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Abstract
The static properties of leaves with parallel venation from terrestrial orchids of the 
genus Epipactis were modelled as coupled elastic rods using the geometrically exact 
Cosserat theory and the resulting boundary-value problem was solved numerically 
using a method from Shampine, Muir and Xu. The response of the leaf structure 
to the applied force was obtained from preliminary measurements. These measure-
ments allowed the Young’s modulus of the Epipactis leaves to be determined. The 
appearance of wrinkles and undulation characteristics for some leaves has been 
attributed to the small torsional stiffness of the leaf edges.

Keywords  Long leaves · Elasticity · Cosserat rods · Epipactis · Orchids

 *	 A. Jakubska‑Busse 
	 anna.jakubska‑busse@uwr.edu.pl

 *	 M. W. Janowicz 
	 maciej_janowicz@sggw.edu.pl

1	 Department of Botany, Institute of Environmental Biology, University of Wrocław, Kanonia 6/8, 
50‑328 Wrocław, Poland

2	 Faculty of Applications of Informatics and Mathematics, Department of Applied Mathematics, 
Warsaw University of Life Sciences-SGGW​, ul. Ciszewskiego 8, 02‑786 Warsaw, Poland

3	 Faculty of Applications of Informatics and Mathematics, Department of Econometrics 
and Statistics, Warsaw University of Life Sciences-SGGW​, ul. Nowoursynowska 159, 
02‑776 Warsaw, Poland

4	 Faculty of Applications of Informatics and Mathematics, Department of Computer Science, 
Warsaw University of Life Sciences - SGGW​, ul. Nowoursynowska 159, 02‑776 Warsaw, Poland

5	 Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

http://orcid.org/0000-0003-4284-9910
http://crossmark.crossref.org/dialog/?doi=10.1007/s10441-020-09397-6&domain=pdf


152	 A. Jakubska‑Busse et al.

1 3

1  Introduction

The modelling of plant organs remains an open problem due to the complexity 
of plant architecture, regardless of the particular organ or any particular taxo-
nomical group of plants being considered. This study focusses on leaves with par-
allel venation, namely, leaves with a relatively simple structure of veins which 
can nonetheless exhibit interesting features such as wrinkles and undulation. Leaf 
undulation is an interesting and relatively well-studied phenomenon observed in 
the monocotyledons including orchids. It has been found that the waves in the 
leaf blades in monocots usually appear perpendicular to the leaf length, which 
demonstrates that as the leaf surface grows it changes correspondingly lengthwise 
to the leaf blade. It is worth noting that although undulation normally occurs per-
pendicular to the leaf length, in the initial stages it occurs alongside its length. 
Displacements in the wrinkled leaf also occur across the leaf blade and which-
ever way these appear, they demonstrate that the pace of their growth is irregular 
since wrinkles in a leaf can be of different lengths. Hejnowicz (1992) found that 
spatial and temporal fluctuations in the pH of the epidermal cell walls aided the 
undulation. In a study by Jakubska-Busse and Gola (2014) it was shown that the 
leaf undulation in some orchids does not have any diagnostic value as an unpro-
grammed intrinsic feature and should not be applied to taxa identification. This 
paper is a further attempt to identify which characteristics in the mathematical 
model of such leaves are responsible for this undulation.

The building of mathematical and numerical models to effectively reflect the 
complex structure of a plant is very complicated. In particular, this requires dif-
ferent morphological and anatomical constructions of individual plant organs and 
in addition with the appearance of other phenomena on leaf surfaces including 
the local undulation of leaf blades, leaves frequently have a characteristic rippling 
pattern at their edges (Marder 2003).

Once it becomes visible, the local undulation of leaf blades in monocots com-
prises ripples perpendicular to the direction of the longitudinal expansion of the 
leaf blade (Zagórska-Marek and Wiss 2003). Detailed studies of the mechanism 
for undulations in leaves have so far been carried out by Hejnowicz (1992) on the 
garden tulip (Tulipa gesneriana) as well as by Liang and Mahadevan (2009) on 
the plantain lily (Hosta lancifolia).

Recently, several interesting studies have been published in which both the 
shapes and mechanical properties of plants have been investigated both experi-
mentally and analytically. In particular, in Zhao (2015) the chiral growth of 
organs in aquatic macrophytes has been studied. As a kind of follow-up, Zhao, 
Liu and Feng have investigated the aeroelastic behavior of Typha (an emergent 
aquatic macrophyte) blades in wind (Zhao et al. 2016). The biomechanical mor-
phogenesis of the leaves and stalks of representative emergent plants, which can 
stand upright and survive in harsh water environments, has been considered in 
Zhao et al. (2018). In Zhao et al. (2020), it has been demonstrated that the leaves 
and stalks of several species of emergent plants exhibit morphologies of twisting 
and gradient chirality. The static bending and vibrational properties of these plant 
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organs have been investigated. By modelling the leaves and stalks as pre-twisted 
cantilever beams, the effects of the cross-sectional geometry, loading condition, 
handedness perversion, twisting configuration, and morphological gradient on 
their mechanical behavior have been evaluated.

2 � The Main Model

In Jakubska-Busse et al. (2016), the model of a leaf with the parallel venation con-
sidered as a system of coupled elastic beams was developed using the theory of non-
linear bending described by Landau and Lifshitz (1993). However, this theory has 
some important drawbacks which include the fact that the elongation of each beam 
can only happen due to bending. More importantly, its discussion of the so-called 
constitutive relations is lacking in detail. In this paper a model of a leaf with the 
parallel venation based on the Cosserat theory of rods is provided and the following 
assumptions are made: (i) The shape of the leaf is determined by the distribution of 
its veins, (ii) Each vein, together with its surrounding tissue, can be represented by a 
special Cosserat rod (defined below), (iii) The veins are elastically coupled to their 
nearest neighbours due to the presence of the tissue between the veins, and (iv) Only 
the main (“first-order”) veins are taken into account explicitly whilst the presence of 
secondary veins may lead to additional concentrated forces acting upon the principal 
veins. As a result we aim to show that the characteristic undulation near the edges 
of a leaf can be the result of the inhomogeneity of constitutive relations along the 
veins, which is in contrast to the hypothesis in previous research where the undula-
tion was considered to be the result of dislocations in the regions between the veins 
and in both primary and secondary veins.

2.1 � Special Cosserat Rods

In the discussion below the methods of Antman (2006), Rubin (2000), Cao et  al. 
(2006), Cao and Tucker (2008), and Champneys et  al. (1997) are followed. The 
books by Antman and Rubin contain the general theory of elastic structures in 
terms of the geometrically exact methodology of Cosserats. The paper by Cao deals 
with single thin rods with mostly engineering applications in mind. In the work by 
Champneys et al., both experimental and theoretical work on rubber rods (in particu-
lar related to their buckling) was performed. From the above studies only the general 
formulation (which is quite universal) has been followed using the constitutive rela-
tions in the form provided by Champneys et al., as it seems particularly convenient.

We let three vectors �1 , �2 , �3 form a fixed right-handed orthogonal basis.
Let us first consider a single rod. Elements of the rod are labelled in terms of the 

arc-length coordinate s, 0 ≤ s ≤ L . We let �(s) be the position vector of the centre 
line of the rod with respect to the fixed basis �1 , �2 , �3 . The configuration of the rod 
in the deformed state is defined by �(s) and two orthonormal vectors �1 and �2 which 
define the position of two orthogonal lines in the cross-section of the rod at s. If, by 
definition,
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then the triple (d1, d2, d3)(s) defines a “co-moving” rod-centred coordinate sys-
tem called the directors of the rod. If shear is present, the first director is not equal 
to �s�(s) . In what follows below, all vectors will be expanded in the basis of the 
directors.

The stress in the rod is defined by the vectors:

and

where n2 and n3 are components of the shear force, n1 is the tension, m2,3 are bending 
moments about the axes parallel to �2,3 and m1 is the twisting moment about �1.

The strain in the rod is defined by two vectors:

which are defined by the equations:

and

2.2 � Equilibrium Equations

If � and � are the external linear densities of the distributed forces and torques, the equi-
librium differential equations which are obtained by balancing forces and moments are 
given by:

where the derivative on each left-hand side is the total derivative with respect to s in 
the “co-moving” frame. These include the derivatives of the directors with respect 
to s. Below it will be assumed that for each rod � = 0 . The force � includes gravity, 
given by −q�3 , as well as the force exerted upon a given rod by all other rods.

In terms of ordinary (not total) derivatives, the equations above can be written as:

�1 = �2 × �3,

�(s) = n1�1 + n2�2 + n3�3,

�(s) = m1�1 + m2�2 + m3�3,

�(s) = u1�1 + u2�2 + u3�3,

�(s) = v1�1 + v2�2 + v3�3,

�s�i = � × �i,

�s� = �.

(1)
d�

ds
+ � = 0,

(2)
d�

ds
+ � × � + � = 0,

(3)�� = � × � − � ,



155

1 3

Mechanical Properties of Long Leaves: Experiment and Theory﻿	

2.3 � Constitutive Equations

In order to make the system of differential equations for � and � closed, it is nec-
essary to add to these the so-called constitutive equations through which � and 
� can be expressed in terms of � and � . We let � = � − �1 and employ here the 
constitutive relations as described in Champneys et al. (1997):

where A2,3 are the principal bending stiffnesses about �2,3 , A1 is the torsional stiff-
ness, H2,3 are the transverse shear stiffnesses and H1 is the axial stiffness. It is clear 
that if the number of rods N is larger than 1, all the stiffnesses have to acquire an 
additional index which enumerates the rods, so that e.g, H(n)

2
 is a transverse shear 

stiffness of the n-th rod ( n = 1, 2,… ,N).
Furthermore, the force density of interaction between various rods needs to be 

specified. We therefore let � = �j be the linear density of force which acts on the 
j-th rod and assume that it contains two parts,

and �j is the force exerted on the j-th rod by its neighbours. The latter is assumed to 
be linear:

where the index i denotes the i-th component of the force �j in the “laboratory” 
frame. When solving the system of differential equations for forces and torques, the 
above expression for gj,i has to be transformed to the “co-moving” frame for each 
rod separately.

2.4 � Boundary Conditions

The following boundary conditions are assumed: 

(a)	 Each rod is “clamped” at s = 0 , that is �(n)(0) = 0 for every n = 1, 2,… ,N where 
N is the number of rods. This gives 3N conditions.

(b)	 For each rod, the moments at the end points ( s = L ) vanish, �(n)(L) = 0 , 
n = 1, 2,… ,N ; this gives a further 3N conditions.

(c)	 For each rod, the following initial conditions for the directors are assumed: 

(4)�� = � × � + � × �.

(5)ui(s) = mi(s)∕Ai, i = 1, 2, 3,

(6)yi(s) = ni(s)∕Hi, i = 1, 2, 3,

�j = �j − q�3,

gj,i = −kj,i(2rj,i − rj+1,i − rj−1,i),
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	   The equations above form a further 9N boundary conditions. The angles �n 
have been taken to be −�∕3 + 2�n∕(3N).

(d)	 Since it is assumed that all rods meet at the tip of the leaf, it is further assumed 
that the coordinates of the end of each rod (in the “laboratory” frame) are the 
same, that is: 

n = 1, 2,… ,N − 1 , where x(n)(L) , y(n)(L) , z(n)(L) are the Cartesian coordinates 
of the ends of rods in the “laboratory” frame. The equations above form 3N − 3 
boundary conditions.

(e)	 Finally, the three components of the total force which act on the tip of the leaf 
are specified. In particular, if there are no external forces, the tip is “free” so that 
the total force at s = L is equal to zero. This requirement provides the remaining 
3 boundary conditions.

	   Thus, a system of 18N ordinary differential equations with 18N boundary con-
ditions needs to be solved. The symbols used to define the mathematical model 
together with their dimensionless counterparts have been gathered in Table 1.

It is legitimate to ask whether it would not be sufficient to employ a simpler, lin-
ear model, either for each rod, or indeed for the whole leaf. For instance, the Kirch-
hoff or Timoshenko models of rods in Elishakoff (2020) can be considered. Or, one 
could consider leaves to be modelled by plates of anisotropic materials (linear or 
non-linear, Mansfield (1989)). Our choice for Cosserat rod theory is considered 
the most satisfactory rod theory from a mathematical point of view. It is called “geo-
metrically exact” as it provides both the position of each point of the rod and its ori-
entation. We wanted to take into account that not only bending and twisting, but also 
stretching (and shearing) of the leaves and hence the modelling rods may appear. 
The modelling of leaves with the help of plate theories is, of course, very valuable 
as shown in Liang and Mahadevan (2009), but we have attempted to introduce a 
model with, on the one hand, great flexibility and on the other hand, which is par-
ticularly well suited for strongly anisotropic systems.

3 � Materials and Methods

3.1 � Plant Material

A tensile test was performed on a sample of 72 fresh leaves from orchids belong-
ing to the Epipactis genus, i.e. Epipactis helleborine (L.) Crantz, Epipactis albensis 
Nováková et Rydlo and Epipactis palustris (L.) Crantz were collected from their 

�
(n)

1
(0) =

(
cos(�n), sin(�n), 0

)

�
(n)

2
(0) =

(
− sin(�n), cos(�n), 0

)

�
(n)

3
(0) = (0, 0, 1)

x(n)(L) = x(n+1)(L), y(n)(L) = y(n+1)(L), z(n)(L) = z(n+1)(L),



157

1 3

Mechanical Properties of Long Leaves: Experiment and Theory﻿	

natural habitat in July 2016 at six different locations in Poland. All the specimens 
were identified using their morphological character, especially the gynostemium 
structures, by A.J-B. Five individuals per population were taken for all the experi-
mental analyses and only undamaged leaves were used for the experiment. The selec-
tion of leaves for analyses/testing from various species of the genus Epipactis was 
dictated by the fact that the species grow in various habitat conditions. However, the 
type of plant habitat, elevation, exposition and soil types/conditions determine the 
leaf structure (both its morphology and anatomy). In order to protect against water 

Table 1   List of symbols used in the description of the model and their meaning

Symbol Meaning

L Length of any rod of which the model leaf is made
s Arc-length parameter
� Position vector in the fixed basis
�i Unit vectors of fixed right-hand basis
�i Directors - rod-centred coordinate system unit vectors
n1 Tension
n2,3 Two components of the shear force
m1 Twisting moment about the axis parallel to �1
m2,3 Two components of bending moments about the axes parallel to �2 and �3
� Strain vector (defined in terms of the directors)
� Strain vector (defined in terms of �)
� Linear density of external distributed forces
� Linear density of external distributed torques
q Linear density of gravity force
� = � − �1 Deflection of the first director from the tangent line to any rod
A1 Torsional stiffness
A2,3 Principal bending stiffnesses
H1 Axial stiffness
H2,3 Transverse shear stiffnesses
�j Force density exerted on the j-th rode by its neighbours
L0 Typical length of rods of which the model leaf is made
� = s∕L0 Dimensionless arc-length parameter
(x, y, z) Cartesian components of the centre-line of any rod
(�, �, � ) = (x, y, z)∕L0 Rescaled components of centre-lines of the rods
H0 Typical transverse shear stiffness
n̄k = nk∕H0 Dimensionless forces
hk = Hk∕H0 Dimensionless stiffnesses
A0 Typical bending stiffness
m̄k = (L0∕A0)mk Dimensionless torques
ak = Ak∕A0 Dimensionless stiffnesses
�k Strength of the coupling between neighbouring rods
𝜅̄k = (L0∕H0)𝜅k Dimensionless coupling strength between neighbouring rods
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loss, the material was transported in bags with moist material and whole shoots of 
plants were harvested (frames) as in Zwieniecki et al. (2007). The genus Epipactis 
is a clonal orchid, i.e. the rhizome grows underground and produces shoots/ramets 
of various shapes and sizes of leaf depending on their age and position/location 
on the shoot. In order to evaluate the change in shape, various leaves within one 
specimen were studied. Whole leaves were introduced into the pneumatic grips of 
an Instron machine. Based on the detailed and extensive knowledge of the struc-
ture and development of orchid leaves (see, e.g., Arditti (1992) and Jakubska-Busse 
et al. (2017)), the whole leaves were prepared in such a way that the main thickest 
venation was preserved. Data on the morphology and anatomy of the Epipactis spp. 
leaves, which had been previously published in  Jakubska-Busse and Gola (2010), 
Jakubska-Busse et al. (2012), and Jakubska-Busse and Gola (2014), was used. The 
experimental studies and material sampling were done with the permission of the 
Regional Director for Environmental Protection, Nos.: WPN.6205.123.2016.IL, 
WPN.6400.32.2016.IL and WPN.6400.33.2016.IL.

3.2 � Experimental Procedure

The experimental part of this study was performed in the laboratory at the Meat 
Technology Division WULS-SGGW (Warsaw, Poland). Leaves blades of Epipactis 
spp. were stretched in both length and width until they were broken off between the 
grips using the Zwick 1445 Universal Testing System for stretching soft materials. 
A broad range of mechanical testing can be performed by the laboratory’s testing 
machine as long as the tests concerned are quasi-static. These strength tests were 
carried out immediately after the material had been delivered. The experiment lasted 
4 hours and was repeated with new fresh material after two weeks. Whole leaves 
were introduced into the pneumatic grips of an Instron machine. The jaws of the 
Instron machine were set at 10 and 15 mm, and the leaves were stretched at a rate 
of 20 mm/min. On the basis of the experimental results obtained, the values of the 
Young’s modulus were calculated and plotted. Twenty eight important quasi-static 
stretching tests were done on the leaves. A Python program was used in order to pro-
duce results from the model.

3.3 � Model Description

In order to obtain the values of the Young’s modulus, the standard definition of the 
stress as the ratio of the applied force and the cross-section was used. Similarly, the 
strain was defined as the relative change in the leaf length under the action of the 
force.

4 � Experimental Results and Their Analysis

From the experimental data obtained, the Young’s modulus  of the leaves were 
calculated.
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For this, applied force-elongation graphs were plotted (see Fig. 1). The leaf was 
stretched in the longitudinal direction of the thickest venation. By analysing the 
curve of Fig. 1, it can be seen that the breaking forces increase linearly with dis-
placement. After reaching the maximum value, there is a mild and irregular decrease 
until it is almost stable. The process of breaking proceeded gradually and in layers. 
In another study, some of the authors took into account the morphological and ana-
tomical structure of Epipactis species leaves  Jakubska-Busse and Gola (2014). The 
initial location of breakage in the process of breaking depends on the construction of 
the leaf layers. Leaves can have similar thickness, but a different number and shape 
of the cells in the layers. There may be fewer layers in which there are larger cells or 
more layers with smaller cells. In Fig. 2 before reaching the maximum force, some 
irregularities can be seen, which can be defined as the initial picking process, and 
the first micro-breaks appear (small cracks often occurring simultaneously). This 
process also takes place gradually in layers as in the case shown in Fig. 1. Micro-
cracks occurring in the outer layers weaken the leaf structure and the material loses 
its continuity. It was observed that the leaves were stronger in the longitudinal direc-
tion of the thickest innervertion.

Using the formulae for the stress � = F∕S and for the strain � = Δl∕l where F is 
the applied force, S is the surface of the cross-section of the leaf and l is its length 
in the absence of an external force, stress-strain graphs of the type shown were plot-
ted. The stress-strain relation obtained was linear to a good approximation, such that 
Hooke’s Law was satisfied, as observed in Fig.  3. From the slope of the best linear 
fits the Young’s modulus E of various leaves were obtained since � = E�.

The values of the Young’s modulus are summarised in Table 2.
It is clear from Table 2 that the Young’s modulus of the sampled leaves dif-

fered quite considerably by up to one order of magnitude although it could be 
said that typically these are equal to a few tenths of a N/mm2 . Together with the 
data on the width and length of a “generic” leaf, this provides useful input for 

Fig. 1   The force-displacement curve for Epipactis leaf No. 1 which is given in Table 2. The leaf was 
stretched in the longitudinal direction of the thickest innervation/venation. This figure has been obtained 
directly from the measuring device in the Zwick 1445 Universal Testing System.
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our model. It has been assumed that there is only a single layer of rods which 
constitute the leaf and in the numerical simulation ∼ 15 rods were used, which 
means that the diameter of a rod should be of the order of 0.1  mm. Assum-
ing a circular cross-section for all rods, a value of the order of  10−6 N mm2 is 

Fig. 2   The force-displacement curve for Epipactis leaf No. 27 which is given in Table 2. The leaf was 
tested for tensile strength at a perpendicular orientation relative to the thickest innervation/venation. This 
figure has been obtained directly from the measuring device in the Zwick 1445 Universal Testing Sys-
tem.

Fig. 3   A stress-strain graph for Epipactis leaf No. 1 which is given in Table 2



161

1 3

Mechanical Properties of Long Leaves: Experiment and Theory﻿	

obtained for the product EI of the Young’s modulus and the area moment of 
inertia.

5 � Numerical Simulations

The boundary-value problem specified in Sect. 2 was solved numerically with a 
Python code which used the solve_bvp procedure from the scipy.integrate pack-
age and which is based on an earlier Fortran code developed by Shampine et al. 
(2006).

It has been convenient to work with dimensionless quantities, hence we let L0 
be a typical length, equal, for example, to the overall length of the leaf. In terms 
of L0 a dimensionless arclength parameter � = s∕L0 is defined. Similarly, the Car-
tesian components of the cross-section of any rod (x,  y,  z) are rescaled to give 

Table 2   Widths, lengths 
and Young’s modulus of 27 
Epipactis leaves measured 
using the Zwick 1445 Universal 
Testing System

No. width [cm] length [cm] E [N/mm2]

1 6.2 12.0 0.739
2 4.6 10.9 0.494
3 4.2 11.4 0.736
4 2.1 10.2 0.320
5 5.0 13.0 3.747
6 11.0 14.4 0.561
7 4.7 8.0 0.388
8 2.4 7.5 0.433
9 1.6 6.7 0.158
10 2.5 6.8 0.231
11 2.5 9.0 0.349
12 3.2 7.5 0.561
13 3.6 7.3 0.824
14 3.2 12.5 0.534
15 1.8 13.5 0.149
16 1.8 10.7 0.250
17 3.8 14.8 0.326
18 3.5 15.5 0.297
19 4.9 11.2 0.754
20 6.6 16.0 0.803
21 3.3 10.7 0.241
22 2.4 9.7 0.405
23 2.5 7.5 0.187
24 2.2 6.3 0.352
25 2.1 6.6 0.180
26 1.8 6.8 0.197
27 3.4 12.2 0.367
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(�, �, �) = (x, y, z)∕L0 . The dimensionless forces n̄(m)
k

 ( k = 1, 2, 3 , m = 1, 2,… ,N ) 
are obtained in terms of a typical transverse shear stiffness H0 , n̄k = nk∕H0 . The 
resulting dimensionless stiffnesses are denoted by lower case h, that is, h(n)

k
 = 

H
(n)

k
∕H0 . Finally, the dimensionless torques are obtained by using a typical bend-

ing stiffness A0 , m̄
(n)

k
= (L0∕A0)m

(n)

k
 . The dimensionless stiffnesses a(n)

k
 are then 

defined as A(n)

k
∕A0 , and the dimensionless couplings 𝜅̄k as (L0∕H0)�k.

We experimented with several numbers of rods (between 5 to 35) and found that 
sufficient detail in the figure is obtained for N no larger than 20. In particular, to plot 
Fig.  4 the leaf was simulated with N = 21 and the parameters of the system were 
a
(n)

i
= h

(n)

i
= 1 for i = 1, 2, 3 and n = 1, 2,… ,N , 𝜅̄y = 𝜅̄z = 1 . Each curve in the figures 

below represents a single rod which is a model of a vein together with its surround-
ing tissue. Thus, N is the “number of veins”. In fact the real number of veins was not 
counted. Using the latter number in the simulations would not make the shape of the 
model leaf more realistic whilst also then making the simulations take an unreasonably 
long time.

The richness of possible structures which can be obtained within the model can be 
seen by a comparison of Figs. 4 and 5 in which different parameter sets were used.

The model can also take into account conditions of non-vanishing initial curvature. 
“Initial” means here that it also appears in the absence of any external forces or torques. 
To model this, we write:

and the initial curvatures are characterised by non-vanishing u(n)
0k

 . Figure 6 shows the 
effect of u(n)

2
= 1.0 for n = 1, 2,… ,N for N = 15.

u
(n)

k
= u

(n)

0k
+ m

(n)

k
∕A

(n)

k
,

Fig. 4   a The shape of the system of rods modelling the leaf as seen in the � − � plane; b The shape of the 
system of rods modelling the leaf as seen in the � − � plane; c The shape of the system of rods modelling 
the leaf as seen in the � − � plane; d A diagram of the system of rods in three dimensions. The param-
eters are a(n)

k
= 1 , h(n)

k
= 100.0 for n = 1, 2,… ,N , k = 1, 2, 3 , 𝜅̄y = 𝜅̄z = 1 , q = 1.0.
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5.1 � Discussion Based on a Linearised Model

In this section we attempt to find some insight into the possible reason or rea-
sons for wrinkling in an elementary way based on a linearisation of the Cosserat 
model. We consider here only one rod, namely, one of the lateral rods in our rod-
based model of the leaf.

Let us start with the relation:

For the components ri of the vector � we have, therefore:

Let us now differentiate again over s and neglect the second term (for instance, 
due to large values of Hi ) to obtain:

�� = � = �1 + �.

r�
i
= d1i +

ni

Hi

Fig. 5   a The shape of the system of rods modelling the leaf as seen in the � − � plane; b The shape of the 
system of rods modelling the leaf as seen in the � − � plane; c The shape of the system of rods modelling 
the leaf as seen in the � − � plane; d A diagram of the system of rods in three dimensions. The param-
eters are a(n)

1
= 20, a

(n)

2
= 20, a

(n)

3
= 0.3, h

(n)

k
= 1.0 , 𝜅̄y = 𝜅̄z = 1
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where �ijk is a totally antisymmetric symbol and the summation convention has 
been used. It follows that the second and third components of � , Y and Z, satisfy the 
equations:

which is valid provided that �1 does not differ much from �x.
We proceed with differentiating Eq. (4) over s while neglecting the first term. 

Thus we obtain:

r��
i
≈ �ijk

mj

Aj

d1k

(7)Y �� =
m3

A3

,

(8)Z�� = −
m2

A2

,

Fig. 6   a The shape of the system of rods modelling the leaf as seen in the � − � plane; b The shape of the 
system of rods modelling the leaf as seen in the � − � plane; c The shape of the system of rods modelling 
the leaf as seen in the � − � plane; d A diagram of the system of rods in three dimensions. The param-
eters are a(n)

k
= 1, h

(n)

k
= 10 , u(n)

2
= 1.0 , for n = 1, 2,… ,N , k = 1, 2, 3
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Now, approximating �′ with �′
1
 and using d�

11
≈ 1 , d�

12
= Y �� , d�

13
= Z�� , we get

Using (7, 8) and renaming n1 as T, we obtain the well-known fourth-order equation 
for Y and Z:

and

The latter equations coincide (up to the names of components) with Eqs. (20.14) of 
Landau and Lifshitz (1993). Following the latter reference, we will consider T not 
as a dynamical variable as in the rigorous Cosserat theory, but rather as a unknown 
constant force which may be both compressive ( T < 0 ) and tensile ( T > 0).

Now, with f2 = 0 , f3 = q , the solution is elementary:

where Yi , Zi , i = 0, 1, 2, 3 are constants of integration.
The square roots in the above solutions can of course be negative if the force 

T is compressive. This can lead to the oscillatory behaviour of the solutions pro-
vided that |T|∕AjL are sufficiently large and the boundary conditions allow for the 
oscillatory mode to appear. In the case of a single rod, the natural boundary con-
ditions are those below Landau and Lifshitz (1993)

which express the assumption that the rod is clamped at s = 0 and at s = L the torque 
vanishes while the force is a non-zero constant (in the case of many rods, the total 
force acting at the tip must be zero, but the forces acting separately on each rod at 
the tip may be and often are quite large).

These boundary conditions do not prohibit the presence of the oscillatory 
mode. It can be particularly pronounced and simulate the long-leaf wrinkling if 
|T|L∕A3 ≪ |T|L∕A2 or A2 ≪ A3.

(9)��� = −� × � + � × ��.

(10)m��
2
≈ −f3 + n1Z

��,

(11)m��
3
≈ f2 + nxY

��.

(12)Y ���� ≈
f2

A3

+
T

A3

Y ��,

(13)Z���� ≈
f3

A2

+
T

A2

Z��.

Y(s) = Y0 + Y1s + Y2 exp (
√
T∕A3s) + Y3 exp (−

√
T∕A3s),

Z(s) = Z0 + Z1s −
1

2

q

T
s2 + Z2 exp (

√
T∕A2s) + Z3 exp (−

√
T∕A2s),

Y(0) = 0, Y �(0) = const, Y ��(L) = 0, Y ���(L) − (T∕A3)Y
� = Fy0,

Z(0) = 0, Z�(0) = const, Z��(L) = 0, Z���(L) − (T∕A2)Z
� = Fz0.
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The above linear model is unsatisfactory for many reasons, the most important 
being that it does not says anything about the dependence of the x−components of 
dynamical vector variables on s and in rather uncontrolled ways it neglects non-lin-
earities. However, it predicts that wrinkling can take place provided that the ratio 
|T|L∕A2 and constants Z2, Z3 are large enough—the condition likely to be met in the 
case of lateral rods.

6 � Comparison of the Model with Experiment

Let us immediately note that experiments such as ours can neither vindicate nor 
refute the model as the latter is inherently multi-parameter and it is not very diffi-
cult to find parameters Hi and Ai such that the experimental force-displacement dia-
grams can be reproduced. In fact, in Fig. 7 it can be seen that the diagrams based on 
numerical simulations correspond very well to those of Figs. 1 and 2 in the regions 
of forces where the breaking of the leaf structure took place:

We can also attempt to validate our model qualitatively by checking whether it is 
able to exhibit the characteristic undulation. To do this, it is reasonable to take into 
account the analysis of the linearised model in the previous section. It predicts that 
undulation can take place for relatively small values of the coefficient A2 . The fol-
lowing figure confirms that expectation (numerical results have been obtained from 
the full, not linearised, model) (Fig. 8):

However, as demonstrated in Fig.  9, it is not really the smallness of A2 per se 
which may be responsible for the leaf wrinkles, but rather the mismatch between 
two bending stiffnesses. If indeed a2 ≪ a3 , it may be energetically preferable for the 
lateral rods to form vertical waves rather than to expand to increase the width of the 
leaf. In Fig. 9 the two stiffnesses are comparable and no undulations are visible.

Fig. 7   The force-displacement curves obtained from the Cosserat-rods model, cf. Figs.  1 
and 2. The parameters are: N = 21 , A

(n)

1
= 100 N cm2,A

(n)

2
= 150 N cm2,A

(n)

3
= 200 N cm2 , 

H
(n)

1
= 9 N,H

(n)

2
= 5 N,H

(n)

3
= 0.2 N in a and A(n)

1
= 100 N cm2,A

(n)

2
= 150 N cm2,A

(n)

3
= 200 N cm2 , 

H
(n)

1
= 10.29 N,H

(n)

2
= 5 N,H

(n)

3
= 0.2 N in b. The linear density of gravity q was equal to 10−3 N/cm, 

and the coupling constants have been set to zero
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We would again like to stress that because our model inherently contains many 
parameters, it would be wrong to assess that it has been confirmed by the experi-
ments in any sense. We can only claim that it has not been invalidated by them.

We have also found that relatively small torsional stiffnesses a1 reduce the mis-
match between the a2 and a3 (with a2 being small) needed for wavy structures to 
appear. This is exemplified in Fig. 10.

Fig. 8   a The shape of the system of rods modelling the leaf as seen in the � − � plane; b The shape of the 
system of rods modelling the leaf as seen in the � − � plane; c The shape of the system of rods modelling 
the leaf as seen in the � − � plane; d A diagram of the system of rods in three dimensions. The param-
eters are a(n)

1
= a

(n)

3
= 1.0 , a(n)

2
= 2.5 ⋅ 10−4 , h(n)

k
= 3 for n = 1, 2,… ,N , k = 1, 2, 3 , 𝜅̄y = 𝜅̄z = 1 , q = 0.002

Fig. 9   a The shape of the system of rods modelling the leaf as seen in the � − � plane; b The shape of the 
system of rods modelling the leaf as seen in the � − � plane; c The shape of the system of rods modelling 
the leaf as seen in the � − � plane; d A diagram of the system of rods in three dimensions. The param-
eters are a(n)

1
= 1.0 , a(n)

2
= 2 ⋅ 10−4 , a(n)

3
= ⋅10−2 , h(n)

k
= 3 for n = 1, 2,… ,N , k = 1, 2, 3 , 𝜅̄y = 𝜅̄z = 1 , 

q = 0.002.
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In our numerical simulations we have not taken into account that the lateral parts 
of the leaf have smaller stiffnesses than its central parts. In fact, the cross-sections of 
Epipactis leaves are by no means homogeneous, please see, e.g., Fig. 4 in Jakubska-
Busse and Gola (2010) and Fig. 3 in Jakubska-Busse et al. (2012). These cross-sec-
tions include regions which are porous, but the porosity is rather different from that 
of the aquatic macrophytes investigated in Zhao (2015). This is mainly due to the 
significant differences in the anatomical structure of leaves between aquatic plants, 
especially of the heterophyllous species (taxa capable of producing different types 
of leaves below and above water), and terrestrial orchids representing by the genus 
Epipactis. The inhomogeneity and porosity can of course be taken into account by 
our model, but we have decided not to do this in order to avoid a proliferation of 
the (already considerable) number of parameters, the values of which are difficult to 
estimate.

Shapes of the real leaves of Epipactis are shown in Fig. 11 while Fig. 12 presents 
the whole fresh plants.

To demonstrate flexibility of our model let us finally produce pictures which show 
that it can take into accounting twisting chirality of leaves (or other plant organs) 
(Fig. 13).

7 � Conclusion

This study considered long leaves with parallel venation as exemplified by the leaves 
of the genus Epipactis. In the experimental part of our study, the extensions of the 
leaves as functions of applied forces were measured and it was found that Hooke’s 

Fig. 10   a The shape of the system of rods modelling the leaf as seen in the � − � plane; b The shape 
of the system of rods modelling the leaf as seen in the � − � plane; c The shape of the system of rods 
modelling the leaf as seen in the � − � plane; d A diagram of the system of rods in three dimensions. The 
parameters are a(n)

1
= 8 × 10−3 , a(n)

2
= ×10−1 , a(n)

2
= 1 , h(n)

k
= 3 for n = 1, 2,… ,N , k = 1, 2, 3 , 𝜅̄y = 𝜅̄z = 1 , 

q = 0.002
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Law serves as a very good approximation for those functions. Approximate values 
of the Young’s modulus  of the leaves were determined. In the theoretical part of 
this study, long leaves with parallel venation were considered as systems of quasi-
parallel Cosserat rods coupled with themselves through linear forces and influenced 
by gravity.

We have demonstrated that this model can take into account the initial curvatures 
of (a part of) the leaf as well as external tensile forces. In contrast to our previ-
ous study, we have posited that the wrinkling observed in many long leaves can be 
attributed to the mismatch of their bending stiffnesses. Furthermore, small torsional 

Fig. 11   Variation in leaf shape of the investigated plants of genus Epipactis. Ea—Epipactis albensis, 
Eh—Epipactis helleborine 
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stiffness can enhance the wrinkling in the sense that this can appear when there is a 
smaller mismatch of the bending stiffnesses.

The determination of the shapes of rods which constitute the model is computa-
tionally intensive even with the use of the solve_bvp module. In particular, difficul-
ties were encountered in maintaining the three directors orthogonal to each other. 
The matrix to switch between the “laboratory” and “co-moving” bases occasionally 
turned out to be ill-conditioned.

Further progress in the understanding of the mechanical structure of leaves can 
be achieved, firstly through very careful and detailed measurements and also by the 
use of ab initio “bottom-up” models which start at the level of individual cells.

We believe that the model of coupled rods developed here could be used to 
describe the qualitative features of other anisotropic organic tissues and possibly 
also other anisotropic materials.

Fig. 12   The habit of whole plants of some investigated Epipactis species. Ea—Epipactis albensis, Eh—
Epipactis helleborine 
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