
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23312  | https://doi.org/10.1038/s41598-021-02412-x

www.nature.com/scientificreports

The role of eye movements 
in perceiving vehicle speed 
and time‑to‑arrival at the roadside
Jennifer Sudkamp1*, Mateusz Bocian2 & David Souto1

To avoid collisions, pedestrians depend on their ability to perceive and interpret the visual motion of 
other road users. Eye movements influence motion perception, yet pedestrians’ gaze behavior has 
been little investigated. In the present study, we ask whether observers sample visual information 
differently when making two types of judgements based on the same virtual road-crossing scenario 
and to which extent spontaneous gaze behavior affects those judgements. Participants performed in 
succession a speed and a time-to-arrival two-interval discrimination task on the same simple traffic 
scenario—a car approaching at a constant speed (varying from 10 to 90 km/h) on a single-lane road. 
On average, observers were able to discriminate vehicle speeds of around 18 km/h and times-to-
arrival of 0.7 s. In both tasks, observers placed their gaze closely towards the center of the vehicle’s 
front plane while pursuing the vehicle. Other areas of the visual scene were sampled infrequently. No 
differences were found in the average gaze behavior between the two tasks and a pattern classifier 
(Support Vector Machine), trained on trial-level gaze patterns, failed to reliably classify the task from 
the spontaneous eye movements it elicited. Saccadic gaze behavior could predict time-to-arrival 
discrimination performance, demonstrating the relevance of gaze behavior for perceptual sensitivity 
in road-crossing.

The decisions pedestrians make in negotiating their way across traffic rely on sensory, perceptual and cognitive 
factors. Those factors are less well understood in pedestrians1 compared to drivers2. To avoid collisions, e.g., 
when crossing a road, the decoding and prediction of motion trajectories of other road users are of particular 
importance. The way in which visual information is sampled may thereby play an important role for perceptual 
judgements.

The influence of eye movements on the perceived motion of abstract stimuli (e.g., simple geometric shapes) 
has been well-documented. For example, observers perceive target speeds to be slower and are less sensitive in 
discriminating speed when their eyes pursue a moving target compared to when their eyes remain stationary3–6. 
The direction of corrective saccades performed during pursuit influences perceived speed, with saccades congru-
ent to the motion direction of a pursued target increasing the perceived speed and saccades towards the opposite 
direction decreasing the perceived speed7. Smooth pursuit eye movements facilitate time-to-arrival judgements 
resulting in a higher accuracy of estimates when observers pursue the approaching object compared to fixating 
it8,9. Similarly, observers are more successful at predicting collisions, i.e., discriminating whether an object would 
hit or pass a target line, during pursuit compared to fixation independently of whether the target line serves as the 
fixation location and the object moves towards it or the object serves as the fixation location and the target line 
moves towards it10. When predicting the time-to-arrival of a target, observers are found to perform spontane-
ous smooth pursuit eye movements followed by a saccade towards the arrival location after the moving object 
is occluded11. However, a functional relationship between the execution of these saccades and task performance 
could not be determined in that study. On the other hand, saccade execution is associated with both a compres-
sion of the perceived visual space12 and a compression of the perceived time between visual events13. It is thus 
suggested that saccadic behavior could as well affect the prediction of time-to-arrival, although this has not been 
investigated using an eye tracking methodology14.

The aforementioned findings may be relevant in natural tasks including navigation in traffic. Although they 
suggest that an unfavorable visual sampling strategy can affect road user safety by introducing perceptual biases 
and promoting risky crossing decisions based on inaccurate motion estimates, little research has yet explicitly 
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addressed the question of how pedestrians sample visual information and how eye movements influence per-
ceptual judgments in a road-crossing scenario. Traffic safety research assessing gaze during driving can give an 
indication as to which eye movement parameters may play a role in avoiding collisions and how gaze behavior 
influences road user perception. A driving simulator study explored spontaneous gaze behavior during colli-
sion judgements15. Similar to what is reported for time-to-arrival prediction using abstract stimuli11, drivers 
are found to perform a series of saccades between the approaching vehicle and intersection. However, since the 
drivers need to integrate both the motion of the other vehicle and their own motion towards the intersection to 
solve a collision judgement task, it remains difficult to disentangle whether the observed gaze patterns serve the 
purpose of estimating their own time-to-arrival at the crossing point or the time-to-arrival of the approaching 
vehicle. A series of recent studies investigated the effects of gaze location on drivers’ speed estimates of approach-
ing vehicles at an intersection16,17. In a two-interval forced choice task, observers judge the speed to be lower 
when they fixate towards the centroid of an approaching vehicle as compared to its front. Moreover, the size of 
the approaching vehicle influences how observers spontaneously sample visual information as indicated by a 
tendency of observers to place gaze towards the front of smaller sized vehicles and towards the centroid of larger 
sized vehicles. The authors suggest that different visual sampling strategies used by observers when estimating 
vehicle speed may be partly responsible for perceptual biases such as the size-speed illusion, i.e., larger vehicles 
appear slower in their approach18. This conclusion is particularly interesting with regards to the effect of size 
depending on the type of estimate being performed. While larger objects appear to move slower, they also appear 
to arrive earlier, an effect termed the size-arrival effect19. When directly comparing both size effects in a traffic 
scenario simulating a driver’s view at an intersection, an effect of vehicle size is only found on speed but not on 
time-to-arrival judgments20. If the perceptual bias on the perceived speed originates in gaze behavior, this may 
imply that spontaneous gaze behavior differs between the two judgements.

While research on driving behavior can provide some important insights into the connection of gaze behavior 
and road user perception, it remains unclear how pedestrians use and sample visual information when evaluat-
ing whether the approaching traffic allows them to cross safely. One important aspect is the relevance of various 
motion parameters for pedestrians’ evaluation of the approaching traffic. For example, while pedestrians’ cross-
ing decisions correlate highly with the time-to-arrival of vehicles at the crossing point21,22, other parameters 
such as vehicle speed and distance have been shown to both bias time-to-arrival estimates and affect crossing 
decisions23,24,25. Another important aspect concerns where pedestrians pay attention to evaluate those parameters. 
Exploring eye movements in a simple road-crossing scenario could help bringing some clarification to these 
questions. Here, we specifically focus on two commonly considered motion parameters for road user interactions, 
i.e., the speed and time-to-arrival of vehicles. We assessed spontaneous gaze behavior during speed and time-to-
arrival judgements to explore how eye movements influence task performance in a virtual road-crossing scenario. 
This allowed us as well to address the question of which visual cues observers attend to in order to evaluate the 
different motion parameters of the approaching traffic. Moreover, if eye movements were reflective of which kind 
of motion parameter an observer evaluates, they could as well provide some information about the perceptual 
demands pedestrians experience during crossing decision-making. There have been long-standing attempts to 
deduce task demands from eye movements. For example, eye movements could successfully discriminate between 
free viewing and visual search26 as well as between visual search and memorization27,28, supporting the idea that 
cognitive and perceptual processes can be decoded from gaze behavior29. In motion perception, however, there 
is little evidence on whether the evaluation of different motion parameters is reflected in distinctive gaze pat-
terns. Complementary to the goal of testing the functional relationship between eye movements and perceptual 
estimates, we tested to which extent basic eye movement metrics could predict the perceptual task.

In the present study, we first address the question of how observers use and sample visual information in 
a road-crossing scenario and whether gaze behavior differs depending on whether observers are asked to dis-
criminate vehicle speed or time-to-arrival. We secondly explore to which extent eye movements are predictive 
of the discrimination task by training and testing a classification algorithm to discriminate the tasks based on 
gaze patterns. To do so, we presented participants with video sequences of a simulated road scene displaying an 
approaching vehicle varying in speed and time-to-arrival as viewed from a pedestrian’s point of view at a zebra 
crossing. After a fixed display interval, the vehicle disappeared. Each discrimination was performed within a 
two-interval forced choice task prompting participants to either identify the interval displaying the faster vehicle 
(speed discrimination task) or the interval displaying the vehicle that would have arrived earlier at the road cross-
ing (time-to-arrival discrimination task). This allowed us to use tasks that differed only in regard to the motion 
parameter participants were asked to evaluate. Additionally, it allowed us to assess discrimination sensitivities 
in a simulated but more naturalistic task scenario compared to the stimuli commonly employed in basic vision 
studies. Thirdly, we address the question of how the previously described effects of eye movements on speed and 
time-to-arrival judgements generalize to a road-crossing scenario by investigating the influence of gaze behavior 
on discrimination performance.

Here, we focus on the upper limits in acquiring information about the speed and time-to-arrival of vehi-
cles under ideal conditions in terms of visual sampling (the scenes provided clear visibility and were visually 
uncrowded), predictability (vehicles approached at a constant speed and disappeared from sight after a fixed 
display interval) and cognitive demands (there was no competition for cognitive resources, such as when moni-
toring vehicles on multiple lanes, following a conversation or texting). For this reason, no elements other than 
the car or the road were simulated. Those idealized and well-controlled conditions enable a first step to be taken 
towards understanding the determinants of pedestrian behavior.
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Methods
Observers.  Fifteen participants (9 women, 18–43 years old, mean age 27.7 ± 7.3 years), including the authors 
JS and DS, took part in the experiment. All participants had normal or corrected-to-normal vision and their 
visual acuity was verified prior to the experiment. The study was conducted in accordance with the principles of 
the Declaration of Helsinki and approved by the University of Leicester’s ethical committee. Written informed 
consent was sought from all participants prior to the experiment.

Apparatus.  Stimuli were displayed on a CRT monitor (HP P1130 CRT) with a 1280 by 1024 pixels screen 
resolution and 85 Hz refresh rate. We used the Psychophysics Toolbox Version 3 (PTB-330) in Matlab to display 
pre-generated videos of a simulated road scene created in Unity3D 2018.3.1f1. The videos had a 1280 × 1024 
resolution and were displayed full screen, corresponding to approximately 30 × 25 degrees of visual angle. A 
chin rest was used to stabilize participants’ head at a 66  cm distance from the screen. Eye movements were 
recorded using an Eyelink 1000 eye tracker31 at a 1000 Hz sampling rate. Participants responded by pressing one 
of two buttons corresponding to the selected interval on a keyboard. Eye movement and response data were pre-
processed in Matlab R2018b32 and statistical analyses were performed in the R software environment33 using the 
e1071 package for training and testing the Support Vector Machines34, the lme4 package for generalized linear 
mixed model analyses35 and the dominanceanalysis package for dominance analyses36.

Design and procedure.  The video sequences depicted a white car approaching a road crossing area at a 
constant speed on a single-lane rural road with a virtual width of 3.36 m. The vehicle resembled a Ford Focus 
Sedan model with approximate dimensions of 4.53 × 1.82 × 1.47 m. The simulated eye height of the observer was 
1.6 m and the distance between the observer and the curb was 0.64 m. Figure 1A shows a sample image from the 
video sequences used in the experiment.

Using a within-subjects design, participants completed the speed and the time-to-arrival discrimination task 
in two separate sessions. The task order was counterbalanced between participants. Each discrimination was 
based on a two-interval forced choice task prompting participant to either identify the interval displaying the 
faster vehicle (speed discrimination) or the interval displaying the vehicle that would arrive earlier (time-to-
arrival discrimination). Each of the two intervals was preceded by a black fixation dot, which was displayed for 
0.8 s at the center of the screen. The simulated vehicle then approached the road-crossing area for 3 s before the 
vehicle disappeared and the road scene remained visible for an additional 2 s. After viewing both intervals and 
indicating which interval contained the faster vehicle or the vehicle that would have arrived first, participants 
received auditory and visual feedback about the correctness of their response. Figure 1C shows a trial sequence 
and a demonstration of the tasks can also be foundonline (https://​doi.​org/​10.​25392/​leice​ster.​data.​12861​119.​v1).

In the standard interval, the vehicle approached the road crossing area with a constant driving speed of 
50 km/h and had a remaining time-to-arrival at the stopping line of 3.04 s when it disappeared. For both tasks, 
we used the same 81 unique variations of the comparison interval, which resulted from the combination of nine 
vehicle speed levels (10, 20, 30, 40, 50, 60, 70, 80, 90 km/h) and nine time-to-arrival levels (1.44, 1.84, 2.24, 2.64, 
3.04, 3.44, 3.84, 4.24, 4.64 s). Since we employed a fixed display time, the start position and the end position the 
vehicle reached before disappearing necessarily varied as a function of its speed and time-to-arrival, resulting 
in an association between speed, starting distance (Fig. 2A) and end distance (Fig. 2B) as well as between time-
to-arrival, starting distance (Fig. 2C) and end distance (Fig. 2D).

In each task, participants viewed three test blocks displaying all 81 speed and time-to-arrival combinations 
in randomized order, resulting in a total of 243 trials per session. The presentation order of the standard and 
comparison interval was randomized between trials. The direction from which the two vehicles approached (as in 
Fig. 1A or its mirror image flipped around the vertical axis) was alternated between trials, but both the standard 
and comparison vehicle always approached from the same direction.

Data analysis.  Perceptual judgements.  We fitted two cumulative normal functions to each participant’s 
response data using a maximum likelihood method implemented by the Palamedes toolbox37 in Matlab. The first 
function modeled the relation between vehicle speed and the proportion of judgements indicating that the com-
parison vehicle was perceived as being faster (“faster” judgements). The second function modeled the relation 
between the time-to-arrival and the proportion of judgements indicating that the comparison vehicle was per-
ceived as arriving earlier (“earlier” judgments). The slope, point of subjective equality (PSE; between the minimal 
and maximal stimulus value), lapse rate (between 0 and 0.1) and guess rates (between 0 and 0.05) were free to 
vary and were fitted separately for each participant. Our primary interest was to estimate the just-noticeable dif-
ferences (JNDs), i.e., the differences in the speed and time-to-arrival of the vehicles that participants could reli-
ably discriminate. We calculated the JNDs for each participant and task as half the difference between the value 
that generated 75% and 25% “faster” or “earlier” responses. The standard errors of the estimated JNDs as well 
as each functions’ deviance, a statistic that relates to the likelihood of the model fit relative to a saturated model 
fit38, were used to assess the goodness-of-fit of the psychometric functions39. Weber fractions were calculated by 
dividing the JNDs by the respective standard speed (50 km/h) and time-to-arrival (3.04 s).

Since there was no manipulation implemented that distinguished the standard and comparison interval 
stimulus other than its speed and time-to-arrival, comparison vehicles driving at 50 km/h or having a remain-
ing time-to-arrival of 3.04 s should theoretically yield 50% of responses “faster” or “earlier” as they were identi-
cal to the standard in this case. To examine for response biases, we extracted the PSEs from each participant’s 
psychometric function to test this assumption. We further investigated the presence of an interval bias, which 
is often observed in two-interval forced choice tasks39 by fitting a psychometric function to the proportion of 
times the vehicle in the second interval was judged to move faster or to arrive earlier in relation to its speed or 
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time-to-arrival. An interval bias would be reflected in a shift of the PSE, indicating a propensity to choose one 
interval over the other.

To explore participants’ use of motion and position cues, we performed logistic regressions to predict each 
participant’s “faster” and “earlier” responses by vehicle speed, time-to-arrival, start and end position. Subse-
quently, we conducted dominance analyses to assess each predictor’s general dominance, i.e., the average addi-
tional variance explained by an individual factor pitted against all other combinations of factors, to determine 
the relative predictor importance40,41.

Eye movements.  For all analyses reported herein we used the gaze data recorded during the comparison inter-
val. We selected this interval as we assumed that participants could internalize the motion of the standard vehicle 
during the course of the experiment, resulting in gaze behavior during the standard interval being less indicative 
of performance. On the other hand, we expected a higher trial-by-trial variation in participants’ gaze behavior 
due to the different comparison vehicle trajectories, which would make it more difficult to detect overarching 
differences between perceptual tasks. We therefore repeated all analyses with gaze data recorded during the 
standard interval. The comparison of gaze behavior between the two tasks yielded similar results for both the 
standard and comparison interval. In terms of the effect of gaze on performance, we found slightly different 
effects for the standard interval, which we discuss briefly and report in further detail in the supplementary mate-
rial.

To identify blinks and saccades in the gaze data we used the Eyelink event detection algorithm implemented 
in the EyeLink 1000 Host Application software31 with a velocity threshold of 22◦ /s and an acceleration threshold 

Figure 1.   Sample image from the video sequences used in the experiment. (A) Shows the visual scene as seen 
by the participants. (B) Shows the Areas of Interest (AOIs) of the road crossing area (green) and vehicle (red) 
overlaying the visual scene. The center of the vehicle AOI was used to calculate the horizontal and vertical gaze 
position deviation. (C) Shows a trial sequence. Display times in seconds are indicated in brackets.
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of 5000◦/s2. A moving average of gaze velocity over the last 40 ms is added to the velocity threshold to account 
for smooth pursuit eye movements in the saccade detection (fixup limit = 60°/s). Eye movements were filtered for 
blinks and saccades and the removed data were interpolated linearly. Trials were excluded when the interpolated 
data exceeded 50% of all samples in either interval. One participant was excluded from the eye movement analysis 
due to the number of excluded trials exceeding 50% of all trials in the speed condition. Across the remaining 
participants 429 trials (6% of all trials) were removed.

We derived the following eye movement measures from the eye movement recordings using custom Matlab 
scripts: pursuit gain, relative and absolute horizontal and vertical gaze position deviation, number and average 
amplitude of saccades and number of saccades targeted towards the road crossing area (before and after the vehi-
cle disappeared). Pursuit gain describes the angular gaze velocity relative to the angular velocity of the pursued 
target. A gain > 1 signifies that gaze was faster than the vehicle, a gain < 1 signifies that gaze was slower. For the 
computation of pursuit gain we calculated gaze and target velocities by deriving angular velocities based on the 
cross product of consecutive 3-dimensional gaze and target vectors in a world reference frame42. Although origi-
nally aimed at providing gaze estimates in a 3D virtual environment, we adopted this procedure for the present 
study as it allows for a more precise approximation of angular velocity compared to the commonly used approach 
of assuming the angular velocity of a stimulus projected on the screen is the same for different gaze-angles relative 
to the screen. The resulting gaze velocity profiles were filtered using a low-pass, second-order Butterworth filter 
with a cut off frequency of 10 Hz before entering them in the pursuit gain computation. The first saccade after 
vehicle onset was removed before counting the total number of saccades and deriving the average amplitude. To 
determine the number of saccades towards the road crossing area and the deviation of participants’ gaze position 
from the position of the car, two areas of interest (AOIs) were defined (see Fig. 1B). One AOI covered the road 
crossing area including the pedestrian crossing and stopping line. For the second AOI a rectangle was defined, 
which spaciously covered the visual borders of the vehicle. The size of the vehicle AOI increased dynamically 

Figure 2.   Distribution of the start and end position of the vehicle across speed and time-to-arrival levels. Start 
and end position were measured as the distance between the front edge of the vehicle and the stopping line in 
the virtual world in meters (m). Upper panels show the association between vehicle speed, start distance (A) 
and end distance (B). Lower panels show the association between the time-to-arrival, start distance (C) and end 
distance (D).
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according to the increasing size of the displayed car during approach. The center of the vehicle AOI was used to 
calculate the average horizontal and vertical gaze position deviation in visual degrees. The absolute deviation 
describes the vertical and horizontal deviation of gaze from the AOI center independent of its direction. The 
relative deviation includes the directional information with a positive deviation indicating that gaze was placed 
above (relative vertical deviation) or ahead of the AOI center (relative horizontal deviation). Pursuit gain as well 
as relative and absolute position deviations were averaged for the 2–3 s time interval before the car disappeared. 
We chose this temporal window because the retinal speeds of the approaching vehicles were too slow to allow 
for an accurate measurement of pursuit gain in earlier intervals when the vehicles were still at a greater distance.

Outliers in the gaze data of each observer were detected using a median absolute distance criterion (MAD)43 
and data points were removed if they exceeded a cut-off value of 3.5 in the case of symmetric distributions and 
by using a double-MAD criterion with a cut-off value of 4.5 when distributions were asymmetric, as it was the 
case for the number and amplitude of saccades. On average, 4.27% (min = 3.08%, max = 7.26%) of data points 
per observer were removed.

To compare the eye movement measures between conditions we performed a repeated measures MANOVA 
on the averaged gaze data of each task. Moreover, we used the trial-by-trial eye movement data to train a Support 
Vector Machine (SVM) to predict the perceptual task for each participant based on gaze behavior. The objective 
of an SVM classifier is to find decision boundaries in the values of the given features that discriminate between 
the classes (here perceptual tasks) they originate from. The defined decision boundaries are then employed to 
predict the class affiliation of new data points. We employed a cross-subject validation procedure: in each of 
the 14 iterations, the data of one participant were set aside and the classifier was trained on the remaining par-
ticipants. The classifier was then tested on the omitted participant and the procedure was repeated until each 
participant served as a test. To test for idiosyncratic gaze patterns, we trained a second classifier to predict the 
observer using a tenfold cross validation procedure, in which each iteration randomly set aside 10% of the data 
to be used as the test set44. To evaluate the performance of the classifiers, we derived the average accuracies of 
predictions (across participants and folds) and compared them to the no information rate, i.e., the accuracy of 
predictions achieved by always predicting the class with the highest number of data points in the test set, using 
binomial testing45. We further performed permutation tests to compare the average accuracy of predictions 
against the null hypotheses that the data and class labels are independent. Permutation-based p-values based 
on 1000 random permutations for each of the two class labels (perceptual task and observer) were calculated by 
dividing the sum of accuracies gained from the randomized datasets that were equal or higher than the average 
accuracies gained from the original dataset by the number of permutations46,47.

To investigate the influence of gaze behavior on discrimination performance, the trial-by-trial eye move-
ment measures were entered as predictors in a hierarchical logistic regression model predicting the proportion 
of correct responses in each task.

The study was not pre-registered. The data and materials can be accessed on the OSF project website (https://​
osf.​io/​tdkr3/).

Results
In two separate sessions, participants discriminated the speed and time-to-arrival of approaching vehicles. 
We measured participants’ gaze behavior during both conditions and investigated its effects on discrimination 
performance.

Speed and time‑to‑arrival discrimination.  Figure 3A shows the psychometric functions fitted to the 
response data of one exemplar participant. In the speed discrimination task, the fitted model of one participant 
deviated significantly from the saturated model (Dev = 30.81, p < 0.001). We therefore excluded the data of this 
participant from further analyses of the speed discrimination responses. For the remaining participants, the 
standard errors of the JND and deviances indicated good fits (mean SE = 3.72 km/h, min = 1.48, max = 17.95; 
mean Dev = 8.07,  min = 2.43, max = 13.83, all p > 0.060). The estimation of JNDs in the speed discrimination 
task (see Fig. 3B) indicated that on average participants were able to discriminate speed differences of 18.08 km/h 
(SD = 12.05 km/h).

The JNDs in the time-to-arrival discrimination task indicated that participants could on average discriminate 
time-to-arrival differences of 0.72 s (SD = 0.31 s), with a good fit of the psychometric functions to the data of all 
participants (mean SE = 0.11 s, min = 0.05, max = 0.40; mean Dev = 7.78, min = 1.94, max = 13.12, all p > 0.050). 
The corresponding average Weber fractions (see Fig.  were 0.38 (95% CI [0.25, 0.51]) for speed discrimination 
and 0.24 (95% CI [0.18, 0.29]) for time-to-arrival discrimination, respectively (see Fig. 3C). A Wilcoxon signed 
rank sum test indicated that Weber fractions for the majority of participants were higher for speed discrimina-
tion compared to time-to-arrival discrimination (z = 2.45, p < 0.010, n = 14).

As noted above, the standard and comparison were identical except for the differences in the vehicle speed 
and time-to-arrival and therefore we did not expect any response bias for the comparison interval when the 
time-to-arrival or speed were the same as the standard, i.e., we expected the PSE to be at the standard level. The 
confidence interval for the PSE in speed (mean = 49.27 km/h, 95% CI [47.06, 51.49 km/h]) and time-to-arrival 
judgements (mean = 3.08 s, 95% CI [3.02, 3.14 s]) contained the standard speed (50 km/h) and time-to-arrival 
(3.04 s) confirming that there was no response bias.

We further investigated the presence of an interval bias by fitting the psychometric functions to the proportion 
of times the vehicle in the second interval was judged to move faster or to arrive earlier. The confidence interval for 
the PSE in the speed task (mean = 46.14 km/h, 95% CI [43.87, 48.40 km/h]) indicated a slight tendency to select 
the second interval independently of the difference in the speed between comparison and standard interval. The 
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confidence interval in the time-to-arrival task (mean = 3.71 s, 95% CI [3.15, 4.26 s]) indicated that participants 
had as well a tendency to respond that the vehicle in the second interval would have arrived earlier.

Influence of motion and position cues on speed and time‑to‑arrival judgements.  By combining 
the nine speed and time-to-arrival levels, the approach speed of the comparison vehicle and its remaining time-
to-arrival after the fixed display interval varied independently. Due to the nature of this manipulation, however, 
the vehicle’s start and end position could not be independent of its speed and time-to-arrival (see Fig. 2), which 
rendered the vehicle position a cue for the vehicle’s speed and time-to-arrival, albeit not always a reliable one. 
We explored how participants took these parameters into account by performing logistic regressions enter-
ing vehicle speed, time-to-arrival as well as start and end position as variables for predicting each participant’s 
“faster” (speed discrimination task) and “earlier” (time-to-arrival discrimination task) responses. Subsequently, 
we performed dominance analyses to quantify the relative contribution of the different factors to the model fit. 

Figure 3.   Example of psychometric functions of one participant, JNDs and Weber fractions. (A) The 
left panel shows the proportion of trials the exemplar participant judged the comparison vehicle as faster 
than the standard vehicle as a function of vehicle speed. The right panel shows the proportion of trials the 
exemplar participant judged the comparison vehicle as arriving later as a function of vehicle time-to-arrival. 
The proportion of “later” responses was calculated from the participant’s “earlier” responses and plotted to ease 
comparison. (B) Shows JNDs of all participants in the speed discrimination task (left panel; N = 14) and time-
to-arrival discrimination task (right panel; N = 15). (C) Shows the Weber fractions for speed and time-to-arrival 
discrimination. Crossbars indicate median values. Whiskers depict the 1.5 × interquartile ranges.
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For comparison, we performed the same analyses for a theoretical observer who would respond “faster” (or 
“earlier”) whenever the comparison vehicle was faster (or earlier) than the standard vehicle. To this observer 
model, we added a source of Gaussian noise with a mean of 0 and a standard deviation that varied per participant 
and was estimated from the standard deviation of the Gaussian fit to the actual proportion “faster” or “earlier” 
responses. This allowed us to evaluate the importance of each cue relative to a theoretical observer that would 
only respond based on the instructed cue (vehicle speed or time-to-arrival), meaning that any relevance of other 
cues in the theoretical observer would only reflect co-variation between cues and not the participant’s strategy.

Figure 4 plots the general dominance measures, i.e., the average conditional contribution of each predictor 
to all subset model fits based on the R2

M index (an R2 analogue for logistic regression), for both the participants 
and theoretical observer models41. For speed judgements, we found that vehicle speed was the generally domi-
nant predictor for participants’ responses (mean = 0.16, 95% CI [0.13, 0.18]) followed by the start (mean = 0.12, 
95% CI [0.10, 0.15]) and end distance of the vehicle (mean = 0.09, 95% CI [0.07, 0.10]). Although vehicle speed 
and time-to-arrival varied independently, participants based their judgements more on the time-to-arrival of 
the vehicles (mean = 0.06, 95% CI [0.04, 0.08]) than would have been expected from a theoretical observer that 
only responded to vehicle speed (mean = 0.02, 95% CI [0.01, 0.02]). In terms of time-to-arrival judgements, we 
found that participants responses were considerably less well predicted by the actual time-to-arrival of the vehicle 
(mean = 0.15, 95% CI [0.12, 0.18]) compared to a theoretical observer responding based on time-to-arrival alone 
(mean = 0.21, 95% CI [0.18, 0.24]). Instead, the use of vehicle position, i.e., start (mean = 0.08, 95% CI [0.06, 0.10]) 
and end distance (mean = 0.11, 95% CI [0.09, 0.13]) of the vehicle, was more dominant than expected from the 
respective observer models (start: mean = 0.06, 95% CI [0.05, 0.07]; end: mean = 0.08, 95% CI [0.07, 0.09]). Vehicle 
speed affected time-to-arrival judgements only little (mean = 0.05, 95% CI [0.04, 0.06]).

Comparison of eye movements during perceptual judgements.  Figure 5A shows the eye move-
ment traces of one exemplar participant. Low absolute and relative position deviations indicate that in both 
conditions participants fixated closely towards the vehicle’s AOI center. As the approaching vehicle came closer, 
participants tracked it via a combination of smooth pursuit and catch-up saccades. Figure 5B shows pursuit 
gain averaged over all participants and trials during the speed and time-to-arrival discrimination task. After an 
initial deflection, which is likely artefactual and resulting from dividing the gaze velocity during the orienta-
tion towards the vehicle by a very slow retinal velocity of the vehicle approaching from a distance, pursuit gain 
increased to an average value of around 0.9 in both conditions. After 3 s the vehicle disappeared and partici-
pants gain decayed. An overshoot in the gain decay can be observed when the stopping of the pursuit target is 

Figure 4.   Average contribution of vehicle speed, time-to-arrival, start and end distance of the comparison 
vehicle to the model fits (R2

M) predicting the probability of “faster” or “earlier” responses. Average contributions 
are plotted as dots for each participant in (A) the speed discrimination task (N = 14) and (B) the time-to-arrival 
discrimination task (N = 15). Crossbars indicate the median. Whiskers depict the 1.5 × interquartile ranges. 
For comparison, average contributions are also plotted for a theoretical observer model responding only to 
the vehicle speed or time-to-arrival. The inserted panel depicts a general linear model fit for one exemplar 
participant predicting the proportion “faster” responses as a function of vehicle speed.
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unpredictable48. Although in our study all vehicles disappeared after a fixed display time of 3 s, the travelled 
distances of the vehicles varied and the overshoot in the gain decay is therefore likely to be explained by the 
unpredictability of the disappearance event. In both conditions, saccades towards the road crossing AOI were 
performed only in few trials (3% of all trials) and occurred mostly after the approaching vehicle disappeared.

Descriptive statistics of the averaged eye movement data showed little differences in participants’ gaze behav-
ior between speed and time-to-arrival judgements. To compare the eye movement measures between conditions 
while accounting for multiple comparison testing, we performed a repeated measures MANOVA. Using Wilks’s 
Lambda, we found no overall significant effect of task on eye movement behavior (Ʌ = 0.362, F(9,5) = 0.98, 
p = 0.541). All univariate comparisons of gaze measures were also non-significant (all p > 0.05, see Table 1 for 
descriptive statistics and F-values).

Predicting the observer and perceptual task from eye movements.  Variability between observers 
in their individual gaze patterns may impede the detection of overarching differences between the two percep-
tual tasks. To explore the prevalence of idiosyncratic gaze patterns, we trained an SVM to predict the observer 
based on the eye movement features listed in Table 1. We trained the classifier to perform a non-linear clas-
sification using a radial kernel and tested its performance using a tenfold cross validation procedure. The SVM 
was able to determine the observer significantly above the level that would have been expected without prior 
training (Accuracy = 0.31, CI [0.30, 0.33], No Information Rate = 0.09, p(one-sided) < 0.001). As indicated by the 
permutation test, the classifier was also significantly better at predicting the observer than it would have been 
expected under the null hypotheses assuming that eye movements and observers were independent (p(one-

Figure 5.   Example of eye movement traces and average pursuit gain. (A) Shows the horizontal and vertical 
vehicle trajectory and unprocessed eye movement traces of one participant in degrees of visual angle. The 
solid black line denotes the visible vehicle trajectory. The dotted black line denotes the extrapolated vehicle 
trajectory (assuming constant velocity) after the vehicle disappeared. Saccades are marked in red. (B) Shows 
pursuit gain averaged over participants (N = 14) and trials. Shaded areas indicate standard errors of the sample 
means. The 2–3 s time interval before the car disappeared was used as the averaging interval for pursuit gain, 
relative and absolute position deviations.

Table 1.   Means, standard deviations and F-statistics from univariate comparisons of eye movement measures.

Speed
Time-to-
arrival

F(1,13) pM SD M SD

Gain 0.90 0.12 0.84 0.13 2.54 0.135

Rel. position deviation (°)

Vertical 0.68 0.53 0.72 0.53 0.09 0.767

Horizontal 0.53 0.11 0.51 0.16 0.02 0.900

Abs. position deviation (°)

Vertical 0.95 0.30 0.96 0.37 0.02 0.906

Horizontal 1.35 0.45 1.44 0.42 0.82 0.383

Number of saccades 2.96 1.01 3.02 1.20 0.24 0.631

Amplitude of saccades (°) 1.09 0.28 1.13 0.23 1.11 0.311

Number of saccades to road-crossing area

Before car offset 0.01 0.01 0.01 0.01  < 0.01 0.975

After car offset 0.04 0.06 0.04 0.06  < 0.01 0.969
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sided) < 0.001). As shown in Fig.  6A, idiosyncratic gaze patterns were distinct enough to identify individual 
observers.

We trained a second classifier to predict the perceptual task using the same eye movements features and model 
specifications. Only in 2 out of 14 participants we obtained predictions that exceeded the no information rate, 
suggesting that differences in the eye movement recordings were not sufficient in the majority of participants 
to discriminate between the two tasks. The average accuracy of predictions across participants was even below 
the no information rate (Accuracy = 0.48, 95% CI [0.45 0.49], No Information Rate = 0.52; see Fig. 6B) and thus, 
there was no need to test whether the classifier performed significantly better. The permutation test indicated 
that the average prediction accuracy did not exceed the accuracy expected for independent eye movement and 
task labels (p(one-sided) = 0.500).

Both algorithms used a relatively high percentage of observations as support vectors (observer classification: 
69%, task classification: 59%), indicating that in both cases a high number of training samples was necessary to 
build the classification models.

Influence of eye movements on performance.  To investigate the influence of gaze behavior on discrim-
ination performance, we specified two logistic regression models predicting the likelihood of correct responses 
in each task from eye movement measures. We excluded the number of saccades towards the road crossing AOI 
as these occurred only very infrequently. Using a generalized linear mixed model (GLMM) approach, we added 
random effects for the observer as well as the speed and time-to-arrival of the comparison vehicle to the models 
to ensure the generalization of the results to different observers, vehicle speeds and arrival times. Our final mod-
els included the number and amplitude of saccades, relative and absolute horizontal and vertical position devia-
tions as well as pursuit gain as fixed effects and observer, vehicle speed and time-to-arrival as random effects. All 
included fixed effects measures were averaged across the interval in which the vehicle was visible.

The maximal model did not converge for neither the speed nor time-to-arrival task. A common and often 
recommended first step is to simplify the random effects structure by dropping the assumed correlation between 
intercepts and slopes, i.e., constraining the correlation parameters between the intercepts of random factors 
and coefficient estimates to zero49. With the reduced models we achieved convergence. A comparison between 
the models and more parsimonious models with a further simplified random effects structure indicated that a 
further reduction did not improve the model fits, as demonstrated by similar or lower likelihoods and similar or 
higher Akaike information criteria (AICs) for the reduced models, which underpinned our final model selec-
tion. Multicollinearity among the fixed predictors was measured by the variance inflation factors (VIF), which 
provided no substantial evidence of multicollinearity in the two models (speed model: all VIF < 1.21; time-to-
arrival model: all VIF < 1.81).

All parameter estimates from our final models are reported in Table 2. In the time-to-arrival model, the 
number and amplitude of saccades were significant predictors for discrimination performance suggesting that 
performance increased with a decreasing number of saccades and with increasing amplitudes (see Fig. 7). In the 
speed task, none of the included eye movement measures could predict correct responses.

Discussion
The present study addressed the question of how pedestrians sample visual information about the speed and 
time-to-arrival of approaching vehicles and how eye movements influence perceptual judgements in road traffic. 
We tested speed and time-to-arrival discrimination of approaching vehicles as seen from the side of a road and 
explored the spontaneous gaze behavior that subtends those judgements.

Discrimination and cue use.  Assessing the discrimination thresholds (JNDs) for speed and time-to-arrival 
judgements, we found that observers were able to discriminate vehicle speed differences of 18.08 km/h and time-
to-arrival differences of 0.74 s. The corresponding Weber fractions were larger for speed discrimination (38%) 

Figure 6.   Confusion matrices of SVM predictions. (A) Shows the observer classification performance. (B) 
Shows the task classification performance.
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than for time-to-arrival discrimination (24%) and considerably exceeded the speed discrimination sensitivities 
reported previously for abstract moving stimuli (5–12%)50–52. We assume that the simulated perspective in our 
road-crossing scenario may have contributed to the comparably low speed discrimination sensitivities. When 
standing at the edge of a road, pedestrians typically view vehicles approaching from an oblique angle. Compared 
to translational motion presented on the frontoparallel plane, the physical speed does not directly translate to 
retinal image speed and retinal speeds are less indicative of physical speed the farther away the vehicles are 
from the observer. Previous research investigating speed discrimination of looming stimuli demonstrated that 
observers draw on sub-optimal strategies in such cases, e.g., relying on the distance or size of a moving object53. 
Although we observed that vehicle speed was the main predictor for speed judgements, responses were also 
biased by the time-to-arrival of the vehicles, indicating that observers drew on other, irrelevant cues for speed 
discrimination. The lack of stereoscopic depth cues and relative scarcity of our virtual scenario may have further 
hampered factoring out distance when comparing vehicle speeds54. In a real-life road-crossing scenario we may 
expect discrimination to improve when further distance and depth cues are available. Moreover, the increased 
visual angle the vehicles would span when viewed in real-life would provide a stronger motion signal than in 
our setup. For example, at a simulated distance of 50 m from the observer, the image of the vehicle’s front plane 
spanned around 0.95 degrees of visual angle (as viewed from a 66 cm distance from the display). When trans-
ferred to real-life, the vehicle’s front plane would span around 2 visual degrees. Although the differences in visual 
angles covered by the front plane of the vehicle were negligible when vehicles were far away, they increased as the 
vehicle approached the observer. It remains to be tested whether a more realistic simulation of the viewing angles 
at vehicle distances relevant for road-crossing decisions would improve speed discrimination.

Table 2.   Effects of eye movements during the comparison interval on correct discrimination (GLMM 
analysis). *Significant at p < 0.05. **Significant at p < 0.01. ***Significant at p < 0.001.

Model speed Model time-to-arrival

Estimate SE z p Estimate SE z p

(Intercept) 1.47 0.34 4.31  < 0.001*** 1.79 0.38 4.62  < 0.001***

Gain  − 0.04 0.06  − 0.67 0.506 0.07 0.06 1.14 0.254

Number of saccades 0.05 0.04 1.07 0.283  − 0.14 0.05  − 3.13 0.002**

Amplitude of accades (°)  − 0.10 0.09  − 1.17 0.244 0.21 0.10 2.08 0.037*

Rel. position deviation (°)

Horizontal  − 0.06 0.11  − 0.59 0.558  − 0.04 0.07  − 0.48 0.633

Vertical 0.09 0.17 0.55 0.581  − 0.13 0.13  − 0.95 0.342

Abs. position deviation (°)

Horizontal 0.02 0.15 0.13 0.896  − 0.01 0.07  − 0.14 0.889

Vertical 1.51 0.19 0.82 0.411 0.02 0.15 0.14 0.886

Figure 7.   Effects of gaze behavior towards the comparison vehicle on discrimination performance. Panels 
depict the predicted proportion of correct responses in the time-to-arrival discrimination task by (A) the 
number saccades and (B) the amplitude of saccades. Shaded areas represent the 95% confidence interval.
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In terms of time-to-arrival discrimination, we found that responses were considerably less well predicted 
by the actual time-to-arrival of the vehicles than expected from an unbiased response model, i.e., a theoretical 
observer responding to the time-to-arrival alone. This was to the benefit of position cues, i.e., the start and end 
distance of the vehicles to the stopping line, which were on average more predictive of responses than expected by 
their covariation with time-to-arrival alone, indicating that observers overly relied on vehicle distance. An over-
use of distance information in time-to-arrival judgements has been previously demonstrated for both abstract 
motion stimuli55 and simulated vehicles even if other sensory cues, such as auditory information, are present56,57. 
However, a comparably high variation across observers in terms of the predictor importance of the start and end 
distance of the vehicles compared to the theoretical observer model suggested that observers differed in their use 
of positional cues. This is in line with previous studies reporting on the flexibility of strategies used for estimating 
time-to-arrival58 and suggests that perceptual strategies employed to evaluate whether the approaching traffic 
leaves sufficient time to cross may not necessarily be universal among pedestrians even under similar conditions.

For both types of judgements, we observed a small temporal-order effect indicating that the comparison 
vehicle was more likely judged to drive faster or to arrive earlier than the standard when displayed on the second 
interval. This bias is consistent with previous research showing that observers tend to select the second interval in 
similar types of judgements59 and may reflect the indecisiveness of our observers in their perceptual judgements39.

Comparison of eye movements during perceptual judgements.  We tested whether different per-
ceptual judgements would result in distinctive gaze patterns and whether the motion parameter an observer 
evaluates could be predicted from eye movements. We observed little differences in the averaged eye movement 
measures between speed and time-to-arrival judgements demonstrating that visual sampling was similar dur-
ing both perceptual tasks. Instead, the individual gaze patterns of participants were more pronounced than the 
differences in the eye movement behavior between the two tasks. Across tasks, the SVM classifier could identify 
observers with an accuracy of 31%, which was well above chance level. Although in our simulated scenes visual 
features were relatively scarce, this finding suggests that the stimuli still allowed for sufficient inter-individual 
variability to discriminate gaze behavior between participants. In contrast, the accuracy of task classification 
was only 48% and not better than chance. The low task classifier performance is in line with our comparison of 
the averaged eye movement data and suggests that there were no overarching differences in the assessed gaze 
behavior that could discriminate between the perceptual tasks across participants.

During both tasks, participants commonly fixated closely towards the center of the vehicle’s front plane and 
tracked it via a combination of smooth pursuit eye movements and catch-up saccades when it came closer. Prior 
studies exploring eye movements during time-to-arrival and motion prediction tasks reported saccades towards 
the crossing point as a characteristic feature of gaze behavior11,15. We did not observe such a behavior in our 
participants. Saccades towards the crossing area occurred very infrequently and could be observed only on a very 
low number of trials independent of the performed perceptual task. On the one hand, visual attention towards 
the crossing area might have played a minor role for time-to-arrival judgements in our study since observers 
were asked to perform relative judgements instead of predicting absolute arrival times. In that sense, the visual 
information provided by the vehicles, such as their relative size, looming and image speed, could have been suf-
ficient to solve the discrimination task. On the other hand, foveating the vehicles did not necessarily exclude that 
observers simultaneously assessed the location of the crossing point. Instead, due to the relative simplicity of our 
traffic scenarios, the location of the crossing point may have already been sufficiently available from peripheral 
vision60–62. While a more detailed sampling of the crossing point may aid motion prediction when observers 
respond to the arrival of a target11 or when self-motion during driving needs to be taken into account15, foveating 
the approaching vehicles while the crossing point was peripherally available was the preferred sampling strategy 
for relative arrival time judgements in our study and gaze behavior therefore differed little from the sampling 
strategy performed during speed judgements.

Influence of eye movements on performance.  The association of perceptual judgements with eye 
movement metrics, such as pursuit gain, number and amplitude of saccades and gaze location, have been well-
documented both in fundamental (with abstract stimuli) and applied contexts (with naturalistic stimuli). We 
explored how these relations generalize to pedestrians in a simple road-crossing scenario by modelling the effects 
of eye movements on the likelihood of correct discriminations. Smooth pursuit is suggested to aid motion pre-
diction by providing an extra-retinal motion signal in addition to retinal motion10 and improved performance 
during smooth pursuit compared to fixation has been previously demonstrated for time-to-arrival estimations8,9. 
When modeling the effects of eye movements, we did not observe an effect of pursuit gain on discrimination 
performance neither in the speed nor the time-to-arrival task, indicating that matching the velocity of gaze to 
the vehicle velocity did not noticeably improve performance. Our stimuli were designed to resemble the view of 
a pedestrian standing close to the road and the retinal velocity of the simulated vehicles in our study was at times 
very low due to the simulated approach angle, ranging between 0.07 and 1.22 deg/s averaged across the first sec-
ond of display and resulting in an almost static retinal image when vehicles were far away. We conclude that in a 
comparable road-crossing scenario, smooth pursuit may therefore play a minor role for motion discrimination 
unlike it does with the higher retinal velocities commonly used in pursuit studies.

Low positional deviations between gaze and vehicle position indicated that participants kept the vehicle 
foveated throughout approach and placed their gaze close the center of the vehicle’s front plane. This is in line 
with previous research demonstrating that observers naturally fixate towards the front plane of comparably sized 
vehicles when discriminating vehicle speeds16. We show that gaze was spontaneously directed towards the same 
position when observers discriminated the times-to-arrival of vehicles. Depending on the gaze location, the 
image speed of a moving object on the retina differs. Previous studies showed that gaze positions differ between 
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small and large vehicles, which may explain perceptual biases experienced in traffic such as the size-speed 
illusion16,17. In terms of discrimination between same-sized vehicles, however, our models indicated no effects 
of gaze position on performance. One explanation could be that the low variability of participants’ gaze position 
made it difficult to detect any positional effects. On the other hand, and especially for time-to-arrival judgements, 
it might have also been that the positional and looming information of the vehicle played a more important 
role for discrimination than retinal image speed, as indicated by the correlation of judgements with visual cues.

The number and amplitudes of saccades had a significant effect on performance in time-to-arrival discrimi-
nation. Participants were more likely to respond correctly when they performed fewer saccades and when the 
amplitudes of saccades were larger. Previous studies demonstrated that saccade execution is associated with a 
compression of the perceived time and distance between visual stimuli12,13, suggesting that saccades may as well 
impair accurate time-to-arrival judgements. Simultaneously, the compression varies only little with the ampli-
tude of saccades. A successful gaze strategy to estimate time-to-arrival in our scenario may have therefore been 
to fixate towards the vehicle and update gaze position with fewer, but larger amplitude saccades as the vehicle 
approached. As the retinal speeds were small, this would have allowed participants to keep the vehicle foveated 
while minimizing perceptual distortions during saccades.

We assumed that gaze behavior during the standard interval would be less indicative of performance due to 
observers being able to internalize the motion of the standard vehicle during the course of the experiments. We 
therefore primarily focused on the analyses of gaze data from the comparison interval. Visual sampling during 
the standard interval was overall similar to the comparison interval (see supplementary material) and as well 
failed to accurately discriminate between tasks. Performance in the time-to-arrival task could not be predicted 
from gaze behavior during the standard interval. In the speed discrimination task, the horizontal deviation of 
gaze from the vehicle and the number of saccades had a statistically significant effect on performance, suggesting 
that keeping the standard vehicle foveated and tracking the center of its front plane improved speed discrimina-
tion performance.

Limitations and transferability of the results to real road environments.  Our results can give an 
indication as to how pedestrians sample visual information when evaluating the speed and time-to-arrival of 
approaching traffic and on the discriminability of these motion parameters when assessed from a pedestrian’s 
perspective. The question remains of how transferable the results are to an actual road environment. The simu-
lated scenes used in our experiment were somewhat idealized, in the sense that they provided a clear visibility 
of the vehicle, which approached with a constant driving speed on a straight, single-lane road. Apart from basic 
textures and road markings, other visual elements in the scene were scarce, with no road signs, buildings or 
vegetation. Stimuli were displayed on a 2D monitor and hence, no binocular depth cues were available and 
viewing angles were smaller compared to a comparable real-life scenario. In terms of sensitivity, some of these 
factors may have impaired discrimination (e.g., the lack of binocular depth cues and visual elements in the road 
environment providing further distance information, smaller viewing angles), while others may have enhanced 
it (e.g., the absence of visual crowding and attentional competition). Further studies are needed to compare our 
discrimination thresholds to the sensitivities encountered in a real road-environment. With regard to previous 
research and our own findings, we would expect different road environments to yield considerably different 
sensitivities depending on the availability of visual cues in the specific scenario, which may as well interact with 
the individual cue use and gaze behavior of the observer.

In terms of gaze behavior, we found that eye movements could not be used to discriminate between perceptual 
judgements. We selected a discrimination task for this comparison as it enabled us to present participants with 
a similar task procedure that only differed in respect of the motion parameter in question. But how relevant 
is motion discrimination for road-crossing decisions? We suppose that a discrimination task resembles the 
informational requirements for identifying appropriate gaps between consecutive vehicles, which is suggested 
to incorporate an estimate of the difference between the time-to-arrival of a leading and following vehicle63. 
Gap selection would thus require a relative rather than absolute estimate of time-to-arrival to identify the most 
favorable opportunity for crossing. On the one hand, an absolute estimate of each vehicle’s arrival time might 
be a better representation of the perceptual requirements for collision avoidance. The sampling strategies we 
observed during relative time-to-arrival judgements differed from the gaze behavior reported earlier on absolute 
time-to-arrival judgements in motion prediction tasks11. If it was the difference in the perceptual requirements 
of the tasks that elicited the different sampling strategies, eye tracking could bring some clarification as to what 
role absolute and relative judgements play for crossing-decisions. On the other hand, we cannot rule out that 
the similarity of the sampling strategy employed for time-to-arrival judgements with speed judgements resulted 
from the simplicity of our scenario. It might be that eye movements would have been more distinct if the cross-
ing area was less well represented in the periphery, e.g., due to a higher eccentricity or a higher degree of visual 
crowding60,61. Further studies are needed to clarify whether the demands of the task or the virtual scene promoted 
the observed sampling behavior in which overt spatial attention was almost exclusively directed towards the 
approaching vehicles. With an increased field of vision and a more complex road scenario we may also expect 
not only eye movements but also head movements to be performed for visual sampling. When transferred to 
real-life, the angular size of the visible trajectories as displayed in our road scenario are below a visual angle for 
which we would expect a considerable contribution of head rotations for foveating the approaching vehicles 
(~ 20 visual degrees)64. Nevertheless, head rotations could play a role in a more complex crossing task, e.g., for 
monitoring traffic from multiple directions and for preparing and guiding self-motion. To generalize to a more 
complex road-crossing scenario, future studies should therefore take not only eye movements but also head 
movements into account when assessing the effects of visual sampling behavior on perceptual judgements and 
road-crossing decisions of pedestrians.
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Conclusion
When viewing a simulated traffic scene from a pedestrian’s point of view, observers could discriminate differ-
ences in vehicle speed of around 18 km/h and time-to-arrival differences of around 0.7 s. Compared to what 
has been previously reported with abstract motion stimuli, observers discriminated relatively poorly between 
vehicle speeds in our simulated scenario and responses were biased by irrelevant cues, such as the vehicle’s 
time-to-arrival. With regard of time-to-arrival judgements, observers varied in respect to their use of positional 
information and idiosyncrasies in spontaneous eye movements were sufficient to distinguish between observers. 
We found no differences in visual sampling that were sufficient to discriminate between the two tasks. Both the 
speed and time-to-arrival of vehicles were similarly sampled by keeping the gaze close to the center of the vehicle’s 
front plane. While pursuit and gaze position played a minor role for motion discrimination in the simulated 
road-crossing scenario, saccadic gaze behavior could predict time-to-arrival discrimination performance. A suc-
cessful visual sampling strategy involved few, but larger amplitude saccades. We conclude that understanding how 
observers sample and integrate visual information about approaching vehicles can provide valuable insights into 
the perceptual bases for navigation and collision avoidance of pedestrians in traffic. Our study  shows to which 
extentbasic vision research and driver simulation studies can predict pedestrians’ perception and eye movement 
behaviour in a naturalistic but very simple traffic scenario. Further studies are needed to explore visual sampling 
and perceptual judgments in more complex road-crossing scenarios.
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