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Exosomes from miR-374a-5p-modified mesenchymal stem cells inhibit the 
progression of renal fibrosis by regulating MAPK6/MK5/YAP axis
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ABSTRACT
Chronic kidney disease (CKD) in clinical is defined as a gradual loss of kidney function for more than 
3 months. The pathologic course of CKD is characterized by extensive renal fibrosis; thus, preventing 
renal fibrosis is vital for the treatment of CKD. It has been reported that microRNA (miR)-374a-5p was 
under-expressed in renal venous blood samples from patients with CKD. In addition, it exhibited anti- 
apoptotic effects in renal tissues suggesting that miR-374a-5p may play an important role in CKD. 
However, it is not clear whether miR-374a-5p could be delivered to renal cells by exosomes and exerts 
anti-renal fibrosis effects. To mimic renal fibrosis in vitro, human renal tubular epithelial cell lines (HK-2 
cells) were treated by transforming growth factor-β (TGF-β) 1. Reverse transcription-quantitative 
polymerase-chain reaction (RT-qPCR) or Western blot was carried out to evaluate the mechanism 
by which miR-374a-5p regulated the development of renal fibrosis. Next, exosomes were isolated 
using with ultracentrifugation method, and the relationship between miR-374a-5p and MAPK6 was 
evaluated using dual-Luciferase a reporter assay system. The results indicated TGF-β1 significantly 
down-regulated the expression of miR-374a-5p in HK-2 cells and miR-374a-5p agomir remarkably 
inhibited the progression of fibrosis in vitro. In addition, exosomal miR-374a-5p could be internalized 
by HK-2 cells and obviously enhanced the level of miR-374a-5p in HK-2 cells. Furthermore, exosomal 
miR-374a-5p prevented the progression of renal fibrosis in vivo by regulating MAPK6/MK5/YAP axis. In 
conclusion, exosomal miR-374a-5p inhibited the progression of renal fibrosis by regulating MAPK6/ 
MK5/YAP axis.
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Introduction

Chronic kidney disease (CKD) in clinical is 
defined as a gradual loss of kidney function for 
more than 3 months [1–3]. The pathologic pro-
gression of CKD is characterized by extensive 
renal fibrosis due to the accumulation of extracel-
lular matrix (ECM) [4–6]. Thus, early prevention 
of renal fibrosis is vital for the treatment of CKD 
[4]. Renal fibrosis is the process of renal fibrous 
tissue hyperplasia due to drug poisoning, hyper-
tension, diabetes, inflammatory stimulation, cyto-
kines and other pathogenic factors, and finally 
resulting in the loss of renal function [7–9]. In 
addition, renal fibrosis is characterized by 
enhanced reflection of the kidney, unclear bound-
ary between cortex and medulla, and even renal 
shrinkage [7,910]. Although there have been a lot 

of scientific studies on renal fibrosis, the specific 
occurrence and development mechanism of renal 
fibrosis remain unclear.

MicroRNAs (miRNAs) are small and non- 
coding RNAs [11,12]. MiRNAs play a crucial role 
in many diseases including cancer, liver fibrosis, 
renal fibrosis, etc. [13–15]. Exosomes are small 
vesicles mainly composed of proteins and nucleic 
acids with a diameter of 30–150 nm [16, 17]. As 
intercellular communication carriers, exosomes 
could mediate the transport of biological macro-
molecules such as nucleic acids between cells, and 
extensively affect the body’s pathophysiological 
process [18,19]. For example, bone mesenchymal 
stem cells-derived exosome (BMSCs-exo) could 
inhibit lipopolysaccharide (LPS)-induced acute 
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uterine injury (AUI) of endothelial progenitor cells 
[20]. Besides, exosomal miRNA-150-5p derived 
from BMSCs prevents cerebral ischemia/reperfu-
sion (I/R) injury [21]. Additionally, exosomes play 
an indispensable role in the pathophysiological 
process of renal fibrosis [16,22,23]. For instant, 
exosomes can transfer miR-let7c from MSCs to 
NRK52E cells, thereby inhibiting the process of 
renal fibrosis [22]. Meanwhile, exosomal miR-29 
was able to alleviate renal fibrosis [23].

It has been reported that microRNA (miR)- 
374a-5p was under-expressed in renal venous 
blood samples from patients with CKD. In addi-
tion, it exhibited anti-apoptotic effects in renal 
tissues suggesting that miR-374a-5p may play an 
important role in CKD [24]. Therefore, we aimed 
to explore whether miR-374a-5p could be deliv-
ered to renal cells by exosomes, and exerts anti- 
renal fibrosis effects in the current study. The 
results indicated that exosomal miR-374a-5p pre-
vented the progression of renal fibrosis by regulat-
ing MAPK6/MK5/YAP axis for the first time. 
Therefore, the present study might provide a new 
therapeutic strategy for the treatment of renal 
fibrosis.

Material and methods

Cell culture

HK-2 cells were provided by American Type 
Culture Collection (ATCC, Manassas, VA, USA). 
Bone marrow MSCs were provided by iCell 
Bioscience Inc. These cells were maintained in 
DMEM (Thermo Fisher Scientific, Waltham, MA, 
USA) with 10% fatal bovine seru (FBS), 1% peni-
cillin and 1% streptomycin in a 5% CO2 atmo-
sphere at 37°C. To mimic renal fibrosis in vitro, 
HK-2 cells were dealt with 5 ng/mL TGF-β1 for 
48 h [25].

RT-qPCR

Trizol reagent (ELK Biotechnology, Wuhan, 
China) was carried out to measure total RNA in 
HK-2 cells and exosomes. EntiLink™ 1st Strand 
cDNA Synthesis Kit was carried out to synthesize 
cDNA. Then, a StepOne™ Real-Time PCR System 
was carried out to conduct qPCR. To analyze the 

expression of miR-374a-5p, the 2−ΔΔCt method was 
carried out [26]. Primer sequences are as Table 1. 
U6 or β-actin was worked as internal controls for 
miR-374a-5p or MAPK6, respectively.

Western blot assay

Radio-Immunoprecipitation Assay (RIPA) buffer 
(Aspen Biotechnology, Wuhan, China) was carried 
out to extract total proteins from cells or from 
tissues. (Bicinchonininc acid) BCA kit (Aspen) 
was carried out to quantify the concentration of 
proteins. Then, the samples were loaded in 10% 
sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) and followed by transferred 
to Polyvinylidene-Fluoride (PVDF) membrane. 
Next, the proteins were incubated with primary 
antibodies and then incubated with the horserad-
ish peroxidase (HRP)-labeled secondary antibody. 
Finally, an efficient chemiluminescenc (ECL) kit 
was used to evaluate these samples [27]. In the 
currently study, these primary antibodies 
(Abcam, Cambridge, MA, USA) used were listed 
as follows: Collagen 1α1, Fibronectin, α-SMA, 
CD63, TSG101, p-MAPK6, MAPK6, p-MK5, 
MK5 and YAP. GAPDH was worked as internal 
controls [27].

Exosomes isolation

The ultracentrifugation method was carried out to 
extract the exosomes from MSCs. MSCs superna-
tant was collected and centrifuged [28,29]. Then, 
the exosomes were obtained.

Transmission electron microscopy (TEM) analysis

TEM was conducted to evaluate the number and 
morphology of collected vesicles. First, drop the 

Table 1. Primer sequences.
Name Primer sequences (5’-3’)

miR-374a-5p Forward CCCGGGTTATAATACAACCTG
Reverse CTCAACTGGTGTCGTGGAGTC

MAPK6 Forward CGTCAGGAGCTTCTCAGCGT
Reverse GGCTTGAAATTGGCTCATCC

U6 Forward CTCGCTTCGGCAGCACAT
Reverse AACGCTTCACGAATTTGCGT

β-actin Forward GTCCACCGCAAATGCTTCTA
Reverse TGCTGTCACCTTCACCGTTC
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exosomes sample on the carbon supporting mem-
brane copper net for 5 min. Next, 2% phospho-
tungstic acid was dropped onto the carbon 
supported membrane copper net for 3 min. 
Finally, a TEM was used to observe the number 
and morphology of collected vesicles [29].

Nanoparticle Tracking Analysis (NTA)

NTA analysis was comducted to confirm the par-
ticle size of collected vesicles. Firstly, the exosomes 
sample was cleaned using deionized water. Next, 
ZetaView analyzer (Particle Metrix, Meerbusch, 
Germany) was calibrated. After that, the collected 
vesicles were washed with PBS buffer twice. 
Finally, ZetaView analyzer was carried out to eval-
uate the particle size of collected vesicles [30,31].

Flow cytometry assay

Annexin-V-FITC apoptosis detection kit was pro-
vided by Tianjin Sanjian Biotechnology Co., Ltd. 
(Tianjin, China). HK-2 cells were maintained in 
6-well plates (5 × 104/mL). After that, HK-2 cells 
were treated by FITC-Annexin V for 15 min. 
Then, cells were treated with 5 μL propidium 
iodide (PI) for another 15 min in the darkness. 
Then, the apoptosis of HK-2 was evaluated using 
a flow cytometry [26].

Dual-luciferase reporter assay

Either wild-type (WT) or mutant (MT) MAPK6- 
3� Untranslated Regions (UTR) fragment was put 
into the pGL6-miRNA luciferase reporter vector 
(Beyotime, Shanghai, China). Next, MAPK6 (WT 
or MT) was transfected into HK-2 cells together 
with miR-374a-5p agomir or negative control 
(NC). Subsequently, dual-Luciferase a reporter 
assay system was carried out to confirm the rela-
tionship between miR-374a-5p and MAPK6 [32].

Animal study

C57BL/6 mice weighing 18 ± 2 g were provided 
from Vital River (Beijing, China). This study was 
complies with the National Institutes of Health 
Guide (NIHG) for the Care and Use of laboratory 
animals. The mice were grouped as follows: Sham, 

Unilateral Uretera Obstruction (UUO), UUO + exo-
somes derived from MSCs (MSCs/NC-Exo) and 
UUO + exosomes derived from miR-374a-5p- 
modified MSCs (MSC/miR-374a-5p-Exo). To estab-
lish the model of UUO, mice were subjected to 
peritoneal injection anesthesia with pentobarbital 
sodium (1%). Then, mice were ligated at two points 
of the left ureter, and partially ligated to the ureteral- 
pelvic junction based on the available literature [33]. 
The sham group was used as a control. Twelve 
weeks later, mice were injected intravenously with 
MSCs/NC-Exo or MSC/miR-374a-5p-Exo twice 
weekly for 4 weeks [34]. At the end of study, mice 
were euthanasia via 40% volume/min CO2 and kid-
ney tissue was collected from the mice.

Hematoxylin-eosin (HE) staining

The kidney tissue was fixed with paraformalde-
hyde and embedded in paraffin. Then, the tissue 
was dewaxed with xylene and followed by dehy-
drated with 70%, 80% and 90% alcohol. After that, 
the tissue was stained using HE. Subsequently, the 
tissue was dehydrated with alcohol. Finally, the 
staining result was observed under an optical 
microscope [35].

Measurement of blood urea nitrogen (BUN) and 
creatinine (CR)

The levels of BUN or CR were evaluated by Urea 
Assay Kit or Creatinine Assay kit provided by 
Jiancheng Bioengineering Institute respectively 
according to the manufacturer’s instructions [35,36].

Immunohistochemistry (IHC) staining

Mice kidney tissues were fixed with paraformalde-
hyde. Then, the tissues were treated with 0.01 M 
boiling water citric acid buffer to extract antigens. 
Next, the tissues were treated with fluorescent 
labeled primary antibody (α-SMA). Subsequently, 
a fluorescence microscope was used to visualize the 
IHC staining, according to previous literature [37].

Statistical analysis

Statistical data were analyzed by GraphPad Prism 
(La Jolla, CA, USA). All data were presented as 
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mean ± standard deviation (SD). Differences in 
multiple groups were analyzed by one-way analysis 
of variance (ANOVA) and Tukey’s test [25,35].

Results

MiR-374a-5p agomir remarkably inhibits TGF- 
β1-induced fibrosis in vitro

In order to mimic renal fibrosis in vitro, HK-2 
cells were treated with TGF-β1. As shown in 
(Figure 1a), the level of miR-374a-5p was signifi-
cantly downregulated by TGF-β1 in HK-2 cells 
and miR-374a-5p agomir obviously increased the 
level of miR-374a-5p in HK-2 cells (Figure 1b). In 
addition, TGF-β1 significantly increased the levels 
of Collagen 1α1, Fibronectin and α-SMA in HK-2 
cells; however, these phenomena were significantly 

reversed by miR-374a-5p agomir (Figures 1c-f). 
Taken together, TGF-β1 downregulated the level 
of miR-374a-5p in HK-2 cells and miR-374a-5p 
agomir remarkably inhibits the TGF-β1-induced 
fibrosis in vitro.

Exosomes from miR-374a-5p-modified MSC can 
be internalized by HK-2 cells

It has been reported that exosomes from MSCs 
could inhibit the progression of renal fibrosis 
[38,39]. In order to explore if exosomal miR- 
374a-5p could better prevent the renal fibrosis, 
MSCs were transfected with miR-374a-5p 
firstly. The result of RT-qPCR suggested miR- 
374a-5p agomir markedly upregulated the level 
of miR-374a-5p in MSCs (Figure 2a). Then, 

Figure 1. MiR-374a-5p agomir remarkably inhibits TGF-β1-induced fibrosis in vitro. (a) HK-2 cells were treated with 5 ng/mL 
TGF-β1 for 48 h. RT-qPCR was used to evaluate the expression of miR-374a-5p in HK-2 cells. (b) HK-2 were dealed with miR-374a-5p 
agomir or NC using Lipofectamine® 2000 and the level of miR-374a-5p was evaluated with RT-qPCR. (C, D, E and F) Western blot 
were carried out to evaluate the levels of Collagen 1α1, Fibronectin and α-SMAs. **P < 0.01.
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exosomes were collected and characterized 
using with TEM and NTA. The data indicated 
these extracellular vesicles were discoid vesicles 
with a phospholipid bilayer structure and are 
100 to 150 nm in diameter (Figures 2b,c); 
meanwhile, the isolated extracellular vesicles 
expressed specific exosome markers CD63 and 
TSG101 (Figure 2d). Moreover, the level of 
miR-374a-5p in exosomes derived from miR- 
374a-5p-modified MSCs was much higher than 
that in MSCs/NC-Exo (Figure 2e).

Next, to investigate whether these exosomes 
could be internalized by HK-2 cells, a cell mem-
brane staining dye PKH26 was used. The data of 
staining indicated that both MSC/miR-374a-5p- 
Exo and MSCs/NC-Exo could be absorbed by 
HK-2 cells (figure 2f). After absorbing, MSC/ 
miR-374a-5p-Exo obviously increased the expres-
sion of miR-374a-5p in HK-2 cells (Figure 2g). 
All in all, MSC/miR-374a-5p-Exo could be inter-
nalized by HK-2 cells and obviously upregulated 
the level of miR-374a-5p in cells.

MSC/miR-374a-5p-Exo markedly inhibits the 
progression of fibrosis in vitro

With the aim of investigating the effect of MSC/miR- 
374a-5p-Exo on the apoptosis of HK-2 cells, flow cyto-
metry was carried out. As indicated in (Figure 3a), 
TGF-β1 clearly induced the apoptosis of HK-2 cells, 
and this phenomenon was reversed by MSC/miR- 
374a-5p-Exo. Meanwhile, TGF-β1 upregulated the 
levels of Collagen 1α1, Fibronectin and α-SMA in 
HK-2 cells, while these upregulations were partly 
reversed by MSC/miR-374a-5p-Exo (Figures 3b-e).

In order to verify the effect of miR-374a-5p on the 
progression of fibrosis, miR-374a-5p inhibitor was 
used. As suggested in supplementary Figure 1A, the 
effect of MSC/miR-374a-5p-Exo on the apoptosis of 
HK-2 cells was abolished by miR-374a-5p inhibitor. 
Expectantly, the effect of MSC/miR-374a-5p-Exo on 
the expressions of Collagen 1α1 and Fibronectin in 
HK-2 cells was abolished when miR-374a-5p was 
eliminated (Supplementary Figure 1B). All these 
results suggested that MSC/miR-374a-5p-Exo was 

Figure 2. Exosomes from miR-374a-5p-modified MSC can be internalized by HK-2 cells. (a) MSCs were transfected with miR- 
374a-5p agomir NC or miR-374a-5p agomir using Lipofectamine® 2000 and RT-qPCR was conducted to evaluate the level of miR- 
374a-5p in MSCs. (b, c) TEM and NTA analysis were used to characterize the morphology and particle size of vesicles. (d) Western 
blot was used to evaluate the levels of CD63 and TSG101. (e) The level of miR-374a-5p in MSC/miR-374a-5p-Exo or MSCs/NC-Exo was 
evaluated by RT-qPCR. (f) HK-2 cells were incubated with PKH26-labeled MSC/miR-374a-5p-Exo or PKH26-labeled MSCs/NC-Exo with 
for 24 h. Then, a fluorescence microscope was conducted to observe PKH26 staining. Green color: HK-2 cells, Red color: exosome, 
blue color: nucleus. (g) HK-2 cells were treated with MSC/miR-374a-5p-Exo or MSCs/NC-Exo and the level of miR-374a-5p in HK-2 
cells was evaluated by RT-qPCR. **P < 0.01.
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able to inhibit TGF-β1-induced apoptosis of HK-2 
cells and prevent the progression of fibrosis in vitro.

MiR-374a-5p regulates MAPK6/MK5/YAP axis

To study the mechanism by which MSC/miR- 
374a-5p-Exo mediated the development of renal 
fibrosis, miRDB (http://www.mirdb.org/cgi-bin 
/search.cgi) and TargetScan (http://www.targets 
can.org/vert_72/) online databases were used. 
These two databases commonly predicted that 
MAPK6 was the downstream targets of miR- 
374a-5p (Figure 4a); in addition, it has been 
reported that MAPK6 have a close relationship 

with kidney-related diseases [40,41]. Thus, we 
focused on investigating the relationship between 
miR-374a-5p and MAPK6 in the current study.

In addition, miR-374a-5p agomir notably 
downregulated the luciferase activity of cell har-
boring WT of MAPK6; however, it had no effect 
on the luciferase activity of cell transfected with 
mutant of MAPK6 (Figure 4b). Consistently, miR- 
374a-5p agomir markedly inhibited the gene 
expression of MAPK6 in HK-2 cells (Figure 4c). 
Moreover, TGF-β1 obviously increased the levels 
of p-MAPK6, p-MK5 and YAP in HK-2 cells, and 
these increases were all reversed by MSC/miR- 
374a-5p-Exo (Figures 4d-g). Taken together, 

Figure 3. MSC/miR-374a-5p-Exo markedly inhibits the progression of fibrosis in vitro. (a) Flow cytometry was carried out to 
measure the apoptosis. (b, c, d and e) Western blot assay were carried out to evaluate the levels of Collagen 1α1, Fibronectin and α- 
SMA in HK-2 cells. (Supplementary Figure 1A) Flow cytometry was carried out to measure the apoptosis. (Supplementary Figure 1B) 
Western blot assay were carried out to evaluate the levels of Collagen 1α1 and Fibronectin in HK-2 cells. **P < 0.01.
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miR-374a-5p regulate MAPK6/MK5/YAP axis by 
directly binding with mRNA of MAPK6 in HK-2 
cells.

MSC/miR-374a-5p-Exo inhibits the progression of 
renal fibrosis in vivo

Next, to further investigate the effect of MSC/miR- 
374a-5p-Exo on the process of renal fibrosis 
in vivo, UUO mouse model was established. As 
indicated in Figure 5a, the levels of BUN and CR 

were notably increased in UUO mice, while MSC/ 
miR-374a-5p-Exo treatment brought them back to 
the normal situation (Figure 5a). In addition, the 
areas of inflammatory infiltration and fibrosis 
were upregulated in the UUO group, whereas, 
MSC/miR-374a-5p-Exo alleviated these lesion 
(Figures 5b,c). Consistently, the level of α-SMA 
was upregulated in UUO mouse renal tissue, 
while this upregulation was visibly reversed by 
MSC/miR-374a-5p-Exo (Figure 5d). Moreover, 
MSC/miR-374a-5p-Exo significantly promoted 
the expression of miR-374a-5p in UUO mouse 

Figure 4. MiR-374a-5p regulates MAPK6/MK5/YAP axis. (a) MiRDB and TargetScan databases were used to predict the down-
stream targets of miR-374a-5p. (b) The relationship between miR-374a-5p and MAPK6 was explored by dual-luciferase reporter 
assay. (c) RT-qPCR was used to evaluate the level of MAPK6p in HK-2 cells. (d, e, f and g) Western blot assay were carried out to 
measure the expressions of p-MAPK6, MAPK6, p-MK5, MK5 and YAP in HK-2 cells. **P < 0.01.
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renal tissue (Figure 5e). To sum up, MSC/miR- 
374a-5p-Exo significantly prevented the develop-
ment of renal fibrosis.

MSC/miR-374a-5p-Exo blocks the progression of 
renal fibrosis by regulating MAPK6/MK5/YAP axis 
in vivo

Finally, we further explored the mechanism by 
which MSC/miR-374a-5p-Exo regulated the devel-
opment of renal fibrosis in vivo. As revealed in 
(Figures 6a-d), the expressions of p-MAPK6, 
p-MK5 and YAP were remarkably upregulated in 
UUO group, whereas these upregulations were 
notably reversed by MSC/miR-374a-5p-Exo treat-
ment. All in all, MSC/miR-374a-5p-Exo could 
inhibit the progression of renal fibrosis in vivo by 
regulating MAPK6/MK5/YAP axis.

Discussion

It has been reported that miR-374a-5p was under- 
expressed in renal venous blood samples from the 
patients with CKD [24]. We found that the 

expression of miR-374a-5p was downregulated by 
TGF-β1 in HK-2 cells, illustrating that miR-374a- 
5p may be crucial in kidney-related diseases.

So far, there’s a lot of research that demon-
strates that exosome may serve as a carrier for 
the treatment of many diseases [23,42]. For exam-
ple, exosome-mediated delivery of miR-125a-5p 
derived from BMSCs might serve as a new ther-
apeutic strategy for the treatment of osteoarthritis 
(OA) [29]. In addition, exosomes are vital in kid-
ney pathophysiology by facilitating cell-to-cell 
transport of miRNAs [43]. Meanwhile, exosomes 
from miR-let7c-modified MSCs relieves the pro-
gression of renal fibrosis [22]. In the present study, 
we found exosomes was able to transfer miR-374a- 
5p from MSCs to HK-2 cells and exert anti-fibrosis 
effects for the first time, indicating that exosomal 
miR-374a-5p was a hopeful therapeutic method 
for renal fibrosis.

It has been reported that MAPK6 play a vital 
role during the pathologic of kidney-related dis-
eases [40]. For instant, high expression of MAPK6 
in diabetic nephropathy could induce podocyte 
injury [40]. In this study, we found that TGF-β1 

Figure 5. MSC/miR-374a-5p-Exo prevents the progression of renal fibrosis. (a) The level of BUN or CR was evaluated by urea 
assay kit or creatinine assay kit. (b, c) The tissue structure, cell morphology, inflammatory infiltration and fibrosis of kidney tissue 
were observed by HE and Masson staining. (d) The level of α-SMA in UUO mouse renal tissue was evaluated by IHC staining. (e) RT- 
qPCR was conducted to evaluate the expression of miR-374a-5p in mouse renal tissue. **P < 0.01.
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obviously promoted the level of p-MAPK6 in HK- 
2 cells. As we know, MK5 could be activated by 
MAPK6, and YAP could be activated by MK5 [44]. 
For example, Nawaito et al. showed that MK5 was 
a downstream protein of MAPK6 [44] and Seo 
indicated that YAP was a downstream protein of 
MK5 [45]. Current data had concluded that MSC/ 
miR-374a-5p-Exo markedly inhibited TGF- 
β1-induced apoptosis of HK-2 cells and prevented 
the progression of renal fibrosis in vivo by regulat-
ing MAPK6/MK5/YAP axis, suggesting that 
MAPK6/MK5/YAP was vital in the pathogenesis 
of renal fibrosis.

Frankly speaking, there are some limitations 
needed to be improved in the coming study. For 
example, we only confirmed the relationship 
between miR-374a-5p and MAPK6 in the patho-
logical process of renal fibrosis. Indeed, other 
potential targets such as WNT5A, BMP2 and 
WNT3 were found in the database, which were 
not verified yet. Moreover, the current studies 
have found that MAPK6/MK5/YAP axis was 
involved in the process of renal fibrosis inhibited 
by miR-374a-5p modified exosomes, and it is 
worth exploring whether other axes are also 
involved.

Conclusion

In conclusion, exosomes from miR-374a-5p- 
modified MSCs prevented the progression of 
renal fibrosis by regulating MAPK6/MK5/YAP 
axis. Thus, our study might provide a new thera-
peutic way for renal fibrosis.
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