total of 40 ± 3 strides (6 straight line runs with the
horse turning around at each end, the two strides before and after each turn were not
included in the analysis). Each horse was trotted in-hand by their respective groom.
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Figure 2. IMU sensor locations in the thoracolumbosacral region and illustration of rotational
movement parameters. Differential pitch, roll and heading rotational movements were calculated
between adjacent sensors positioned at T5, T13, T18, L3 and TS. Sensor pouches were used for the
left and right tubera coxae. (A) = pitch, (B) = roll and (C) = heading.

2.5.2. Ridden Data Collection

Horses were prepared for ridden exercise with the fitting of the saddle, girth, saddle
cloth and half pad as previously described. Care was taken to ensure that the T5, T13 and
T18 sensors were not in contact with the medial margins of the saddle panel. One qualified
saddle fitter verified sensor location visually and manually by placing their hand beneath
the pommel and palpating the lateral edges of the T13 sensor. This observation was made
with and without the rider mounted. Each horse underwent a 25-min warm up protocol,
self-prescribed by the rider, which included walk, rising/sitting trot and canter on both the
left and right reins. Warm up also included lateral work with four half passes, shoulder in
and travers (60 m) in trot and canter in both a left and right direction. After the warm-up
period had been completed, the kinematics of the thoracolumbar spine were quantified
in a straight line in sitting trot and canter, with the rider remaining seated throughout the
motion cycle.

A straight-line experimental track (50 m × 1.5 m) was created in the middle of the
arena using spherical cones. The arena dimensions allowed for 11 straight strides in sitting
trot and 15 in canter to be captured, with both the start and end points being determined
using two cones. All measurements (in-hand and ridden) were performed in an indoor
(20 m × 60 m) arena on a wax-coated surface. The surface was groomed prior to, and in
between, each horse. Six repeats were captured of the straight-line portion of the track
(moving through the experimental track) with the horse approaching from a left (3 repeats)
and right (3 repeats) direction in sitting trot and canter (3 repeats left lead and three repeats
right lead) (Figure 3). Speed was monitored by the same technician using a stopwatch, with
start and end points being defined by two markers that were positioned at the start/end of
the experimental track.

2.6. Statistical Analysis

Statistical analysis was performed in SPSS (vers. 26 IBM, Armonk, NY, USA). A
general linear mixed model was used for kinematic data with condition (in-hand, sitting
trot and canter) and direction (straight line portion of the horse ridden on the left rein or on
the right rein through the experimental area) defined as fixed factors and horse defined as a
random factor. The significance level throughout was set to p ≤ 0.05. A Bonferroni post hoc
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analysis was carried out to determine pairwise differences between conditions. Instead of
applying the Bonferroni correction on the significance level, alpha, this study reported the
Bonferroni adjusted p-values (p-values based on Fisher’s Least Significant Difference (LSD)
multiplied by the number of comparisons done). This allows assessment of significance
with reference to the traditional alpha of 5%, without increasing type II errors.

Animals 2021, 11, x 6 of 16 
 

 

using two cones. All measurements (in-hand and ridden) were performed in an indoor 

(20 m × 60 m) arena on a wax-coated surface. The surface was groomed prior to, and in 

between, each horse. Six repeats were captured of the straight-line portion of the track 

(moving through the experimental track) with the horse approaching from a left (3 re-

peats) and right (3 repeats) direction in sitting trot and canter (3 repeats left lead and three 

repeats right lead) (Figure 3). Speed was monitored by the same technician using a stop-

watch, with start and end points being defined by two markers that were positioned at 

the start/end of the experimental track. 

 

 

 
 

Figure 3. Diagram illustrating the experimental track. The experimental track represented by the 

green markers and the start and end points being represented by the red markers. The experi-

mental track allowed 11 straight strides in sitting trot and 15 strides in canter to be captured, with 

both the start and end points being determined by two red cones. 

2.6. Statistical Analysis 

Statistical analysis was performed in SPSS (vers. 26 IBM, Armonk, NY, USA). A gen-

eral linear mixed model was used for kinematic data with condition (in-hand, sitting trot 

and canter) and direction (straight line portion of the horse ridden on the left rein or on 

the right rein through the experimental area) defined as fixed factors and horse defined 

as a random factor. The significance level throughout was set to p  0.05. A Bonferroni 

post hoc analysis was carried out to determine pairwise differences between conditions. 

Instead of applying the Bonferroni correction on the significance level, alpha, this study 

reported the Bonferroni adjusted p-values (p-values based on Fisher’s Least Significant 

Difference (LSD) multiplied by the number of comparisons done). This allows assessment 

of significance with reference to the traditional alpha of 5%, without increasing type II 

errors. 

3. Results 

3.1. Horse Inclusion 

From the subjective veterinary assessment the day preceding the experiment, all 

horses were deemed fit to perform. From the physiotherapy assessment (on the day) all 

horses were deemed fit to perform. From the objective movement asymmetry measures, 

horses had (mean ± SD) asymmetry values (in mm): Poll MinDiff 9.3 ± 8.7, Poll MaxDiff −2.0 

± 5.5, Pelvis MinDiff, 3.1 ± 2.7, Pelvis MaxDiff 2.9 ± 7.6 and Hip Hike Difference (HHD) 4.9 ± 

14.3. 

3.2. Differential Rotational Movement of the Thoracolumbosacral Spine 

3.2.1. T5–T13 

Differential roll values differed between conditions (p = 0.04). Post hoc analysis 

showed a decrease in differential roll values when in canter (Estimated Marginal Mean 

(EMM) (S.E)): (16.6° (1.4)) compared to trotting in-hand (23.5° (1.7)), (p = 0.005). Differen-

tial heading values differed between conditions (p ≤ 0.0001). Compared to trotting in-hand 

(7.4° (0.4)), post hoc analysis showed a decrease in differential heading values when in 

sitting trot (5.1° (0.2), (p ≤ 0.0001) and canter (6.5° (0.4)), (p = 0.0001) (Table 1, Figures 4–6). 

Figure 3. Diagram illustrating the experimental track. The experimental track represented by the green markers and the
start and end points being represented by the red markers. The experimental track allowed 11 straight strides in sitting trot
and 15 strides in canter to be captured, with both the start and end points being determined by two red cones.

3. Results
3.1. Horse Inclusion

From the subjective veterinary assessment the day preceding the experiment, all
horses were deemed fit to perform. From the physiotherapy assessment (on the day) all
horses were deemed fit to perform. From the objective movement asymmetry measures,
horses had (mean ± SD) asymmetry values (in mm): Poll MinDiff 9.3 ± 8.7, Poll MaxDiff
−2.0 ± 5.5, Pelvis MinDiff, 3.1 ± 2.7, Pelvis MaxDiff 2.9 ± 7.6 and Hip Hike Difference
(HHD) 4.9 ± 14.3.

3.2. Differential Rotational Movement of the Thoracolumbosacral Spine
3.2.1. T5–T13

Differential roll values differed between conditions (p = 0.04). Post hoc analysis
showed a decrease in differential roll values when in canter (Estimated Marginal Mean
(EMM) (S.E)): (16.6◦ (1.4)) compared to trotting in-hand (23.5◦ (1.7)), (p = 0.005). Differential
heading values differed between conditions (p ≤ 0.0001). Compared to trotting in-hand
(7.4◦ (0.4)), post hoc analysis showed a decrease in differential heading values when in
sitting trot (5.1◦ (0.2), (p ≤ 0.0001) and canter (6.5◦ (0.4)), (p = 0.0001) (Table 1, Figures 4–6).

3.2.2. T13–T18

Differential heading values differed between conditions (p ≤ 0.0001). Post hoc analysis
showed an increase in differential heading values when ridden in sitting trot (6.5◦ (0.4))
compared to trotting in-hand (6.3◦ (0.5)), (p = 0.02). In canter (4.9◦ (0.4)), differential heading
values decreased when compared to sitting trot (6.5◦ (0.4)), (p = 0.0001) (Table 1, Figures 4–6).

3.2.3. T18–L3

Differential pitch values differed between conditions (p = 0.01). Compared to trotting
in-hand (3.4◦ (0.4)), post hoc analysis showed an increase in differential pitch values when
in sitting trot (7.5◦ (0.3)), (p ≤ 0.0001) and in canter (6.3◦ (0.3)), (p ≤ 0.0001). Differential
heading values differed between conditions (p ≤ 0.0001). Compared to trotting in-hand
(3.5◦ (0.7), post hoc analysis showed an increase in differential heading values when in
sitting trot (9.6◦ (0.4)), (p ≤ 0.0001) and in canter (6.7◦ (0.4)), (p = 0.002). Differential heading
values were also significantly higher in sitting trot compared to canter (p ≤ 0.0001) (Table 1,
Figures 4–6).
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3.2.4. L3–TS

Differential pitch values differed between conditions (p = 0.005). Post hoc analysis
showed an increase in differential pitch values when in canter (6.5◦ (0.5)) compared to
trotting in-hand (4.3◦ (0.6)), (p = 0.006). In canter, differential pitch values were higher
than in sitting trot (4.9◦ (0.6)), (p = 0.01). Differential heading values differed between
conditions (p = 0.01). Differential heading values were increased in sitting trot (4.0◦ (0.2))
compared to canter (2.9◦ (0.3)), (p = 0.02). Differential roll values differed between con-
ditions (p = 0.05), however, Bonferroni corrected post hoc pairwise comparisons failed to
identify any significant differences between conditions (Table 1, Figures 4–6).

Directional fixed factor: no differences in differential rotational values were found
(trot p ≥ 0.07 and canter p ≥ 0.20), for any of the thoracolumbosacral regions when the
horses entered the experimental track from either the left or right direction.

Table 1. Display of the estimated marginal mean (EMM) ± standard error (SE) for differential pitch, roll and heading
rotational values for the thoracolumbosacral spine in the unloaded condition (in-hand (IH)), and ridden conditions (collected
trotted trot (CT) and collected canter (CC)) from 33 straight trot strides and 45 straight canter strides. Table showing gait
effect and outcome of Bonferroni post hoc tests (p ≤ 0.05).

Segment

In-Hand
(Unloaded) Trot

Straight
EMM SE (±)

Sitting Trot
Pooled

EMM SE (±)

Canter
Pooled

EMM SE (±)

Gait Effect
p Value Bonferroni Post Hoc

Differential
Pitch

Rotation

T5-T13
(◦)

9.2
(0.8)

8.3
(0.8)

8.7
(0.6) 0.23 -

T13-T18
(◦)

9.0
(0.7)

10.2
(0.5)

9.4
(0.5) 0.27 -

T18-L3
(◦)

3.4
(0.4)

7.5
(0.3)

6.3
(0.3) 0.01

IH < CT, p < 0.0001
IH < CC, p < 0.0001
CT > CC, p = 0.05

L3-TS
(◦)

4.3
(0.6)

4.9
(0.6)

6.5
(0.5) 0.005 IH < CC, p = 0.006

CT < CC, p = 0.01

Differential Roll
Rotation

T5-T13
(◦)

23.5
(1.7)

18.7
(1.3)

16.6
(1.4) 0.04 CT < IH, p = 0.09

CC < IH, p = 0.005

T13-T18
(◦)

13.2
(1.2)

15.3
(0.9)

13.2
(0.9) 0.07 -

T18-L3
(◦)

7.1
(1.0)

11.9
(0.8)

12.8
(0.8) 0.24 -

L3-TS
(◦)

17.4
(1.5)

18.7
(1.5)

16.9
(1.5) 0.05 -

Differential
Heading
Rotation

T5-T13
(◦)

7.4
(0.4)

5.1
(0.2)

3.2
(0.2) <0.0001

IH > CT, p ≤ 0.0001
IH > CC, p ≤ 0.0001

T13-T18
(◦)

6.3
(0.5)

6.4
(0.4)

4.9
(0.4) <0.0001 IH > CC, p = 0.02

CT > CC, p = 0.001

T18-L3
(◦)

3.5
(0.7)

9.6
(0.4)

6.7
(0.4) <0.0001

IH < CT, p ≤ 0.0001
IH < CC, p = 0.002

CT > CC, p ≤ 0.0001

L3-TS
(◦)

3.0
(0.4)

4.0
(0.2)

2.9
(0.3) 0.01 CT > CC, p = 0.02
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Figure 4. Boxplots displaying differential pitch rotations of the thoracolumbosacral spine in 10 dressage horses whilst
trotting in-hand and when being ridden in sitting trot and canter. At T18-L3, differential pitch rotations differed between
conditions (p = 0.01) where an increase in differential pitch rotations when in sitting trot (p ≤ 0.0001) and canter (p ≤ 0.0001)
was found when compared to trotting in-hand. At L3-TS differential pitch rotations differed between conditions (p = 0.005)
where an increase in differential pitch rotations was Figure 0. When compared to trotting in-hand. In canter, differential
pitch rotations increased when compared to sitting trot (p = 0.01). Explanation of symbols: the central line represents the
median; the box represents the 25th and 75th percentiles; the whiskers represent the maxima and minima not considered to
be outliers; ◦ represents outliers. Boxplot ID: green = in-hand trot, purple = sitting trot and pink = canter.
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Figure 5. Boxplots displaying differential roll rotations of the thoracolumbosacral spine in 10 dressage horses whilst trotting
in-hand and when being ridden in sitting trot and canter. At T5-T13, differential roll rotations differed between conditions
(p = 0.04) where a decrease in differential roll rotations when in canter compared to trotting in-hand (p = 0.005) was found.
At L3-TS, differential roll rotations differed between conditions (p = 0.05); however, no differences were found between
conditions in post hoc analysis. Explanation of symbols: the central line represents the median; the box represents the 25th
and 75th percentiles; the whiskers represent the maxima and minima not considered to be outliers; ◦ represents outliers.
Boxplot ID: green = in-hand trot, purple = sitting trot and pink = canter.
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Figure 6. Boxplots displaying differential heading rotations of the thoracolumbosacral spine in 10 dressage horses whilst
trotting in-hand and when being ridden in sitting trot and canter. At T5-T13, differential heading rotations differed between
conditions (p ≤ 0.0001) where a decrease in sitting trot (p ≤ 0.0001) and canter (p = 0.0001) when compared to trotting
in-hand was found. At T18-L3 differential heading rotations differed between conditions (p ≤ 0.0001) where an increase
in sitting trot (p ≤ 0.0001) and canter (p = 0.002) when compared to trotting in-hand was found. At L3-TS, differential
heading rotations differed between conditions (p = 0.01) with an increase when in sitting trot (p = 0.02) compared with
canter. Explanation of symbols: the central line represents the median; the box represents the 25th and 75th percentiles; the
whiskers represent the maxima and minima not considered to be outliers; ◦ represents outliers. Boxplot ID: green = in-hand
trot, purple = sitting trot and pink = canter.

4. Discussion

In this study IMUs were positioned on the skin surface overlaying bony structures of
the dorsal spinous processes of the thoracolumbosacral spine and differential rotational
movements were quantified.

IMUs have been used extensively for quantifying axial kinematics for over ground
locomotion in straight lines [34–36] and when circling [34,37–39] in lame and non-lame
horses [37,40–42]. Their outputs have been validated against optical motion capture for
quantifying translational movements of the upper body [27,30] and a direct validation
of flexion–extension angles from IMU data has reported differences of <1◦ [33]. There
is, however, at present, no direct validation data available for the quantification of IMU-
based thoraco–lumbo–sacral angles compared to motion capture for the two remaining
rotational movements (lateral bending and axial rotation). The validation data of IMU-
derived translational movements, in two dimensions (mediolateral and dorsoventral) [30],
provide some indication that the rotational IMU estimates are adequate representations in
comparison to motion capture, since the integration process that is required to calculate
translational displacement in the world- (or horse-) based reference frame from tri-axial
accelerations sensed in the sensor-based reference frame relies intrinsically on an accurate
orientation estimate at each timepoint [27]. Further work is required to quantify IMU based
angles, particularly for lateral bending, as lateral bending and lateral excursion do not
follow a similar pattern [3]. In horses trotting on a treadmill with skin-mounted markers,
quantifying kinematics of the thoracolumbar region, lateral bending was greatest at T10
and decreased caudally to L1, whereas lateral excursion was greatest at T17 and lowest at
T10 [3].

It has been reported that rotations derived from skin-mounted IMUs differ consider-
ably from the internal vertebral rotations (in particular for axial rotation of the pelvis) [43],
which should not come as a big surprise based on previous studies reporting considerable
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skin displacement compared to bony landmarks [14,15]. In this manuscript, in order to
delineate our external measurements based on skin-mounted IMUs from the previously
conducted measurements of the underlying bony landmarks characterizing axial rotation,
flexion–extension and lateral bending of the spine [6–8], we are using the terms roll, pitch
and heading.

A previous study, conducted with a predecessor version of the sensors used here,
aimed at establishing how well the roll angle (related to axial rotation) of a skin-mounted
IMU placed over the midline of the pelvis (over the sacrum) would be able to estimate
tuber coxae movement quantified from skin-mounted IMUs [44]. Tuber coxae movement is
generally considered an important visual parameter for decision making about movement
asymmetries in hindlimb lame horses [45]. Our previous study [44] is in agreement with
Goff et al. [43] which indicated that, across horses, the midline rotation measured from a
skin-mounted IMU does not result in accurate estimates of tuber coxae movement. How-
ever, the results of our previous study [44] also indicate that changes between movement
conditions within a subject, specifically between straight line and lungeing and before/after
flexion tests can be quantified with adequate accuracy (between 1 mm and 6 mm difference
between measured and estimated tuber coxae movement asymmetry). This provides prac-
tically relevant data supporting the use of skin-mounted IMUs for investigating kinematic
changes of external landmarks between conditions, which is the approach of the current
study quantifying differences in each horse between different exercise conditions. Visual
assessment of external landmarks is an essential part of the veterinary lameness examina-
tion [46]. Established quantitative camera- and sensor-based methods can accurately and
precisely measure the movement of these external landmarks [32,35,36,38,39,47–52] and
now provide evidence underpinning veterinary decision making, for example quantifying
the effects of diagnostic analgesia [36,38,53–55] and compensatory movements [34,39,56]. It
has been shown that thoracolumbosacral range of motion is altered after eliminating pain-
causing lameness and quantitative measurement of back movement may further inform
veterinary decision making [37,41] even if the measurements do not exactly represent the
movement of the underlying bony structures [43]. Whether the IMU derived movement
parameters of the thoracolumbosacral area can make useful contributions to veterinary
decision making deserves further attention.

In trot, the differential pitch values presented here differ from flexion–extension angles
derived from motion capture with bone-fixated [6] and skin-mounted markers [3,5,13,42,57].
With bone-fixated markers, flexion–extension of the vertebra ranged from 2.8◦ ± 0.8 to
4.9◦ ± 1.4 with the greatest flexion–extension occurring at the 10th thoracic vertebra [6]. In
the current study, when trotting in-hand, the differential pitch values ranged from 9.2◦ (0.8)
to 4.3◦ (0.6) with the greatest pitch angle occurring in the cranial thoracic region (T5-T13).
The differences between motion capture angles and sensor-based angles generally lie in
the cranial thoracic region. These differences could be explained by the skin-mounted IMU
sensor of the withers being furthest away from the vertebral body in comparison to the more
caudal sensor locations. The differential pitch values for the caudal thoracic and lumbar
regions appear to be similar to flexion–extension angles obtained from bone-fixated [6] and
skin-mounted markers [3,5,13,21,42,57].

In accordance with our experimental hypothesis, compared to the unloaded condition
(trot in-hand) the results of this study indicate that differential pitch values of each segment
differ between conditions: sitting trot and seated canter. In sitting trot compared to trotting
in-hand (unloaded), the caudal thoracic–lumbar region (T18-L3) showed increased pitch
rotations. In horses trotting on a treadmill with a saddle and lead weight (75 kg), the lumbar
spine has been shown to extend whilst overall range of motion remained the same [21].
In the current study we express values as dynamic pitch rotations and do not attempt to
differentiate between flexion and extension. The weight of the riders in the current study
was 74 ± 1 kg and the values being presented here (sensor-based angles) are in the region
of those presented for skin marker angles when considering the overall range of motion of
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the third and fifth vertebrae of the lumbar spine [21] (≤1.5◦) compared with the region of
L3–TS.

Compared to in-hand trot and sitting trot, increased differential pitch values were
found when in canter for the caudal thoracic and lumbosacral regions (T18–L3, L3–TS).
During ridden exercise the increase in pitch values in sitting trot and canter of the caudal
thoracic and lumbosacral spine seems reasonable to expect given the linkage between the
pelvis and spine. Differences in pitch values of the back segments appear to be influenced
by gait, which may be explained by differences in limb rotations relative to the body. In
trot the hindlimb rotates from the hip, whereas in the canter the limbs have a pendular
movement originating from the lumbosacral region. These movements are facilitated by
activation of the sub lumbar, intrinsic and extrinsic musculature of the hindlimb and the
lumbodorsal fascia stretching and recoiling elastically aiding force generation. The force
generation and transmission, which are likely to influence kinematics of the vertebral
column which is being reflected in the upper body skin-mounted sensors.

Due to marker occlusion of the cranial thoracic spine, studies which have reported
kinematics of the back with a saddle + rider (or weight) have been limited to the kinematics
caudal to the saddle [21,22]. Using validated IMUs and published methods [27,30,33], IMUs
which are positioned beneath the saddle provide a means of quantifying thoracolumbar
kinematics. In a study of three horses, comparing the kinematics of the thoracolumbar
spine when trotting in-hand compared with rising trot, the authors presented values for
both the seated and standing components of rising trot [26]. In the seated phase, the part of
the back under the seat of the rider was less mobile with decreased flexion–extension in the
mid thoracic (T12–T16) and lumbar region (T16–L2) [26], whilst the cranial thoracic spine
(T6–T12) showed an increase in overall flexion–extension values. The findings from Martin
et al. (2017) differ from the findings of the current study, where no change in pitch rotations
of the cranial thoracic spine was found between trotting in-hand (unloaded) and sitting
trot (ridden); therefore, we partially refute our second hypothesis. When interpreting these
differences, it is important to note that the previous study used jumping horses (Personal
Communications P. Martin) which may have different conformations [58] to the horses
used in the current study. Furthermore, we quantified back movement using dressage
saddles whereas the aforementioned study used jumping saddles [26]. Lastly, we made
comparisons with the “seated” phase of the trot cycle (and canter), with the assumption
that back movement would follow similar amplitudes and movement distribution between
the different rotational components for each diagonal stance phase, (i.e., rotational back
movement would be similar during the ground contact of both diagonal pairs of limbs).
However, rising trot and sitting trot induce different dynamic forces on the locomotor
apparatus [20,59,60] and it seems likely that vertebral movement and amplitudes for
vertebral segments vary between these two different seating positions. Therefore, future
work should quantify back movement under various riding positions: sitting and rising trot
and two-point position allowing for a more comprehensive biomechanical interpretation
of back movement.

Similar to pitch values, our heading rotations in trot differ from motion capture angles
for bone-fixated [6] markers. Lateral bending of the thoracolumbar spine with bone-fixated
markers ranged from 4.9◦ ± 1.2 to 3.6◦ ± 1.8 with the greatest lateral bending occurring
at the sixth thoracic vertebra [6]. In the current study, when trotting in-hand (unloaded),
differential heading values ranged from 7.4◦ (0.4) to 3.0◦ (0.4) with the greatest heading
angle occurring in the cranial thoracic region (T5-T13). Similar to the differential pitch
values, our sensor-based values are higher than bone-fixated markers, with the differences
generally in the cranial thoracic region. Similar to the differential pitch values, the heading
values for the caudal thoracic and lumbar regions seem similar to those presented for bone-
fixated markers [6]. When comparing skin-mounted marker-based studies, our heading
values are in the region of lateral bending angles reported for asymptomatic horses trotting
on a treadmill [42] and horses trotting on a treadmill from two different laboratories [13].
In horses who are deemed fully functioning, our values are similar for the cranial thoracic
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spine but are less for the caudal lumbar spine; the reason for this is unknown and warrants
further investigation. One explanation could be that in the current study the horses were
all elite dressage horses, of a similar type and conformation, compared to the Johnson et al.
(2002) study where the horses were a mixture of dressage, event and jumping [58].

In accordance with the second experimental hypothesis, the results of our study show
a decrease in heading values in the region of the thoracic spine (T5–T13), when ridden in
sitting trot and canter, compared to the in-hand condition (unloaded). The fact that there
are no studies reporting lateral bending or heading values for the cranial thoracic spine
under ridden conditions limits possible comparisons. It is speculated that this decrease in
movement amplitude may be indicative of an attempted “stiffening” mechanism, in order
to better withstand the dynamic forces of the rider [59] (and saddle) and more efficiently
transmit dynamic forces from the forelimb (and head and neck) to the cranial region of the
thoracic spine; this idea may warrant further investigation.

The horses in this study were assessed for upper body movement symmetry quantita-
tively and were assessed visually for lameness by a veterinarian. All horses were deemed
non-lame by visual assessment. Average movement symmetry values across horses were
generally small and with the exception of Poll MinDiff (value of 9 mm) were within the
thresholds of 8 mm for head movement symmetry and 4 mm for pelvic movement symme-
try (thresholds presented in McCracken et al., 2012 [61]) adapted with equations presented
in Pfau et al., 2016 [49]. It should be emphasized that the clinically applied thresholds are
chosen to provide a high sensitivity at the cost of a lower specificity. This is appropriate
for the clinical lameness examination where the task is to identify the affected limb(s). A
higher threshold value of 14.5 mm for Poll MinDiff has on the other hand been suggested
based on a comparison of visual and quantitative data in Thoroughbred racehorses [62]
which is similar to the daily and weekly variation of 14 mm and 19 mm, respectively, for
this parameter in Thoroughbred racehorses in training [63]. This should be taken into
account when interpreting movement asymmetry values in a ”screening” scenario.

Lastly, this study quantified differential rotations of the thoracolumbar spine in horses
who were trotted in-hand and then ridden in sitting trot and canter in order to quantify
changes in back movement with two specific types of ridden exercise (sitting trot and can-
ter). Future research, quantifying rotational movement of the thoracolumbosacral region
when ridden in different riding positions (rising trot, two-point, correct/incorrect diago-
nal) [20], at different gaits, and with varying head and neck positions [64,65] is warranted.

5. Conclusions

Using skin-mounted IMUs, this study has reported changes in external upper body
landmarks of the thoracolumbar area when horses are trotting in a straight line and ridden
in sitting trot and canter. With ridden exercise, differential heading values decreased
in the cranial thoracic region and increased in the caudal thoracic/lumbosacral region.
Differential pitch values increased in the caudal thoracic/lumbosacral region whilst the
cranial thoracic region appears to remain unaffected by ridden exercise. The method
presented here provides quantitative data from external upper body landmarks of the
thoracolumbosacral area in horses during in-hand and ridden exercise. It should be further
investigated whether such quantitative data can make a useful contribution to veterinary
decision making in the context of the management of back related conditions.
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