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Integrated network‑based 
multiple computational analyses 
for identification of co‑expressed 
candidate genes associated 
with neurological manifestations 
of COVID‑19
Suvojit Hazra1,2, Alok Ghosh Chaudhuri3, Basant K. Tiwary4* & Nilkanta Chakrabarti1,2*

‘Tripartite network’ (TN) and ‘combined gene network’ (CGN) were constructed and their hub‑
bottleneck and driver nodes (44 genes) were evaluated as ‘target genes’ (TG) to identify 21 ‘candidate 
genes’ (CG) and their relationship with neurological manifestations of COVID‑19. TN was developed 
using neurological symptoms of COVID‑19 found in literature. Under query genes (TG of TN), 
co‑expressed genes were identified using pair‑wise mutual information to genes available in RNA‑Seq 
autopsy data of frontal cortex of COVID‑19 victims. CGN was constructed with genes selected from 
TN and co‑expressed in COVID‑19. TG and their connecting genes of respective networks underwent 
functional analyses through findings of their enrichment terms and pair‑wise ‘semantic similarity 
scores’ (SSS). A new integrated ‘weighted harmonic mean score’ was formulated assimilating values 
of SSS and STRING‑based ‘combined score’ of the selected TG‑pairs, which provided CG‑pairs with 
properties of CGs as co‑expressed and ‘indispensable nodes’ in CGN. Finally, six pairs sharing seven 
‘prevalent CGs’ (ADAM10, ADAM17, AKT1, CTNNB1, ESR1, PIK3CA, FGFR1) showed linkages with 
the phenotypes (a) directly under neurodegeneration, neurodevelopmental diseases, tumour/cancer 
and cellular signalling, and (b) indirectly through other CGs under behavioural/cognitive and motor 
dysfunctions. The pathophysiology of ‘prevalent CGs’ has been discussed to interpret neurological 
phenotypes of COVID‑19.

The ‘coronavirus disease 2019’ (COVID-19) patients present common symptomatic features of dry cough, dysp-
noea, fever, fatigue and myalgia followed by acute respiratory distress syndrome (ARDS) and multiorgan failure 
in an advanced  stage1. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
having positive single-stranded RNA as its  genome1,2. The pathophysiological action of the virus always begins 
with the binding of spike proteins onto the angiotensin-converting enzyme 2 (ACE2) receptor proteins in the 
host cell membranes and expresses several phenotypic manifestations in  human2. Human ACE2 receptors are 
constitutively expressed in different types of tissue cells in diverse regions of the  brain3. COVID-19 causes 
structural/morphological changes in different areas of the  brain4 and develops neurological and psychiatric 
 symptoms5. Moreover, the SARS-CoV-2 infection in the brain culminates in inflammation of the meninges and 
perivascular  space6.

The SARS-CoV-2 can enter the brain through three possible pathways via (1) the inflammatory supporting 
cells of the olfactory  mucosa6, (2) the endothelial cells of the cerebral blood  vessels7,8 and (3) the nerve terminals 
of the vagi in the  respiratory7,8 and gastrointestinal tracts. SARS-CoV-2 is found to be present in the cerebrospi-
nal fluid (CSF) of patients, suggesting the predominance of immunological damages over the viral replication 
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in  neurons8. Among the three pathways, the first one appears to be the most important, as a majority of the 
COVID-19 case reports suggest anosmia and ageusia/dysgeusia as the non-specific  symptoms9. The clinical 
reports and the neuroimaging studies suggest that the cytokine storm and oxidative stress along with the reduc-
tion of GSH levels are two key mechanisms that can produce neurodegenerations in certain areas of the human 
 brain10,11. It is speculated that COVID-19-related symptoms can together act as direct or indirect mediators of 
various neurodegenerative diseases including dementia, Alzheimer’s disease, and Parkinson’s disease, although 
the exact mechanism is still in debate.

The literature  studies12–15 including the latest retrospective cohort  study13 on 2,36,379 COVID-19 survivors 
indicate that > 30% of patients have neurological or psychiatric problems. The reports indicate that cognitive 
alterations (delirium with a combination of acute disturbances in attention, awareness and cognition, anxiety, 
sleep disorders), motor dysfunctions (dizziness, syncope, cerebellar ataxia, dysautonomia, seizure and epilep-
togenesis, tremors), cerebrovascular changes (cerebral ischaemia and infarct, stroke, focal ischemic necrosis, 
oedema, cerebral and subarachnoid haemorrhage, subdural haematoma, cerebral venous sinus thrombosis), 
cerebro-structural changes (meningitis/encephalitis, encephalopathy, necrotizing hemorrhagic encephalopathy, 
multifocal lesions in both cerebral hemispheres, leptomeningeal enhancement, myelitis, spinal cord myelitis, 
cranial neuropathy) are found in COVID-19  patients12–15. The symptoms related to disorders in the peripheral 
nervous  system13–15 including muscle diseases (myopathy, muscle injury) and peripheral neuropathy/polyra-
diculopathy (viz. Guillain–Barré syndrome), may occur in certain cases.

In the present scenario, there is one bioinformatics-driven systems-level study using bipartite models of 
disease-gene, disease-disease, miRNA-gene and drug-protein interactions, which reveals that a variety of neu-
rological symptoms including dementia, ataxia, encephalopathy and stroke along with their associated genes 
lined with multiple cellular functional pathways, can be therapeutically targeted by repurposed drugs or chemical 
 compounds16. Additionally, a tripartite network modelling has been reported encompassing endocrine-disrupting 
chemicals (EDC), targeting proteins and diseases as the three types of nodes that decipher putative links between 
EDCs, COVID-19 severity and association to other  diseases17. A systems-level modelling  study18 has been con-
ducted for the construction of a tripartite network of symptom-disease-gene to unravel the interplay between 
phenotype and genotype during disease conditions that are not limited to nervous system manifestation. Recent 
network-based findings of hub-bottleneck nodes for drug repurposing study report the involvements of several 
molecules associated with immunological systems (viz. cytokines e.g., TNFα, IL-1β,-6,-10 and chemokines e.g., 
CXCL8 and CCL2), growth factor function (e.g., VEGFA), cell-to-cell interaction (e.g., ICAM1), and signal 
transduction pathway (e.g., AKT1) with the neurological complication in COVID-1919.

In the present study, a novel approach has been introduced, for the first time to the best of our knowledge, to 
develop a model of predictive ‘candidate genes’ and their associations with neurological phenotypes of COVID-
19. Initially, a tripartite network (TN) has been constructed using literature evidenced neurological symptoms 
of COVID-19 as input, whereby integrated weightage of symptoms and diseases are implied to get the most 
robust predictive genes for TN. Secondly, the predictive ‘target genes’ evaluated from TN have been considered 
as co-regulated in tissue and used as query genes to identify a set of co-expressed genes (CG) from RNA-Seq 
data of the frontal cortex of COVID-19 patients using pairwise mutual information (transcriptional gene–gene 
interaction from expression levels) to genes. The ‘combined gene network’ (CGN) has been constructed using 
genes selected in TN and co-expressed genes evaluated from RNA-Seq data of COVID-19. Both networks are 
analysed topologically and functionally to get ‘candidate genes’ and their connections with functional annotations 
to determine the putative molecular pathophysiology in the brain associated with COVID-19.

Methods
The methodological approaches with inclusion and exclusion criteria applied in the present multiple computa-
tional analyses are documented in the flow diagram (Fig. 1). Briefly, this study was executed initially through 
literature search using keywords viz. ‘COVID-19, Brain’ as inclusion criteria. The literatures were selected based 
on exclusion criteria, and the ‘neurological symptoms/manifestations’ of COVID-19 patients were identified 
from these selected literatures. The exclusion of research articles (Table S1 in Supplementary File 1) and selection 
of ‘neurological symptoms/manifestations’ were curated manually (Table S2 in Supplementary File 1). Further, 
multiple steps with computational analyses had been introduced for the constructions of ‘Tripartite network’ 
(TN), integration of predicted genes found in TN with co-expressed genes in the brain of COVID-19 patients 
identified using the transcriptomic database to develop a ‘combined gene network’ (CGN) and finding of the 
‘target genes’ followed by ‘candidate genes’ with their functional enrichments. Notably, the present study used 
several bioinformatics tools having respective methods and relevant citations (Supplementary File 2) mentioned 
in their respective web links.

In silico modelling of the Tripartite Network (TN) for COVID‑19. The stepwise approach for con-
struction of TN having nodes (symptom-disease-gene) and their connections (edges) developed by mathemati-
cal and statistical formulations is presented in the pictorial diagram (Fig.  2). Briefly, two bipartite networks 
(BN) of symptom-disease (step-2) and symptom-gene (step-3) were constructed where (a) terms/keywords of 
neurological symptoms related to COVID-19 collected by bibliographic literature search through PubMed por-
tal (https:// pubmed. ncbi. nlm. nih. gov/) were used as inputs (step-1) to retrieve (b) diseases and genes from the 
Human Phenotype Ontology (HPO, https:// hpo. jax. org/) database. The symptoms were assigned by weightage 
(‘bibliographic keyword citation frequency’20;  fbkc(Si); Table S2 in Supplementary File 1) followed by finding their 
connectivity  (Nsd(Si) or  Nsg(Si); Table S3 in Supplementary File 1) probability scores to diseases  (fbkc(Si)/Nsd(Si)) and 
genes  (fbkc(Si)/Nsg(Si)) considering co-occurrence of at least one disease/gene connection to one symptom term 
following the principle of frequency of the co-occurrence of root node in the directed acyclic  graph21. The con-

https://pubmed.ncbi.nlm.nih.gov/
https://hpo.jax.org/
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Figure 1.  The flowchart of the stringent methodologies applied orderly and the results found in a systems-
level analysis to identify ‘candidate genes’ and associated functional modules (symptoms/diseases) related to 
neurological manifestations of COVID-19.
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nections between symptom-disease and symptom-gene were selected statistically (false discovery rate (FDR)-
adjusted p < 0.001) in both BNs. Further, two BNs were linked through the implementation of “Elite” disease-
gene interactions (Ndg(di); Table S4 in Supplementary File 1) using ‘Sorl’s relevance scores’  (Smalacards) retrieved 
from Malacards (https:// www. malac ards. org/) database (step-4). Additionally, the disease-gene interactions 
were refined by two steps viz. (a) assigning integrated symptom-based weightage  (Wd(Di)) of diseases by calcu-
lating average ‘connection probability scores’  (fbkc(si)/Nsd(si)) of symptoms to diseases (step-5) followed by (b) 
calculating integrated weightage  (Wg(gi)) of genes as disease-gene ‘integrated connection scores’ by multiplying 
 Wd(Di) with Malacards-scores (step-6) considering co-occurrence of connections of one disease to one symptom 
and one gene term in the network. The stringent connections in symptom-disease (step-2), symptom-gene (step-
3) and disease-gene (step-6) were selected statistically (FDR-adjusted p < 0.001). The intra-edges of nodes were 
constructed using (a) ‘cosine semantic similarity scores’ ≥ 0.70 for symptom-symptom and disease-disease pairs, 
considering each symptom node as a vector of connected diseases and vice  versa22 (Table S5 in Supplementary 
File 1) and (b) ‘STRING-PPI confidence score’ (SPPICS) ≥ 0.70 (https:// string- db. org/) for gene–gene pairs. TN 
was developed in Cytoscape software (http:// www. cytos cape. org/).

https://www.malacards.org/
https://string-db.org/
http://www.cytoscape.org/
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Finding out the co‑expressed genes in the brain of COVID‑19 patients using a database. The 
stepwise approach for finding co-expressed genes in the brain of COVID-19 patients using the NCBI-GEO data-
base is presented in the pictorial diagram (step-1 to step-3 in Fig. 2). Briefly, the RNA-Seq  data23 (NCBI-GEO 
accession ID: GSE164332) of the frontal cortex of the brain of COVID-19 victims (n = 9) and aged-matched 
healthy controls (n = 7), underwent analysis using geneRecommender algorithm (https:// www. bioco nduct or. org/ 
packa ges/ relea se/ bioc/ html/ geneR ecomm ender. html) in R software and environment to identify co-expressed 
genes from the dataset against query genes, i.e., the genes having properties of both hub-bottlenecks and driver 
nodes evaluated in TN (vide point-4 in methodology). The input data set of the RNA-Seq samples was nor-
malised followed by cross-validation with the leave-one-out method and genes were finally ranked based upon 
Spearman correlation with query genes using Z-score under geneRecommender analysis. The co-expressed genes 
were selected using the minet package (https:// www. bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ minet. html) 
in R-language based on the algorithm for ARACNe (Algorithm for the Reconstruction of Accurate Cellular 
Networks) (https:// rdrr. io/ bioc/ minet/ man/ aracne. html) assigning weights of (a) pairwise mutual information 
(transcriptional gene–gene interaction from expression levels) to genes as nodes and (b) empirical probability 
(entropy estimators) to its edge with a given threshold value for refining node-pairs.

In silico modelling of ‘combined gene network’ (CGN) for COVID‑19. A set of genes including 
genes as the output of minet analysis (co-expressed genes) and genes as the part of TN, were incorporated as a 
query in the STRING database using SPPICS > 0.60 as the threshold, to construct a PPI-based CGN (step-4 in 
Fig. 2). The study was further extended to construct CGNs using different ‘SPPICS’ viz. > 0.70, > 0.80 and > 0.90 
as thresholds. The CGNs were developed in Cytoscape software.

Topology analysis of networks to determine ‘hub’, ‘bottleneck’ and ‘driver’ nodes. The cen-
trality measurements of networks were analysed using the CentiScaPe module (http:// chian ti. ucsd. edu/ cyto_ 
web/ plugi ns/ index. php) in Cytoscape software to determine ‘hub’ (high degree) and ‘bottleneck’ (high-between-
ness/shortest-path) nodes, having higher scores than cut-off values i.e., respective average node degree and 
average node betweenness scores (for TN: 18.93 and 465.16; for CGN: (1) SPPICS > 0.60: 5.64 and 795.01, (2) 
SPPICS > 0.70: 4.43 and 644.21, (3) SPPICS > 0.80: 3.56 and 531.32, (4) SPPICS > 0.90: 3.17 and 406.16). These 
nodes are termed as the ‘date-hubs’ considering their properties as a higher level of the inter-modular connector 
to coordinate various functional complex modules in a complex biological  network24.

The controllability measurements of networks were analysed with the identification of ‘driver nodes’ using 
the Minimum Driver node Set (MDS) algorithm from the CytoCtrlAnalyser module (https:// apps. cytos cape. org/ 
apps/ cytoc trlan alyser) of Cytoscape software. The driver nodes control all nodes by receiving the input signals 
and provide the temporal/dynamic properties of a complex biological network. Driver nodes are classified into 
(a) ‘indispensable’ i.e., positive control factor, the removal of which increases the total number of driver nodes in 
the main network, (b) ‘dispensable’ i.e., negative control factor, the removal of which decreases the total driver 
nodes in the main network and (c) ‘neutral’ control factor, the removal of which does not change the total number 
of driver nodes in main  network25, based on the ability of the nodes to control the main network. Therefore, the 
network control properties of selected nodes were assessed by the leave-one-out method (% changes of driver 
nodes after removal of the specific node). The ‘target nodes’ in networks were selected based on their ‘date-hub’ 
and ‘indispensable-driver’ properties, considering them as the disease  candidates25,26.

Figure 2.  Study design for the construction of the tripartite network (TN) for COVID-19: Stepwise 
presentation of the construction of TN having symptoms, diseases and genes as nodes and their interactions 
as edges including inter-edges (viz., symptom-disease, symptom-gene, disease-gene) in point-1 to point-6 and 
intra-edges (viz. symptom-symptom, disease-disease, gene–gene) in Point-7 to point-9 of description. Point-
1: Extraction of symptoms as terms associated with neurological disorders in COVID-19 from the PubMed 
bibliographic literature database and assigning a metric viz. bibliographic occurrence frequency (fbkc) to each 
term of symptom. Point-2 and Point-3: Extraction of the interactions between symptom-to-disease (point-2) 
and symptom-to-gene (point-3) from the HPO database using the symptom terms as queries and calculating 
their respective connectivity probability score followed by the selection of best-fitted connections using the 
statistical analysis of FDR-adjusted p < 0.001. Point-4: Extraction of the ‘Elite’ disease-gene connections with 
respective Solr-based relevance score  (Smalacards) from Malacards database using symptom-associated disease 
terms (found in point-2) as queries with respect to symptom-associated gene terms (found in point-3). Point-5 
and Point-6: Implication of symptoms in connections of disease-genes by computing ‘weightage of average 
contribution’ of symptoms in diseases  (Wd(Di)) and that of diseases in genes  (Wg(gi)) to find the Elite’ Disease-
gene connection considering co-occurrence of at least connections of one disease to one symptom and one gene 
terms in the network. The FDR-adjusted p < 0.01 was used to filter weighted-based disease-gene connections. 
Point-7 to Point-9: Finding intra-edges of nodes using cosine semantic similarity scores ≥ 0.7 for retaining 
symptom-symptom (point-7) and disease-disease (Point-8) pairs and, STRING confidence score ≥ 0.7 for 
retaining gene–gene pairs. These symptoms, diseases and genes are selected mathematically and statistically as 
described in point-6. Point-10: Integration of all inter- and intra-edges of symptoms and their allied diseases and 
genes to construct the TN (symptom-disease-gene) for COVID-19. The representative Venn diagrams indicate 
the stepwise changes in the number of nodes for the selection of elite symptoms, diseases and genes for the 
construction of TN.

◂

https://www.bioconductor.org/packages/release/bioc/html/geneRecommender.html
https://www.bioconductor.org/packages/release/bioc/html/geneRecommender.html
https://www.bioconductor.org/packages/release/bioc/html/minet.html
https://rdrr.io/bioc/minet/man/aracne.html
http://chianti.ucsd.edu/cyto_web/plugins/index.php
http://chianti.ucsd.edu/cyto_web/plugins/index.php
https://apps.cytoscape.org/apps/cytoctrlanalyser
https://apps.cytoscape.org/apps/cytoctrlanalyser


6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17141  | https://doi.org/10.1038/s41598-022-21109-3

www.nature.com/scientificreports/

Gene ontology (GO) based pairwise semantic similarity score (SSS) measurement of ‘target 
nodes’. The pairwise functional associations of ‘target nodes’ were assessed by calculating SSS in Wang’s 
GO-BP (biological process) method using the GOSemSim package (http:// bioco nduct or. org/ packa ges/ relea se/ 
bioc/ html/ GOSem Sim. html) in R-language using best-match average (BMA) combination strategy to get the 
results closer to human  expectations27. The pairwise SSS measurements were performed in two separate func-
tional packages namely, (a) ‘mgeneSim’ (https:// rdrr. io/ bioc/ GOSem Sim/ man/ mgene Sim. html) using a list of 
‘target genes’ for assessment of ‘direct association’ with score designated as SSS-I, and (b) ‘mclusterSim’ (https:// 
rdrr. io/ bioc/ GOSem Sim/ man/ mclus terSim. html) using ‘gene-clusters’ (connected genes) against ‘target nodes’ 
of a network following the top-down  approach18, for assessment of ‘indirect association’ with score designated 
as SSS-II. Further, the classifier statistics ROC-AUC was introduced using the pROC package (https:// cran.r- 
proje ct. org/ web/ packa ges/ pROC/ index. html) in R software and environment to filter out spurious pairwise SSSs 
for symptoms, diseases and genes considering the accuracy classification as excellent (0.9 < AUC < 1.0), good 
(0.8 < AUC < 0.9) and weak (AUC < 0.8). The optimal threshold for ROC based on the optimum F1-score and 
maximum accuracy was considered as a cut-off value for selected pairs of ‘target nodes’ as ‘candidate nodes’.

Functional enrichment analysis of the sets of ‘target genes’ and their connected genes. The 
functional annotations across several resources including GO-terms (BP:‘biological process’, CC:‘cellular com-
ponent’, MF:‘molecular function’), ‘KEGG biological pathways’ (https:// www. genome. jp/ kegg/ pathw ay. html) 
and disease modules (DisGeNET, Jensen Disease) were analysed in the Enrichr web tool platform (https:// maaya 
nlab. cloud/ Enric hr/) against the inputs of four different gene-sets viz. (1) Set-1: ‘target genes’ evaluated from TN, 
(2) Set-2: ‘target genes’ and their connected genes in TN, (3) Set-3: ‘target genes’ evaluated from CGN and (iv) 
Set-4: ‘target genes’ and their connected genes from CGN. The Set-2 and Set-4 gene-sets were pondered to dou-
ble-check the overrepresented functional annotation of the respective Set-1 and Set-3 gene-sets. The enriched 
results (functional annotations) associated with the nervous system were manually curated and selected based 
on FDR-adjusted p-value < 0.05 as significant terms, including the terms against the ‘candidate genes’. The pair-
wise SSS-II scores for statistically confident enriched terms were calculated using the mclusterSim function in 
the GOSemSim package using ‘gene-clusters’ (connected ‘candidate genes’). The classifier statistics ROC-AUC 
was used to find an accurate classification based on AUC values and select functionally associated Enrichr terms 
based on the optimal threshold for ROC as a cut-off of SSS-II scores.

Formulation of integrated ‘weighted harmonic mean score’ (WHMS). The integrated ‘weighted 
harmonic mean score’ (WHMS) was evaluated using harmonic mean of weightage scores for gene-pairs among 
‘target genes’, which appeared to fulfil the criteria of having (a) three individual scores of SPPICS, SSS-I, SSS-II 
and (b) at least one score with a value above respective threshold (cut-off) level. The ‘accuracy values of ROC’ 
of SPPICS  (WSPPICS), SSS-I  (WSSS-I), SSS-II  (WSSS-II) were applied as weightage for respective cases following the 
principle  reported28 previously. The formula for integrated WHMS used in the study is given below.

The classifier statistics ROC-AUC and the optimal threshold for ROC as cut-off of WHMS were utilised to 
obtain the pairs of prevalent ‘candidate genes’ considering them as putative disease-associated genes.

Results
The results found in our study were orderly documented in the flow diagram, with the findings of prevalent 
‘candidate genes’ and their links with neurological functional modules in COVID-19 (Fig. 1). The 103 selected 
literature search identified the different statuses of COVID-19 patients and their 255 ‘neurological symptoms/
manifestations’ (Table 1). Further analyses identified the connections of neurological symptoms/manifestations 
with co-expressed genes that were obtained from RNA-seq data.

Construction of TN using symptoms, diseases and genes. The stepwise construction (Fig. 2) of TN 
(network density: 0.029, average clustering coefficient:0.108) provided nodes (total 329) and their edges (total 
3114) of 92 symptoms, 48 diseases and 189 genes (inset in Fig. 3a).

Finding out the ‘target nodes under TN’ (TG‑TN) for symptoms, diseases and genes. The 
topological assessment on TN evaluated 73 symptoms, 47 diseases and 27 genes (Fig. 3a) under three differ-
ent properties namely ‘both HB and driver’ (‘HB + D’), ‘pure-driver’, ‘pure-HB’ nodes. Further, the important 
nodes including 73 ‘target symptoms’ (‘HB + D’:‘pure-driver’:‘pure-HB’ = 16:44:13) and 47 ‘target diseases’ 
(‘HB + D’:‘pure-driver’:‘pure-HB’ = 8:0:39) were classified into respective six and eight different categories, respec-
tively (Fig. 3a). The 27 TG-TN showed properties (Fig. 3d and e) of ‘HB + D’ (CTNNB1), ‘pure-HB’ (16 genes) 
and ‘pure-driver’ nodes (10 genes).

Construction of ‘combined gene network’ (CGN) using selected co‑expressed genes and TG‑TN 
for COVID‑19. Finding out the co-expressed genes and the formation of CGN. Total 225 co-expressed genes 
were identified from RNA-Seq data and used for the construction of CGN along with 189 genes identified in TN. 
The stepwise construction (Fig. 4a) of CGN (network density: 0.010, average clustering coefficient:0.169) using 
a confidence score (SPPICS) > 0.6 provided 281 gene nodes (162 genes from TN including 27 TG-TN) and their 
793 edges (Fig. 4b).

WHMS = 3×
[

(WSPPICS × SPPICS)−1
+ (WSSS−I × SSS− I)−1

+ (WSSS−II × SSS− II)−1
]−1

http://bioconductor.org/packages/release/bioc/html/GOSemSim.html
http://bioconductor.org/packages/release/bioc/html/GOSemSim.html
https://rdrr.io/bioc/GOSemSim/man/mgeneSim.html
https://rdrr.io/bioc/GOSemSim/man/mclusterSim.html
https://rdrr.io/bioc/GOSemSim/man/mclusterSim.html
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://www.genome.jp/kegg/pathway.html
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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Study type
Patients
(% Males) Timeline PubMed ID of screened articles

Remarks on COVID-19 patients
Period of CNS symptoms identified: 
Status of Patients

Case study
(18)

4 (75%) Jan–Apr, 2020 32314810, 32474220, 32457227, 32449057 During ICU hospitalisation: Died after 
10–12 days

1 (100%) 2020 32737799 During hospitalisation with COVID-19: 
Recovered during release

1 (100%) 2020 32730234 During hospitalisation with COVID-19: 
Recovered during release

2 (100%) 2020 32600350, 32409316 During hospitalisation with COVID-19: 
Recovered during release

2 (50%) 2020 32615528, 32367205 During hospitalisation with COVID-19: 
Recovered during release

1 (0%) 2020 32545925 During hospitalisation with COVID-19: 
Recovered during release

1 (0%) 2020 32518103 During hospitalisation with COVID-19: 
Recovered during release

1 (0%) 2020 32689590 During hospitalisation with COVID-19: 
Recovered during release

3 (66.7%) 2020 32464585, 32430637, 32418288 During hospitalisation with COVID-19: 
Recovered during release

2 (0%) 2020 32489724, 32586897 During hospitalisation with COVID-19: 
Recovered during release

Case series
(6)

4 (50%) 2020 32679347 During hospitalisation with COVID-19: 3 
patients with CNS problem during release

2 (100%) Mid-March, 2020 32462412 During hospitalisation with COVID-19: 1 
died, 1 with long-term monitoring

2 (50%) 2020 32464157 During hospitalisation with COVID-19: 
Recovered during release

6 (83.3%) Mar 16–Apr 5, 2020 32436105 During hospitalisation with COVID-19: 5 
died, 1 with severe neurological deficits

4 (25%) 2020 32360439 During hospitalisation with COVID-19: 3 
died, 1 release

2 (0%) 2020 32307298 During hospitalisation with COVID-19: 1 
died, 1 release

Clinical cohort
(16)

140 (71.4%) May 3–May 5, 2020 32771053 During ICU hospitalisation with COVID-
19: Not specified

89 (61.8%) Mar 23–May 23, 2020 32756734 During ICU hospitalisation with COVID-
19: Not specified

64 (67.2%) Mar 6–Apr 9, 2020 32680942 During ICU hospitalisation with COVID-
19: Not specified

73 (65.8%) Mar 23–May 7, 2020 32677875 During hospitalisation with COVID-19: 
Not specified

86 (62.8%) Feb 5–Apr 2, 2020 32754114 During ICU hospitalisation with COVID-
19: Not specified

9 (77.8%) 2020 32639679 During hospitalisation with COVID-19: 
Not specified

43 (55.8%) Apr 9–May 15, 2020 32637987 During hospitalisation with COVID-19: 
Not specified

4 (50.0%) Mar 1–May 8, 2020 32609336 During hospitalisation with COVID-19: 
Not specified

50 (58.0%) Mar 1–Apr 30, 2020 32570113 During hospitalisation with COVID-19: 
Not specified

10 (80.0%) Mar 1–Apr 15, 2020 32466736 During ICU hospitalisation with COVID-
19: Not specified

163 Feb–Mar, 2020 32467244 During hospitalisation with COVID-19: 
Not specified

242 (62.0%) Mar 1–Mar 31, 2020 32467191 During hospitalisation with early COVID-
19: Not specified

27 (74.1%) Mar 1–Apr 14, 2020 32439651 During hospitalisation with COVID-19: 
Not specified

454 (60.8%) Mar 1–Apr 13, 2020 32447193 During hospitalisation with COVID-19: 
Not specified

103 (57.3%) Mar 30––Apr 24, 2020 32416289 During hospitalisation with COVID-19: 
Not specified

58 Mar 3–Apr 3, 2020 32294339 During hospitalisation with COVID-19: 
Not specified

Continued
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Evaluation of ‘target genes under CGN’ (TG-CGN). Collectively, the 22 gene nodes found as ‘HB + D’ from the 
four different PPI-networks (CGNs) constructed using different confidence scores (SPPICS) viz. > 0.70, > 0.80 
and > 0.90 and, were marked as TG-CGN for COVID-19 (Fig.  4c). Interestingly, five genes (ACTB, AKT1, 
C9orf72, CDON, CTNNB1) out of 22 TG-CGN were found to occur within 14 query genes (green-coloured 
nodes in Fig. 4b).

Evaluation of pairwise values of SSS for ‘target nodes’. Finding out the pairwise SSS-II values of 
TG-TN for symptoms and diseases. The 73 symptoms (Fig. 3b) and 47 diseases (Fig. 3c) as TG-TN provided 
pairwise SSS-II scores for 2628 (73C2) and 1081 (47C2) combinations with their respective six and eight different 
categories. The 1196 symptom-pairs and 130 diseases-pairs appeared significant based on their respective cut-off 
values.

Finding out the pairwise values of SSS-I and SSS-II of ‘target genes’. The 27 TG-TN showed 351 (27C2) gene-pairs 
with SSS-I values (Fig. 3d), and provided 276 (24C2) gene-pairs with SSS-II values (Fig. 3e). The SSS-II calcula-
tion did not arise for three gene nodes (ANG, ANXA, C9orf72) because they did not have PPI connections in 
TN. The 22 TG-CGN genes exhibited 231 (22C2) gene-pairs with both SSS-I (Fig. 4d) and SSS-II values (Fig. 4e) 
indicating that the 22 genes had connections with other genes in CGN.

Five genes (green-coloured nodes in Fig. 4b), common in both networks (TN and CGN), showed their 
pairwise unique SSS-I (Figs. 3d and 4d) values irrespective of the networks. The gene-pairs of TGs with SSS-I 
(Figs. 3d and 4d) and SSS-II (Figs. 3e and 4e) scores above their respective cut-off values were selected as sta-
tistically significant once under both networks (TN and CGN). In TG-TN, 20 gene-pairs were common among 
selected gene-pairs having significant SSS-I (31 gene-pairs, Fig. 3d) and SSS-II (81 gene-pairs, Fig. 3d) values. In 
CGN, 33 gene-pairs were common among selected gene-pairs having significant SSS-I (33 gene-pairs, Fig. 4d) 
and SSS-II (143 gene-pairs, Fig. 4e) values. Among the statistically selected common gene-pairs of TGs, nine in 
TN and 13 in CGN showed physical PPI interactions with SPPICS values (Table 2) in their respective networks. 
Interestingly, the PPI link viz. AKT1-CTNNB1 was evident in both TN and CGN (Figs. 3a and 4b, Table 2). 
Therefore, 21 gene-pairs (eight from TN, 12 from CGN, one common for both networks) exhibiting SSS-I, SSS-II 
and SPPICS values, were designated as ‘candidate genes’ pairs for COVID-19 (Fig. 5f).

Selection and categorisation of ‘candidate gene’ pairs by the formulation of WHMS. The 
selected 21 ‘candidate genes’ with their pairwise 21 interactions showed excellent (AUC > 0.90) classifications 
based on interaction values of SSS-I, SSS-II and SPPICS. The interaction values showed the same accuracy score 

Study type
Patients
(% Males) Timeline PubMed ID of screened articles

Remarks on COVID-19 patients
Period of CNS symptoms identified: 
Status of Patients

Systematic review
(11)

205,938 2020 32730915 Not specified: Not specified

765 2020 32725449 Not specified: Not specified

116 2020 32603770 Long-term reported: Not specified

36 (80.5%) Mar 25–May 20, 2020 32653111 During COVID-19: Not specified

9086 (45.2%) Jan–June, 2020 32561222 Long-term reported: Not specified

1454 Dec 2019-May 1, 2020 32574246 Not specified: Not specified

1048 (50.4%) Jan 1–Apr 10, 2020 32437679 Following COVID-19: Not specified

235 2020 32422545 Not specified: Not specified

- Up to May 10, 2020 32490966 Not specified: Not specified

4014 Jan 1–Apr 15, 2020 32345728 During COVID-19: Not specified

765 Dec 1, 2019–Mar 26, 2020 32299017 During COVID-19: Not specified

Meta-analysis (1)  ~ 4700 Feb 7-May 17, 2020 32529575 Not specified: Not specified

Narrative review, brief report, perspective, 
research article
(51)

– Feb 28–Aug 11, 2020

32776905, 32767055, 32758257, 32751841, 
32729463, 32725545, 32720223, 32627524, 
32683890, 32440692, 32672843, 32668062, 
32628969, 32610334, 32655490, 32655489, 
32491829, 32715280, 32587958, 32527073, 
32581854, 32498691, 32492193, 32485101, 
32486196, 32469504, 32474399, 32458193, 
32574248, 32574247, 32442082, 32427468, 
32424503, 32418055, 32427134, 32405259, 
32405150, 32378030, 32417,235, 32417124, 
32366614, 32643664, 32515379, 32352081, 
32320066, 32343122, 32320211, 32266761, 
32385132, 32104915, 32538857

During COVID-19 and long-term COVID, 
as indicative: Not specified

Table 1.  Summary of the facts reported in 103 literatures curated in PubMed database for finding the 
neurological symptoms of COVID-19 selected for the construction of TN. The facts indicate types of the 
studies in literatures, their publication timeline, sample size included in the studies, PubMed ID of the articles 
and status of the COVID-19 patients mentioned in the studies. The details of the literature PubMed ID with 
their full citation are presented in Table S1 under Supplementary File 1. The manually curated ‘neurological 
symptoms/manifestations’ from 103 selected literature are presented in Table S2 in Supplementary File 1.
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of 0.86, and this score was used as weightage for respective case to calculate integrated WHMS of interactions 
of the ‘candidate genes’. Considering statistical accuracy (95%) and excellent classification with the highest AUC 
value (0.97), the values of WHMS of ‘candidate genes’ pairs were considered a better choice for further analysis 
(Fig. 5b and Table 2). The six pairwise interactions (ADAM10-ADAM17, AKT1-CTNNB1, AKT1-ESR1, AKT1-
PIK3CA, CTNNB1-ESR1, FGFR1-PIK3CA) of ‘candidate genes’ showed WHMS values (Table 2) greater than the 
cut-off value (0.57) for WHMS (Fig. 5b) and were considered as prevalent pairs-wise interactions of the ‘candi-
date genes’ that were associated with functional aspects in COVID-19 (dark solid edges in Fig. 5f). Notably, these 
interactions of prevalent ‘candidate genes’ had values of SSS-I, SSS-II and SPPICS greater than their respective 
cut-off values (Fig. 5b and Table 2). The remaining 15 pairwise interactions of ‘candidate genes’ (non-prevalent) 
showed WHMS values below the cut-off value (Table 2, light solid edges in Fig. 5f). Few of them exhibited values 
of SSS-I, SSS-II and SPPICS below the respective cut-off values. Notably, 21 pairwise ‘candidate genes’ presented 
SSS-I values greater than the cut-off (0.40) value (Table 2).

Figure 3.  The model of ‘tripartite network’ (TN) and its ‘target nodes’ with their pairwise semantic similarity 
scores (SSS) for COVID-19: (a) Inset image: Representation of TN developed in Cytoscape software as described 
in Fig. 2, with 147 ‘target nodes’ (‘HB + D’, ‘pure-driver’, ‘pure-HB’) including 27 genes (deep grey circles) and 
categories (different colour codes) of 73 symptoms and 47 diseases, other than ‘target nodes’ (light grey) and 
all edges (grey). Pictorial image: The connections of only ‘target nodes’ including categories (big circles) of 
symptoms and diseases in TN, exhibiting details of nodes and edges: triangular (open) inter-links of three gene 
nodes (ACTB, ADAR, CTNNB1) and respective nodes of 12 symptoms and 11 diseases with same colour codes 
(for both nodes and edges); other nodes (white-coloured with grey border) without having triangular inter-
links and their connections (grey-coloured edges). Both inset and pictorial images: Nodes are represented as 
different shapes (symptoms:diamond, diseases:rectangle, genes:circle) and sizes (connectivity scores adjusted 
by the ‘continuous mapping of node size’ in ranges between 25 and 60 pts.) with grey borders (illustrated with 
2 pts.). The widths of the edges display respective metrics, which are adjusted by 0.5–2 pts. of ‘continuous 
mapping of edge width’ in the edge network style of the Cytoscape. (b–e) Heat maps: Representation of the 
pairwise SSS values (0–1 with colour codes) of ‘target nodes’ of TN including 73 symptoms (b), 47 diseases (c) 
and 27 genes (d, e). The pairwise SSS measurements (vide ‘Methodology’ section) are calculated as SSS-I for 
genes (d) and ‘SSS-II for symptoms (b), diseases (c) and genes (e). The columns of heatmaps (b and c) include 
codes (mentioned right side of each term in a row) of symptoms (b) and diseases (c). The vertical bars (left side 
of each heat map) demonstrate nodes having three topological properties (different colour codes) of centrality 
measurements and categories (same colour codes as in ‘inset in a’) of symptoms and diseases of the network. 
The summary of classifier ROC-AUC statistics (threshold scores, accuracy scores in %, AUC scores) of SSSs 
(b–e) are presented adjacent to the colour bar.
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Enrichr analysis of ‘target genes’ and Integration of annotation terms. Enrichr annotation of 
four sets of genes with ‘target genes’ (set-1 for TG-TN and set-3 for TG-CGN) and their connected genes (set-2 
and set-4), gave off statistically significant a total of 159 terms (data not shown) including several common 
terms among four sets. The statistically significant (FDR-adjusted p-value < 0.05) Enrichr annotation terms 
were further cross-validated manually with selected (above cut-off values of SSS-II) ‘target nodes’ of the symp-
toms (Fig. 3b) and diseases (Fig. 3c) found in TN analysis. 13 terms (two symptoms,11 diseases) were com-
mon (Fig. 5a) among annotations under (i) DisGeNET (four diseases, one symptom), (ii) Jensen disease (six 
diseases, one symptom) (iii) KEGG pathway (one disease). The rest of the total terms showed selected 41 terms 
(Fig. 5a) associated with functional annotations of the nervous system, including 11 in DisGeNET (T1-T11), six 
in GO-BP (T12-T17), nine in GO-CC (T18-T26), seven in GO-MF (T27-T33), five in Jensen Disease (T34-T38) 
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and three in KEGG pathway (T39-T41). Therefore, 54 (13 + 41) selected terms were implied to discover their 
functional links with ‘candidate genes’ in subsequent analysis.

Finding out the functional annotations of ‘candidate genes’ and their categorisation. The 
selected 40 functional annotation terms against 21 ‘candidate genes’ (Fig. 5c), provided 780 pairwise (40C2) SSS-II 
values (Fig. 5d) and showed an accurate (75%) and good classification (AUC:0.83) with 330 SSS-II values above 
the cut-off value (0.64). These terms were categorised in to seven different functional modules (‘Behaviour & 
Cognitive disorder’, ‘Cellular Signaling pathways’, ‘CNS tumour/cancer’, ‘Motor dysfunction’, ‘Neurodegenerative 
disorders’, ‘Neurodevelopmental diseases’, ‘Neuron and astrocyte cellular’), comparing with functional modules 
categorised for symptoms and diseases in TN (Figs. 3b and 3c). Interestingly, six pairwise terms appeared to be 
common among statistically significant terms under (a) enriched for ‘candidate genes’ (Fig. 5d) and (b) ‘target 
nodes’ for symptoms/diseases under TN (Figs. 3b, 3c) and, presented greater (% more) pairwise SSS-II values 
with ‘candidate genes’ viz. atrophy-aphasia (3.7%) as symptom-pair and other five disease-pairs including (a) 
‘progressive non-fluent aphasia’ with ‘classic progressive supranuclear palsy syndrome’ (15%), ‘amyotrophic lat-
eral sclerosis’ (32.5%), ‘frontotemporal dementia’ (17.7%) and (b) ‘frontotemporal dementia’ with ‘amyotrophic 
lateral sclerosis’ (8.6%) and ‘progressive supranuclear palsy syndrome’ (17.2%).

Finding out the essentiality of ‘candidate genes’. Cross-validation (leave-one-out method) of 21 
‘candidate genes’ resulted in a 3.15% average reduction in ‘HB + D’ node and average increases in 7.96% and 
4.81% of ‘pure-driver’ and ‘total driver’ nodes respectively, in CGN network (Fig. 5e). The results signified the 21 
‘candidate genes’ as ‘indispensable’ driver nodes that were practically regulatory genes associated with neurologi-
cal diseases in COVID-19.

Assimilation of ‘candidate genes’ with functional annotations to develop brain‑related func‑
tional modules. The 21 ‘candidate genes’, their 21 interactions having WHMS (Table  2) and links with 
corresponding functional annotations (Fig.  5c) under different categories (Fig.  5d) are represented in a pic-
torial diagram (Fig. 5f) for better interpretations. The seven prevalent ‘candidate genes’ (ADAM10, ADAM17, 
AKT1, CTNNB1, ESR1, FGFR1, PIK3CA) showed direct associations with enriched terms under the categories 
of ‘Neurodegenerative disorders’, ‘Neurodevelopmental diseases’, ‘CNS tumour/cancer’ and ‘Cellular Signaling 
pathways’. Their indirect associations with enriched terms under the categories of ‘Neuron and astrocyte cel-
lular’ events, ‘Behaviour & Cognitive disorder’ and ‘Motor dysfunction’ appeared to have interactions with non-
prevalent ‘candidate genes’ (Fig. 5f).

Discussion
The present study is a novel approach of integrated network-based multiple computational analyses of two net-
works, viz. TN and CGN to find the ‘disease-related regulatory genes’ associated with functional (transcriptional 
and translational) cellular entities necessary for understanding the molecular basis of brain pathophysiological 
phenotypes of COVID-19. To achieve the goal, we proceeded with the most robust approaches through multiple 
screening steps including (a) finding the two sets of predictive ‘target genes’, evaluated from TN and CGN with 
their PPIs having STRING ‘combined scores’ (SPPICS) as priori analysis, (b) evaluation of functional associa-
tions by ‘semantic similarity scores’ (SSS) of two sets of ‘target genes’, (c) screening ‘target genes’ by cumulating 
PPIs having both STRING-CS and SSS by selection with given threshold values for respective PPI scores to find 
‘candidate genes’, (d) formulating integrated scores (WHMS) combining SPPICS and SSS for giving weight-
age to PPIs of ‘candidate genes’ for further categorisation, (e) assimilation of ‘annotation terms’ (symptoms/
diseases) with genes among ‘candidate nodes’ through posteriori enrichment analysis to get functional module. 
Notably, ‘target nodes’ for symptoms and diseases evaluated from TN were manually curated and integrated 

Figure 4.  The model of ‘combined gene network’ (CGN) and its ‘target nodes’ with their pairwise semantic 
similarity scores (SSS) for COVID-19: (a) Study design for the construction of the CGN is represented stepwise 
(point 1–6). (b) The PPI interactome model of CGN is a continuous network consisting of total 281 nodes of 
gene products/proteins and 793 edges corresponding to the functional connectivities between nodes. The CGN 
is constructed using SPPICS > 0.60 as the widths of the edges, which are adjusted by 0.5 to 5 pts. of ‘continuous 
mapping of edge width’ in the edge network style of the Cytoscape. The colour nodes (inset) represent 22 ‘target 
genes’ having both ‘HB and driver’ properties including five ‘query genes’ derived from TN (green nodes) and 17 
‘co-expressed genes’ (dodger blue) derived from RNA-Seq data of COVID-19 patients. The other nodes of the 
CGN are kept white-coloured with grey-borders (illustrated with 2 pts.). The sizes of the nodes indicate their 
connectivities (higher the value, higher will be the size) adjusted by the ‘continuous mapping of node size’ in 
ranges between 25 and 60 pts. for the lowest and highest node size respectively. (c) The Venn diagrams indicate 
the changes in number of ‘target genes’ (both ‘HB and driver’) with their names derived from CGNs developed 
using multiple SPPICS thresholds including > 0.60, > 0.70, > 0.80 and > 0.90 for inclusion of all possible ‘target 
genes’ for better interpretations. (d and e) Heat maps represent the pairwise SSS values (0–1 with colour codes) 
of 22 ‘target genes’ of CGN. The values of SSS-I (d) and SSS-II (e) are direct and indirect associations (vide 
‘Methodology’ section), respectively. All ‘target genes’ in CGN belong to ‘HB and driver’ topological properties 
of centrality measurements. The colours of the vertical bars (left side of each heat map) indicate types (vide 
inset) of ‘target genes’. The summary of classifier ROC-AUC statistics (threshold scores, accuracy scores in %, 
AUC scores) of SSSs is presented in adjacent to the colour bar.
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with suitable Enrichr annotations for better interpretation. The classification statistics (ROC-AUC) and cut-off 
values (optimal thresholds for ROC) identified the PPIs with their association scores (SPPICS, SSS, WHMS) for 
the respective steps most accurately (AUC > 0.8) with minimum false positive interpretation. Furthermore, all 
21 ‘candidate genes’ appeared co-expressive. They became almost equally ‘indispensable’ after screening for their 
controllability property on CGN. Finally, the ‘candidate genes’ were categorised based on pairwise analysis of 
values of WHMS, SSS and SPPICS to find prevalent vs. non-prevalent ‘candidate genes’ with their pattern (‘is_a’ 
vs ‘part_of’) of relationship with neurological manifestations in COVID-19. The pathophysiological relevance 
of prevalent ‘candidate genes’ with COVID-19 has been discussed thoroughly.

In our study, two networks (TN (Fig. 3a) and CGN (Fig. 4b)) were analysed to find the ‘target nodes’, which 
satisfied the three properties, viz. ‘hub’, ‘bottlenecks’ and ‘driver’ together for COVID-19. Separate studies indicate 
that host proteins targeted by viral proteins show the node properties of hubs and high-betweenness  centrality25 
and, ‘indispensable’ driver  controllability25,26 in a host protein network. The ‘target genes’ (TG) evaluated from 
TN (TG-TN) showed node properties of hub-bottleneck (HB or ‘date-hubs’ i.e., together hub and bottlenecks), 
driver and both (HB and driver) (Fig. 3d and e). All ‘target genes’ (TG) evaluated from CGN (TG-CGN) showed 
node properties as both HB and driver (Fig. 4b and c). In fact, the number of driver nodes compared to the 
driver nodes themselves appears crucial for maintenance of the controllability of a  network25,26. In our study, 
the finally selected 21 ‘candidate genes’ appeared to be ‘indispensable’ as the number of driver nodes increased 
(4.81% for total drivers, 7.96% for drivers but non-hub-bottlenecks i.e., ‘pure-drivers’) in the CGN after removal 
of one of the ‘candidate genes’ (Fig. 5e).

Next, the SPPICS were applied to construct possible PPI connections of new genes in TN (Fig. 3a) and 
CGN (Fig. 4b) networks related to the brain in COVID-19. The SPPICS provides quantitative measurement of 
physical and functional PPI evidence derived from available online resources. It lacks experimental evidences 
of functional entities related to regulatory mechanism in physiological context of cells, as part of its calculation. 
The Gene Ontology resources provide a model of hierarchically (ancestors-descendants relationship) organised 
directed acyclic graph (DAG) having GO-terms as nodes and functional association as directed edges within 

Table 2.  Summary of pairwise ‘candidate genes’ with their properties evaluated as ‘prevalent’ and ‘non-
prevalent’ characters and their functional links having statuses with interaction scores vide SSS-I, SSS-II, 
SPPICS and WHMS values. The prevalent pairwise ‘candidate genes’ are selected based on values of gene-pairs 
more than the cut-off value of WHMS viz. 0.57 (vide Fig. 5b and f). The terms ‘Is_a’ (subtype) and ‘Part_of ’’ 
(component) represent the functional associations of GO-based terms hierarchically (ancestors-descendants 
relationship) organised in directed acyclic graph (DAG). The terms ‘Is_a’ and ‘Part_of ’ properties are 
considered with the gene-pairs having scores greater than and less than, respectively the cut-off values of SSS-I 
(viz. 0.40) and SSS-II (viz. 0.71). The terms ‘Strong’ and ‘Weak’ represent the link strength having values of 
SPPICS to gene-pairs with scores greater than and less than, respectively the cut-off value (viz. 0.77). The cut-
off values (optimal threshold score of ROC) are given in Fig. 5b.

S. no Gene-pair
SSS-I
Value (Property)

SSS-II
Value (Property)

SPPICS
Value (Property)

WHMS
Value

Prevalent

1 FGFR1-PIK3CA (0.54) Is_a (0.81) Is_a (0.97) Strong 0.62

2 ADAM10-ADAM17 (0.56) Is_a (0.77) Is_a (0.86) Strong 0.61

3 AKT1-CTNNB1 (0.49) Is_a (0.79) Is_a (0.99) Strong 0.60

4 AKT1-PIK3CA (0.48) Is_a (0.79) Is_a (0.99) Strong 0.59

5 AKT1-ESR1 (0.47) Is_a (0.80) Is_a (0.99) Strong 0.59

6 CTNNB1-ESR1 (0.48) Is_a (0.83) Is_a (0.84) Strong 0.58

Non-prevalent

1 AKT1-ATM (0.54) Is_a (0.71) Is_a (0.80) Strong 0.57

2 CTNNB1-PSEN1 (0.47) Is_a (0.68) Part_of (0.99) Strong 0.56

3 SQSTM1-VCP (0.51) Is_a (0.79) Is_a (0.70) Weak 0.56

4 ADAM17-AKT1 (0.50) Is_a (0.78) Is_a (0.74) Weak 0.55

5 AKT1-IL10 (0.46) Is_a (0.77) Is_a (0.83) Strong 0.55

6 CHMP2B-SQSTM1 (0.48) Is_a (0.73) Is_a (0.81) Strong 0.55

7 C9orf72-OPTN (0.43) Is_a (0.89) Is_a (0.82) Strong 0.55

8 AKT1-MAPT (0.45) Is_a (0.73) Is_a (0.80) Strong 0.53

9 CTNNB1-LRRK2 (0.44) Is_a (0.70) Part_of (0.83) Strong 0.53

10 MAPT-PSEN1 (0.45) Is_a (0.64) Part_of (0.89) Strong 0.53

11 AKT1-VCP (0.42) Is_a (0.80) Is_a (0.78) Strong 0.52

12 ATM-ATRX (0.44) Is_a (0.79) Is_a (0.71) Weak 0.52

13 C9orf72-ATXN2 (0.40) Is_a (0.86) Is_a (0.75) Weak 0.52

14 CTNNB1-GLI2 (0.45) Is_a (0.85) Is_a (0.61) Weak 0.51

15 AKT1-EIF4G1 (0.48) Is_a (0.67) Part_of (0.65) Weak 0.50
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each hierarchy by ‘is_a’ (subtype) and ‘part_of’ (component) relationships associated with gene/protein func-
tionality (molecular function, cellular component and biological process) description. GO-based biological 
process (GO-BP) provides cohesive evidences on protein interactions, related to both physical and functional 
networks of molecular events in cellular  physiology27. The ‘candidate genes’ for a disease show common biological 
pathway(s)18. Therefore, in our study, the functional associations among ‘target nodes’ were analysed by semantic 
comparison of GO-BP annotations quantitatively through computing similarities between gene-pairs (SSS-I 
measurement) (Figs. 3d and 4d) and clustering gene/symptoms/disease/module-pairs (SSS-II measurement) 
into known pathways (Figs. 3b, c, e, 4e and 5d).

The conventional SSS-I provided pairwise ‘direct association’ based on comparative assessment of associated 
GO-BP terms of two ‘target genes’ (Figs. 3d and 4d). It has been reported that the genes and their functionally 
connected co-expressive genes show tissue-specific expressions and regulations, and exhibit pleiotropic effects, 
i.e., sharing common symptoms and  diseases29,30. Based on this concept, the estimation of SSS-II values was newly 
introduced in our study (Figs. 3e and 4e). The SSS-II values provided pairwise ‘indirect association’ based on 
the summated contribution of comparative assessment of associated GO-BP terms of gene-clusters (connected 
genes) against targeted gene-pairs. Our data indicated that the classification of both SSS-I and SSS-II values 
were statistically robust (AUC: 0.91 and 0.93) with the different range of values and had respective accurate 
(0.40 and 0.71) threshold values for ROC to interpret the results most stringently (Fig. 5b). Interestingly, the 
gene-pairs found as common PPI in TN and CGN networks showed the same values of SSS-I whereas SSS-II 
values varied for networks. For example, CTNNB1-AKT1 gene-pair among ‘target genes’, found as common PPI 
in both TN (Fig. 3a) and CGN (Fig. 4b), showed equal SSS-I value (0.487) (Figs. 3d and 4d). The SSS-II values of 
this gene-pair varied for TN (0.783) and CGN (0.805) (Figs. 3e and 4e). Additionally, certain gene-pairs having 

Figure 5.  The ‘candidate genes’ and their functional modules for neurological manifestations of COVID-19: (a) 
Bubble plot: Results of Enrichment analysis against four sets of genes (‘target genes’ and their connected genes), 
exhibiting nervous system-specific functional annotations/terms (X-axis) across six resources, characterised by 
‘gene count’ (size of bubbles adjusted with 0.5 to 4 pts.), ‘combined score’ (log(p-value) × z-value > 147 adjusted 
in VIBGYOR colour gradient of bubbles) and corresponding ‘gene ratio’ (Y-axis). (b) Box plot: Data (X-axis) 
of interaction score types (Y-axis) i.e., SSS-I, SSS-II, SPPICS and WHMS of ‘candidate genes’. (c) Checkerboard: 
‘Candidate genes’ (Y-axis) with their status of topological properties in networks (vertical bars), associated with 
enriched 54 functional annotation terms (X-axis) evaluated under six different ontology categories (horizontal 
bar) manually curated from results of the bubble plot (a). (d) Heat map: Pairwise GO-BP SSS-II values (0.23–1.0 
with colour codes) of 40 enriched terms with their categories (colours in horizontal bar), overrepresented 
with at least one ‘candidate gene’. (e) Box plot: Data of % changes (Y-axis) of topological properties (X-axis) in 
CGN using leave-one-out method by ‘candidate genes’ to cross-validate disease-causing ‘indispensable’ driver 
nodes in the network. (f) Pictorial presentation (developed in Cytoscape software): the interactome model of 
21 ‘candidate genes’ and their associated functional seven categories of Enrichr terms related to neurological 
manifestations of COVID-19. Lines represent gene-pair interactions (solid lines: width as WHMS adjusted 
by 3–10 pts.) with the ‘prevalent’ links (dark solid lines) of ‘candidate genes’ having WHMS more than cut-off 
values (given in b) and functional links (dotted lines: width adjusted by 2 pts.) of genes with categories (given in 
d) of Enrichr terms. [Box plot (b and e) summary: Data with quartile values (edges of box), inter-quartile range, 
median value (black vertical line inside box), mean value (grey-coloured filled circle in box), maximum and 
minimum values (two vertical lines), and their out layers; Classifier statistics (ROC-AUC) summary: optimal 
threshold score(accuracy score)AUC score (vide: right side of box plots in b; adjacent to the colour bar in d); 
Codes of Enrichr annotation terms (c and d): ‘D15,D22,D23(a)’ and ‘D15,D22,D23(b)’ as ‘Lateral sclerosis’ and 
‘Amyotrophic lateral sclerosis’ respectively.]
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considerable (above a threshold value) SSS-I values appeared to have low (below a threshold value) or zero (‘null 
functional similarity’) SSS-II values, including AKT1-FGFR1 (SSS-I: 0.485—above threshold; (Fig. 3d), SSS-II: 
0.69—below the threshold; (Fig. 3e)), C9orf72-SQSTM1 (SSS-I: 0.462—above threshold; (Fig. 3d), SSS-II: 0; 
(Fig. 3e)). Therefore, the gene-pairs with significant values of both SSS-I and SSS-II were considered for better 
interpretation of the results in our study.

Irrespective of the network, the SSS-I values of gene-pairs/PPIs might depict the global and existing ‘is_a’ 
and/or ‘part_of’ semantic similarity available in the GO-BP annotation data and therefore would remain the 
same for representing generalised pathophysiological functions for any disease condition. Alternatively, the SSS-
II values for gene-pairs varied due to different constituents in ‘gene-clusters’, which provided the ‘is_a’ and/or 
‘part_of’ functional relationship by sharing common GO-BP annotation terms to reflect the discrete or pleiotropic 
effects of genes among networks (Table 2). Particularly, the zero value of SSS-II of a gene-pair indicated that 
‘gene-clusters’ (connected genes) against the gene-pair had not been well-supported by current literature-based 
evidences related to COVID-19 neurological symptoms. Therefore, the SSS-II values might provide a better 
disease-specific metric for the event of disassembly in the homeostatic genetic connectivity that gets perturbed 
during COVID-19 insult.

The better quality of the PPI network improves the prediction accuracy to determine the ‘candidate genes’ for 
a disease. The STRING database comprises genes from prior knowledge and thereby provides a PPI model with 
certain limitations. The SSS-based PPI network includes genes having sufficient annotation information and so 
has GO annotation biasness. The integration of two scores, viz. SPPICS of STRING-based PPI network and SSS 
of anatomy-based gene network by introducing ‘accuracy values of ROC’ as weightage given to the respective 
scores followed by summation of them, is reported to develop the better quality of network by filtering out the 
false positive  interactions28. In our study, the same principle of weightage (‘accuracy value of ROC’) was applied 
to evaluate the weighted scores of SPPICS, SSS-I, SSS-II followed by calculating their harmonic mean in order 
to evolve the integrated scores (WHMS) for those gene-pairs which satisfied the criteria of having (a) three 
individual scores (SPPICS, SSS-I, SSS-II) and (b) at least one score with value above respective threshold level 
(Fig. 5b). The integrated scores of total 21 gene-pairs showed statistically strong fitted (AUC > 0.9) and most 
accurate (95%) interactions (Fig. 5b and solid edges in Fig. 5f), and provided 21 ‘candidate genes’ (Fig. 5c and 
f) associated with neurological insults (Fig. 5f) in COVID-19. All 21 ‘candidate genes’ (Fig. 5c) appeared to be 
derived from RNA-Seq data (Fig. 4b) and thus considered as co-expressed genes of COVID-19 in the brain.

All 21 gene-pairs/PPIs of ‘candidate genes’ showed SSS-I values (Figs. 3d, 4d, vide Point 4.2 in the results sec-
tion) above the respective threshold value and therefore represented as ‘is_a’ functional relationship (Table 2) in 
the semantic similarity of GO-BP annotations for generalised pathophysiological functions irrespective of disease. 
Based on the threshold value of integrated PPI scores (WHMS), 21 pairwise ‘candidate genes’ were classified as 
‘prevalent’ and ‘non-prevalent’ ‘candidate genes’ (Table 2). Six pairs of seven ‘prevalent’ ‘candidate genes’ showed 
strong database-dependent putative interaction scores (SPPICS) (Figs. 3a and 4b) and subsequently satisfied 
SSS-II values (Figs. 3e and 4e) above the threshold levels representing ‘is_a’ relationship (Table 2) with neuro-
pathological manifestations in COVID-19. The ‘non-prevalent’ ‘candidate genes’ found to have varied SPPICS 
scores (strong and weak) and different relationships (‘is_a’ and ‘part-of’) among their gene-pairs (Table 2). The 
‘prevalent’ ‘candidate genes’ (ADAM10, ADAM17, AKT1, CTNNB1, ESR1, FGFR1, PIK3CA) might have the most 
prominent pathophysiological relevance in COVID-19.

The pathophysiological action of SARS-CoV-2 in brain tissue cells begins with its binding to ACE2 receptors 
of the cell membrane. After viral endocytosis is over, ADAM17 directs the shedding of the ectodomain of the 
 receptors31 and enhances the formation of TNF-α leading to escalation of the cytokine  storm1. Dysfunction of 
ADAMs can also exacerbate Alzheimer’s disease condition through the misfolded Aβ  pathology32, ischaemic 
 stroke33 and vascular  thrombosis34 via ACE2 and TNF-α receptors. Recently, ADAM10 and ADAM17 have been 
marked as the risk factors for cerebral infarction and hippocampal sclerosis related  epilepsy35, respectively. In 
diabetic patients, an elevated activity of ADAM17 is found to enhance COVID-19  susceptibility36 through the 
AKT1-mediated pathway.

AKT1 encodes protein kinase B, which is a part of the PI3K-NFκβ signalling pathway, involved in aberrant 
expression of IL10 and inflammation in severe coronavirus  infection32. AKT1 can induce tumour formation 
through the upregulation of RNA binding protein  EIF4G137, coronavirus exit from endosomes via valosin-
containing protein  VCP38 and MAPT-associated tau protein formation in dementia-like cognitive  impairment39. 
The altered AKT1-signalling pathway is also evident in ATM-associated autism spectrum disorders that may 
exaggerate COVID-1940.

CTNNB1 expresses β-catenin related to the Wnt-signalling pathway and gets downregulated in COVID-
1941 through the activation of glycogen synthase kinase 3β in the prefrontal cortex and dorsal  hippocampus42. 
Defects in the formation of β-catenin cause disruption of the blood–brain  barrier43 leading to the develop-
ment of cerebrovascular  thrombosis44,  headache45,  stroke46 and epileptic  seizure47 during or in the aftermath of 
COVID-19. Stress-induced Dickkopf-1 protein formation prevents CTNNB1 gene function in the hippocampus, 
thereby impairing  memory48. Uncontrolled interactions of CTNNB1 with  PSEN149 and  GLI250 are linked to skin 
tumorigenesis, which may be suggestive for their possible involvement in COVID-19. Moreover, abnormalities 
in  PSEN151 and  GLI252 functions, associated with the CTNNB1 gene are likely to be implicated in developing 
Alzheimer’s disease- and holoprosencephaly-like features in COVID-19.

ESR1 gene encodes estrogen receptor 1 that occurs primarily in the medial preoptic area and ventromedial 
nucleus of the hypothalamus, which regulates diverse reproductive functions of both males and  females53. ESR1 
deems to share CTNNB1-54 and AKT1-55 mediated signalling pathways to accelerate cancer and neurodegenera-
tion, respectively. Moreover, estrogen inhibits inflammation and immune responses in COVID-19 and reduces 
the COVID-19 susceptibility in females than in males, because of its higher concentration and a greater number 
of ESR1 receptors in target  tissues56.
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In the adult brain, the PIK3CA gene product PI3K via the AKT1-pathway may exaggerate neurodegeneration 
in Alzheimer’s  disease57, and FGFR1 dysregulation leads to ischemic  stroke58 and  holoprosencephaly59. Moreo-
ver, synchronised PIK3CA mutation and FGFR1 alteration are associated with ESR1-positive breast  cancer60. 
Since COVID-19 develops inflammatory burst and lymphopenia, SARS-CoV-2-associated illness therefore may 
aggravate cancer  prognosis59.

Notably, two prevalent genes CTNNB1 and AKT1 appeared to be common for both TN (Fig. 3a) and CGN 
(Fig. 4b). Both genes showed SSS-II (network-specific semantic similarity score) values greater than threshold 
values in respective cases (Figs. 3e and 4e), and therefore functionally interlinked (Fig. 5f). CTNNB1 appeared as 
the lone gene having both HB and driver node properties in TN. Interestingly, CTNNB1 was the only gene which 
formed a ‘tripartite open network’ that linked with eight symptoms and those symptoms remained connected 
with eight diseases (Fig. 3a). CTNNB1 in TN got connections with (a) five symptoms (viz. cerebral ischemia, 
vascular thrombosis, intracranial hypertension, seizures and epileptic seizures) in the central nervous system 
(CNS), (b) two symptoms (viz. hypertonia and fatigue) in the peripheral nervous system (PNS) and (c) one 
psychiatric symptom (viz. behavioral disorder). Moreover, it demonstrated that three symptoms connected with 
CTNNB1 in the present tripartite network, also happened to occur in other diseases, coinfected with COVID-
19, viz. (a) cerebral ischemia in alobar, lobar and semilobar holoprosencephaly, Behçet disease, early infantile 
epileptic encephalopathy, MELAS and meningioma; (b) vascular thrombosis in alobar, lobar and semilobar 
holoprosencephaly, amyotrophic lateral sclerosis and MELAS; (c) intracranial hypertension in MELAS. But no 
data is available yet about the rest of the five symptoms in any other diseases challenged none-ever with SARS-
CoV-2. This suggests that certain neurological symptoms of COVID-19 are intermingled with other diseases 
and need special clinical attention.

In conclusion, the present study, however, suffers from two limitations regarding the (a) status of COVID-19 
patients who had mixed implications of neurological symptoms/manifestations during hospitalisation in most 
cases, long-term reports in few cases and without having any detail in other cases as reported in the literature 
(Table 1), and (b) use of a small cohort of a transcriptomic dataset of patients having SARS-CoV-2 viruses in 
brain autopsy  samples23, available only at the time of study period.
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