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Abstract: Imaging modalities stand at the frontiers for progress in congestive heart failure (CHF) 
screening, risk stratification and monitoring. Advancements in echocardiography (ECHO) and Mag-
netic Resonance Imaging (MRI) have allowed for improved tissue characterizations, cardiac motion 
analysis, and cardiac performance analysis under stress. Common cardiac comorbidities such as hy-
pertension, metabolic syndromes and chronic renal failure contribute to cardiac remodeling, sharing 
similar pathophysiological mechanisms starting with interstitial changes, structural changes and fi-
nally clinical CHF. These imaging techniques can potentially detect changes earlier. Such informa-
tion could have clinical benefits for screening, planning preventive therapies and risk stratifying pa-
tients. Imaging reports have often focused on traditional measures without factoring these novel pa-
rameters. This review is aimed at providing a synopsis on how we can use this information to assess 
and monitor improvements for CHF with comorbidities.   
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INTRODUCTION 

 Screening and risk stratification of congestive heart fail-
ure (CHF) are among the most established sciences for plan-
ning management pathways. Risk scores require information 
from clinical signs and symptoms, biomarkers, and imaging 
modalities. End-organ changes from causative comorbidities 
go through well defined stages, for example diabetes (DM), 
hypertension (HT) or chronic renal impairment (CRI) that 
leads to adverse cardiac remodeling (CR), would present 
with a history of poor control, subtle clinical symptoms and 
signs, and abnormal disease specific biomarkers before overt 
end organ damage [1-7]. Some of the earliest changes in 
tissues, e.g. endothelial dysfunction can be detected in pe-
ripheral blood vessels by techniques such as flow mediated 
dilatation and carotid intimal thickness. These techniques 
provide valuable information but are not readily available in 
all centers. Other investigations such electrocardiography 
(ECG) and brain natriuretic peptides (BNP) lack in sensitiv-
ity, specificity or reproducibility [6, 7].  
 Cardiac ultrasound or echocardiography (ECHO) and 
cardiac magnetic resonance imaging (CMR) can similarly 
characterize cardiac tissue with improved accuracy, adding 
information for risk scoring of CHF. The Framingham [8], 
Olmstead County [9], The Multi-Ethnic-Study of Athero-
sclerosis (MESA) [10], CARDIA [11], Dallas Heart [12], 
HyperGEN [13], Cardiovascular Health [14] and The Strong 
Heart Studies [15] have contributed to data that show early 
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changes of diastolic dysfunction, left ventricular hypertrophy 
and regional myocardial deformation portend worse progno-
sis even in earliest stages [6, 8, 9, 14, 16-22]. The ability to 
monitor these processes, importantly, many of which are not 
unidirectional and thus can be delayed or reversed by treat-
ments [6, 8, 9, 14, 16-22]. Furthermore it provides an addi-
tional avenue for clinicians to plan chronic disease care and 
alter the temporal profile for prevention and treatment closer 
to the evolution of the disease process. Accordingly some 
clinical and imaging guidelines have factored this in their 
guidelines. In this review we explore two imaging modalities 
that can characterize myocardial tissue and analyze myocar-
dial mechanics providing additional information relevant for 
CHF care.  

KEY PRINCIPLES  

Pathophysiological Considerations in the Evolution of 
Heart Failure  

 All structures in the heart are subject to direct or indirect 
changes from comorbidities, such as the supporting connec-
tive tissues (CT), septum, valves, conduction system, blood 
vessels and the myocardium itself. Changes can manifest in 
tissue characteristics and mass, geometry, cardiac function 
and reserve. Cardiac remodeling (CR) is the term that best 
describes the pathophysiological process that alters mole-
cules and genes within the cell and extracellular matrix that 
contributes to the clinical syndrome of CHF. There are 2 
important processes affecting the anatomy and function that 
can be quantified [6, 23, 24]. Figure 1 highlights the evolu-
tion of this process with a clinical reference.  
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1. Cardiac and vascular anatomy: increased cross-links 
of collagen and laminin fibers leading to remodeling of 
the extracellular matrix or ‘cardiac fibrosis’, a stage in 
CR. Myocardial cells also undergo structural changes 
including increases in cross sectional area, best de-
scribed as hypertrophy or dilatation, and best studied in 
the left ventricle.   

2. Cardiac and vascular function: Contraction occurs in 
two quantifiable phases. In ventricular systole contrac-
tionlongitudinally (base moves to apex), radially (wall 
thickening) and circumferentially (cavity size reduc-
tion) are coupled with rotation (base and apex moving 
in opposite directions) and twist where helical myocar-
dial fibers are orientated right handed in the subendo-
cardium to circumferential in midwall and left handed 
in subepicardium. Ventricular diastole is a passive en-
ergy dependent reversal of the previous process. Tissue 
displacement and the rate at which it occurs are quanti-
fiable in direction and magnitude. CR increases dia-
stolic wall stress. 

3. Echocardiographic Principles 

 When sound waves (ultrasound) interact with cardiac 
tissues the resulting effect can be described by four phenom-

ena: reflection, scattering, refraction and attenuation. Thus 
far the novel technology allows us to exploit the first two 
factors. Doppler velocity and speckle tracking can measure 
strain, torsion or twist, surrogates for myocardial systolic 
mechanics. Diastolic function can be determined by spectral 
doppler at mitral valve and tissue doppler at the mitral annu-
lus. Multiarray transducers can provide 3D echocardio-
graphic images. These appear to have increased accuracy and 
reproducibility for quantyfying volumes and function, as 
geometric assumptions are negated [24].    
CMR Principles  
 Imaging of protons within hydrogen atoms can be done 
in any plane with unrestricted field of view, and without 
geometrical assumptions. Various MRI sequences can be 
used to obtain the desired information (Table 1) [25-29]. 
Spin echo with dark blood provides the highest resolution for 
static morphology and structure. Phase contrast sequences 
with myocardial tagging can map myocardial mechanics as 
contractility, strain or twist. CMR contrast techniques with 
gadolinium based contrast agents that remain in the extracel-
lular space can identify regional fibrosis or scar. Tissue 
mapping techniques such as TI mapping can also identify 
interstitial fibrosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Heart Failure and role of Imaging Technique. As disease progresses the risk of heart failure increases with gradual remodeling with 
interstitial deposition followed by structural changes. The advent of diastolic dysfunction which often precedes systolic dysfunction is per-
haps the earliest stage of clinical CHF. In the at risk stages, structural changes are either undetectable in early in stage A or inferable later in 
stages A to B using novel MRI and echocardiographic techniques. When CHF has developed, these techniques can also be used to provide 
incremental information that point to a greater risk of an adverse outcome. Many of these areas are still evolving and could play important 
roles for clinical practice. Stages of HF: A – At high risk but without structural heart disease or symptoms; B – Structural heart disease but 
without symptoms; C – Structural heart disease with current or previous symptoms; D – Refractory HF requiring specialized intervention. 
Concepts adapted from Ref 6 
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Assessing Cardiac Remodeling 
 Echo and CMR could benefit ACC stage A and B pa-
tients by detecting subclinical components of geometry and 
deformation (function) of early HF (Fig. 1). Comorbidities 
such as diabetes [1, 31-33], hypertension [2, 34-36], obesity 
[21, 37-41] and renal impairment [3, 42-44] can all contrib-
ute to cardiac remodeling individually, together or idiosyn-
cratically. Myocardial hypertrophy is an early feature of CR 
and warrants further discussion. Morphologically the left 
ventricle can be classified as having: normal geometry [nor-
mal left ventricular mass (LVM) and relative wall thickness 
(RWT)]; concentric remodeling (normal LVM, � RWT); 
concentric hypertrophy (� LVM, � RWT); or eccentric 

hypertrophy (�LVM, normal RWT). Cardiac remodeling is 
defined by M-mode echo as LVM >115g/m2 in men and 
>95g/m2 in women or RWT >0.42. Subclinical alteration in 
systolic function is also a feature of CR, but has been less 
well studied and described. Risk scores are the easiest to use 
non-invasive surrogates. However, they are inconsistently 
used as they do not consistently assist daily clinical decisions 
[45, 46]. Examples include the Framingham, Health ABC 
and Atherosclerotic Risk In Communities (ARIC) HF risk 
scores, which predict 10-year risk of CHF [47-49]. Adding 
N-terminal pro-B-type natriuretic peptides (NT-proBNP) 
increases risk prediction [47]. Biomarkers and ECG on their 

Table 1. Novel Techniques and Clinical Correlates for the Left Ventricle. 

Modality Methodology Clinical  

Correlate/ Time 

Notes 

Tissue Doppler Imaging Velocity (cm/s) with pulsed doppler DF 

Tissue Doppler Strain  SR = (V2 – V1)/D (s-1) DF 

Regional SF 

Speckle Tracking Strain [(L - L0)/ L0] x 100% DF  

Speckle Tracking motion Rotation – long axis circular motion (d) 

Twist – difference in rotation base and apex (d) 

Torsion – gradient in rotation angle from base to 
apex (d/cm) 

DF 

SF 

Stress Testing Tissue Doppler Strain 

Speckle Tracking 

Cardiac Reserve 

Echocar-
diography 

3D Echo Volume and surface rendered imaging SF 

Volume 

Pro: 

Availability 

Standardization 

 

Cons: 

(Intermediate limita-
tion) 

Cost 

Time 

Reproducibility  

Sensitivity 

Specificity 

 

Pulse Sequence CMR SE/FSE Dark Blood 

   T1 FSE 

   T2 FSE 

Multi-Echo SE T2 

Anatomy 

Chamber, vasculature, pericar-
dium, fat 

Cystic 

Cine CMR GSE or Cine steady state free precision (SFPP) 
Bright Blood 

Motion and volumes 

Modifiers FSE Saturation recover T1 weighted imaging  

FSE Inversion recovery - T2 fat suppression 

GRE Myocardial grid or line tagging/ phase 
contrast / DENSE 

GRE Phase Contrast 

Improve image 

Edema, ischemia, infection, 
infiltration 

Intramyocardial motion (T) 

Flow velocity/vol 

Contrast GBCA 

GBCA T1 - LGE PSIR 

Blood Flow 

Fibrosis 

MRI 

Perfusion imaging Adenosine 

Dobutamine 

Ischemia 

Pro: 

Accuracy 

Reproducibility 

Sensitivity 

Specificity 

 

Cons: 

Availability 

Cost 

Standardization 

Time 

Novel imaging techniques are able to quantify structural (fibrosis, mass, shape) and functional changes with improved temporality. This added information could have benefit for 
monitoring and planning treatments. However, there remain limitations of these modalities in routine clinical practice. Echocardiographic imaging of the earliest changes is based on 
extrapolation of tissue-ultrasound interaction to infer subtle changes in LV structure or function, and is limited by patient characteristics. MRI is able to combine anatomical and 
functional data regardless of patient characteristics, in many aspects with less inference. Sensitivity, specificity and reproducibility are further areas that require attention in both 
these modalities. Abbreviations: cm – centimeter; d – degree; DENSE - displacement encoding with stimulated echoes; DF – diastolic function; FSE – fast spin echo; GBCA - Gado-
linium based contrast agents; GRE – gradient echo; L – final length; L0 – original length; LGE = late gadolinium enhancement; LV – left ventricular; PSIR - phase sensitive inversion 
recovery s – second; SF – systolic function; SR = strain rate; V – velocity.  
Concepts adapted from Ref 5.   



66    Current Cardiology Reviews, 2017, Vol. 13, No. 1 Wong et al. 

own lack accuracy and reproducibility, while cardiac CT 
exposes individuals to unacceptable radiation [6, 50, 51].  

COMORBIDITY ASSESSMENT WITH ECHOCAR-
DIOGRAPHY 

Disease Specific Considerations 

 There are no contraindications to echocardiography. In 
the majority of cases echocardiography provides qualitative 
and quantitative information with good sensitivity, specific-
ity and reproducibility at rest and under stress. Operator and 
observer training contribute largely to any temporal varia-
tions. Client related factors such as chronic lung disease and 
obesity can interfere with optimal image quality. 

Cardiac Geometry with Echocardiography 

 2DE is the gold standard for assessing and is also the 
only guideline-approved modality for monitoring volumes 
and mass, which also has prognostic correlates. In this as-
sessment we have to make an assumption of the LV shape as 
ellipsoid. In addition the formula for mass requires a cubing 
of the linear measurements, with the potential to magnify 
errors. Many of the earlier studies used M-Mode to generate 
and report data [52-57]. This is one reason this important 
prognostic marker, is not used more readily in clinical deci-
sion-making. Armstrong et al. and Gjesdal et al. have pre-
sented the findings in chronological detail. Essentially the 
findings support good reproducibility and reliability when 
one method is used. M-Mode is however the least accurate. 
Large hypertensive trials and population studies have been 
the main source for data. Variations in ethnicity and sex can 
be standardized by body surface area [6, 54, 57]. Several 
points are worth considering: less standardization have been 
done for non-hypertensive comorbidities; and despite posi-
tive reproducibility, many clinicians use the geometric find-
ings but not the LVM in routine clinical decisions.       
 3DE, with increased spatial resolution, provides greater 
accuracy than 2DE for volumes and LVM. The early studies 
showed comparable results with CMR, with better interob-
server variability compared to 2DE [58-64]. Increasingly 
comparisons are being done with younger participants, obese 
subjects, dialysis, post myocardial infarction, dyssynchrony 
and with novel techniques such as 3D strain dispersion, with 
promising findings [65-71]. 3DE is limited by lower tempo-
ral resolution than 2DE. Acquisition still requires good win-
dows and image quality. Patients need to comply with breath 
holds to acquire images over several heartbeats. Cardiac ar-
rhythmias can be a problem. Finally post-processing is re-
quired. Thus 2DE remains the gold standard cardiac investi-
gation for all cases where feasible. 3DE echo is likely to fill 
the space where MRI level accuracy and reproducibility are 
needed, such as volumes and LVM.      

Cardiac Function with Echocardiography 

 Tissue Doppler imaging (TDI) assessing diastolic func-
tion, is now validated and in the guidelines. TDI and speckle 
tracking can be used to quantify myocardial strain and strain 
rate. The latter, that is angle independent, has also been in-
creasingly used to assess torsion. Such subtle changes can be 

seen when the ventricular structure is altered, the connective 
tissues is fibrosed, wall stress is increased or a reduction in 
blood supply at rest or exercise. Many of the earlier studies 
went on to study these techniques in normal subjects and 
athletes [72-82], while validating the technique with other 
modalities including over time [83-87], which allowed fac-
toring in guidelines [88]. Clinical correlations have high-
lighted predictive capacity for exercise capacity in HF [89], 
prognosis [90], valve assessment [91-93], chemotherapy 
cardiotoxicity [94] and ischemia evaluation [95-99]. The 
data suggest that, like TDI this technique is user friendly and 
can answer important clinical questions. The important 
points are addressing subclinical changes reproducibly. The 
data from oncology patients and valve assessment is an ex-
ample where this technique can alter practice. What is 
needed are prospective studies where actual clinical deci-
sions are made in comparison to CMR derived data.  
 Moving on, this point than becomes relevant in assessing 
and monitoring for cardiac changes from comorbidities. In 
obesity the multiethnic CARDIA study tracked 3,265 par-
ticpants aged 18-30 years from the mid 1980’s. After 25 
years the authors noted associations between impaired stress 
echocardiography (STE) systolic and diastolic parameters 
with duration of obesity. A comparison of STE at baseline 
was however not possible [100]. These changes appear to 
occur quite early [101]. In 172 diabetics followed for 3 
years, baseline decrease in longitudinal systolic strain was 
associated with greater wall thickness and volumes that 
failed to decrease over time [102]. This appears to correlate 
with the severity of diabetes. Supporting this finding, in 
1,065 type 1 diabetics decrease strain was largely noted in 
participants with albuminuria [103]. Furthermore in the Val-
sartan trial of heart failure with preserved ejection fraction, 
in 219 subjects and 50 hypertensive and normal controls 
lower strain rates identified systolic impairments, not de-
tected by routine 2DE [104]. Interestingly these studies ap-
pear to paint a picture consistent with the chronology and 
pathophysiology. Hypertensives appear to have changes later 
and starting with the basal segments with radial and circum-
ferential segments altered later. As LVM and wall thickness 
correlates with strain impairment, this would imply that 
strain may not be as beneficial in HT, or alternatively the 
added information could point to other contributors to CR 
[105, 106]. Finally in CRI, where hypertension and diabetes 
are potential contributors, strain rate imaging similarly con-
firms the ability to detect subclinical systolic changes [107, 
108]. A learning curve still exists for use in dynamic loading 
conditions [109]. 

COMORBIDITY ASSESSMENT WITH CMR 

Disease Specific Considerations 

 Excluding the routine contraindications and patients 
preference CMR has no limitations for major comorbidities 
if safety guidelines are adhered [110]. Nephrogenic systemic 
fibrosis, a very rare but serious multisystem disease has been 
associated with the use of gadolinium contrast agents. The 
greatest risks are in renal impairment (glomerular filtration 
rate <30ml/min/1.73m2) and these patients are typically ex-
cluded from contrast administration unless the information 
obtained is likely to outweigh the risks [28]. We believe 
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however that in many patients with severe renal impairment, 
CR is usually advanced and other modalities can provide 
similar information.  

CMR for Cardiac Geometry 

 CMR is the gold standard for ventricular geometry as-
sessment [57, 111-113], with validation in an ex-vivo canine 
model [30]. Direct comparison with 2D echocardiography 
(2DE) has shown superior accuracy and reproducibility 
[114-116].  Accurate and reproducible imaging of chamber 
size, wall thickness and mass are among the most important 
surrogates in ACC stage A/B HF risk prediction [6, 7]. The 
Multi-Ethnic-Study of Atherosclerosis (MESA) study, with 
4,309 participants provides much of the data on CMR and 
LVM [117]. In a review by Armstrong et.al, four studies 
from MESA and a fifth with 2194 participants referred for 
known or suspected coronary artery disease, showed correla-
tions with development of HF and adverse clinical outcomes 
with follow-up from 2.5 to 5.8 years [57, 118-122]. Higher 
systolic blood pressures were associated with increased 
LVM and volume [41], while participants diagnosed with 
diabetes had 1.5 fold increased risk of LVH, increased LVM, 
lower stroke volumes and ejection fractions [41, 123, 124]. 
Similarly in the Dallas Heart Study with 2, 548 healthy par-
ticipants increasing cystatin C levels correlated with higher 
LVM, concentricity and wall thickness [125]. CMR offers an 
opportunity for diagnosis and monitoring accurately and 
reliably. However, several ongoing issues need to be ad-
dressed: measurement techniques can influence LVM esti-
mates. Papillary muscle exclusion appears to have greater 
reproducibility [126] but may not be as physiologically accu-
rate; imaging protocols with cine bright blood have differ-
ences when GRE or SSFP sequences are used, although 
SSFP sequences are now the standard of practice. The latter 
has a shorter acquisition time and improved signal and con-
trast-to-noise ratios, with lower LVM estimates, although 
reproducibility with either technique is still good [57, 127-
129]. Finally interobserver variation is greatest for LVM 
estimates highlighting need for greater standardization and 
consensus before this technique is factored into guidelines 
[57, 130-132].       
CMR for Cardiac Fibrosis 

 CMR is the gold standard for imaging myocardial fibro-
sis. With accurate measures of relaxation properties of tis-
sues, changes in content of various components can be esti-
mated and monitored over time to determine fluctuations 
between inflammation or fibrosis from many groups [133-
147]. Myocardial fibrosis is a significant cause and conse-
quence for HF. We are now learning that the pattern and 
degree of fibrosis are important factors. In ischemic car-
diomyopathies LGE-CMR can assess viability or reversibil-
ity of injured myocardium following acute or chronic in-
farcts [148-152], without stressing patients [28, 153, 154], 
the transmural extent (even small subendocardial infarcts) 
[144] and localize no reflow segments [28, 155]. Combining 
T2-weighted imaging high signal from edema differentiates 
acute from chronic injury and size of ischemic zone follow-
ing reperfusion [28, 156-159]. In non-ischemic cardiomy-
opathies LGE-CMR and more recently T1 mapping, can 
identify the foci of regional or diffuse scarring [133, 134]. 

These patterns vary with different etiologies for HF. The 
differences in the techniques are the tissue characterization 
with or without contrast replacement in the scar. TI mapping 
has the added advantage of detecting diffuse interstitial fi-
brosis, thus severity, where LGE is less sensitive [133, 160].  
 In hypertensives and diabetics with preclinical HF, CMR 
detected fibrosis predicts the risk of diastolic dysfunction 
[138,139, 161] and future HF [162-164]. When comparing to 
a younger cohort with mean duration diabetes 4.7 years, aor-
tic distensibility and diabetes duration correlated with dia-
stolic dysfunction, which was significantly associated with 
lower peak systolic strain. In regards to prognosis, one study 
of 187 diabetic subjects showed one in three patients had 
LGE-CMR evidence of a silent prior myocardial infarction 
(MI). The subsequent 17 months of follow-up revealed there 
were four and seven fold increased risk of cardiovascular 
event and all-cause mortality, similarly noted in a larger 
study with 300 patients [165, 166], and even in those with 
just impaired fasting glucose [33, 167]. This highlights again 
that across the spectrum of the comorbid disease serial CMR 
can predict and monitor progression with therapies as early 
as ACC stage 1, or recommend those who require more ag-
gressive treatment [168, 169]. There have also been benefits 
reported for predicting clinical response to resynchronization 
therapies [141, 142, 145-147] and electrophysiological pro-
cedures [140, 146].   
 Tissue mapping may also allow for prediction of which 
comorbid condition is contributing greater to the disease 
burden. The premise here is that disease duration, severity or 
poor control should show signs specific to that disease with a 
temporal profile. For example diabetic cardiomyopathy may 
be associated with cardiac steatosis, which precedes fibrous 
deposition [33, 164, 170]. Hypertensives would show cardiac 
geometrical changes earlier [6, 34-36]. CRI could show a 
combination as both the previous etiologies contribute and 
with areas of increased calcification. The prevalence and 
distribution of fibrosis has been well summarized by Mew-
ton et al., describing: in diabetics, a nonspecific or ischemic 
pattern; in hypertensives, patchy, nonspecific or ischemic 
pattern; and CRI, ischemic pattern, diffuse and mid wall-
focal [160]. In time we should gain better insights into the 
temporal profiles of tissue changes and how this correlates 
with more advanced risk such as sudden cardiac death.  

CMR Functional Imaging 

 Myocardial tagging has been used to show impairment in 
myocardial mechanics with carotid intimal thickness and 
higher calcium scores in asymptomatic participants [171-
174]. Phase contrast imaging and myocardial tissue tagging 
can provide diastolic measurements that match or better 
2DE: In the former similar parameters as Doppler echocardi-
ography are used; in the latter diastolic torsion and strain 
recovery rates are extended with diastolic dysfunction [175, 
176]. Stress Myocardial Perfusion Imaging by CMR pro-
vides greater accuracy than SPECT and is among the strong-
est predictors of major cardiovascular outcomes [177-184]. 
For real world clinical use three issues stand out: firstly, 
myocardial tagging requires extensive user involvement and 
are laborious and time consuming - the ability of new soft-
ware to “feature track” myocardial MRI images without the 
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need for dedicated tracking sequences may address some of 
these issues; secondly, standardizations of values need fur-
ther study; finally, sensitivity and specificity issues with any 
one modality. Increasingly combinations of parameters are 
being used to provide incremental benefits and negate this 
point. Specifically for comorbidities, studies have explored 
such combinations [185-190]. 
 Among diabetics and obese subjects: in a study of 19 
diabetics, 30 pre-diabetics and 16 controls who underwent 
comprehensive CMR, LVM and LV torsion, were increased 
while myocardial perfusion reserve (MPR) was decreased. 
There was significant correlation between MPR and early 
diastolic strain rate and LV torsion [191]; Ernande et al, 
showed in 37 diabetics without known heart disease circum-
ferential, radial and longitudinal strain were decreased com-
pared with 23 age matched controls, reproducibly between 
operators [192]; in obese subjects with poor echocardio-
graphic windows, longitudinal systolic strain, and peak ra-
dial and longitudinal diastolic strain were lower in the 59 
obese compared to 40 controls [193]. Among hypertensives, 
CMR offer good correlations for LVM, LVH and MPR 
which provide prognostic information [194]. There is less 
data on TI mapping and LGE in HDD [195, 196]. Nearly 
half of hypertensives with LVH have detectable fibrosis 
which correlates with diastolic abnormalities [197, 198]. 
Available data also suggests that the benefits in screening 
can be increased by recognizing aortopathy and atrial my-
opathies in HDD [199]. In the MESA study with 1184 par-
ticipants peak systolic circumferential strain was inversely 
correlated with diastolic BP [200]. Small vessel ischemia can 
be a feature of LVH and HHD and is detected accurately by 
CMR [201-204]. CMR can similarly detail CR in CRI. As 
there are other determinants of LVH beyond hypertension 
including calcium-phosphate balance, this method can in-
form the adequacy for RRT [205-213]. Impairment in strain 
rates from all fibers, which go onto correlates with out-
comes, is noted in early CRI and hemodialysis [210, 211]. 
Edwards et al, has summarized all the findings and associa-
tions with CRI and CMR and proposes strong arguments for 
increased use across all stages [208].     

NOVEL IMAGING AND CLINICAL TRIALS 

 Clinical trials in HF can cost billions, and take and aver-
age of 7 years. Only 3 in 10 drugs recuperate investment 
costs and there is a high attrition rate for novel drugs. Inno-
vations of heart failure therapeutics for many areas are lack-
ing and the impetus for this is likely to decline, as the busi-
ness case remains uncompetitive. It is thus vital that meas-
ures to reduce cost are explored. Imaging with novel tech-
niques can reduce follow-up times. Presently surrogate end-
points for HF outcomes are unreliable or lacking [214]. 
Novel surrogates of CR will take time to secure a front line 
role in clinical trials. Routine electrocardiography and echo-
cardiography will also remain a modality for the majority of 
information. An important area where CMR and 3DE should 
be used with the current evidence is the assessment of LVH 
and LVM [215, 216], and to guide protocol driven clinical 
decisions [217]. CMR is able to accurately obtain and repro-
duce these values that are also independent of loading condi-
tions tested in all comorbidities mentioned in the review, 
thus potentially leading to reduced sample sizes [218-221]. 

LGE and strain rate imaging are alos important parameters 
that will require more studies to understand the incidences, 
chronology and reversibility with therapies for the various 
comorbidities. Health systems should invest in researching 
novel imaging devices and techniques to deliver improve-
ments in detection, initiating preventive therapies and/or 
improving clinical trial conduct.  

CONCLUSION 

 Cardiac remodeling occurs chronologically in all the 
common comorbid contributors to CHF. In many of these 
cases cardiac fibrosis and hypertrophy can be identified early 
and accurately with echo and CMR. These tools are however 
not used frequently enough for this indication. There are still 
research translational gaps in the more novel non-invasive 
tools. However their promise for a ‘one stop shop’ from 
screening and risk stratification, to diagnosis, to monitoring 
and planning long term cardiovascular care will more than 
likely advance. It is important that knowledge of these tech-
niques be disseminated to general practitioners, and special-
ists such that the experience can be built within health clus-
ters. On the research front there are important gaps that need 
to be addressed. Feasibility of use particularly of acquisition 
times and offline processing in busy clinical units are areas 
manufactures need to factor. Clinician scientists need to gen-
erate data for normal values that can be standardized for 
clinical use for each modality and across modalities and fac-
tor these into guidelines. Cardiologists should increasingly 
factor these advancements for their patients.    
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ABBREVIATIONS AND SYNONYMS 

2DE = two dimensional echocardiography 
ACH = All Cause Hospitalization  
ACM = All Cause Mortality 
AHF = Acute Heart Failure 
CDMP = Chronic Disease Management Programs 
CHF = Congestive Heart Failure 
CM = cardiomyopathy 
CMR = cardiac magnetic resonance 
CRI = chronic renal insufficiency 
CRT = cardiac resynchronization therapy 
CT = connective tissues 
DENSE = displacement encoding with simulated ech-

oes 
DM = diabetes mellitus 
ECG = electrocardiography 
ECHO = echocardiography 
EF = ejection fraction 
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FSE = fast spin echo 
GE = gradient echo 
HDD = hypertensive heart disease 
HFDMP = Heart Failure Disease Management Pro-

grams 
HFH = Heart Failure Hospitalization  
HT = hypertension 
LAP = left atrial pressure 
LGE = late gadolinium enhancement 
LVEDD = left ventricular end diastolic diameter 
LVM = left ventricular mass 
MACE = major adverse cardiovascular event 
MPR = myocardial perfusion reserve (MPR), 
MRI = magnetic resonance imaging 
PWT = posterior wall thickness 
QOL = quality of life  
RCT = randomized controlled trials 
RRT = renal replacement therapies 
RWM = relative wall mass 
RWT = relative wall thickness = (2x 

PWT/LVEDD) 
RF = radio frequency 
SE = spin echo 
STE = speckle tracking echocardiography 
SSFP = steady state free precession 
TDI = tissue Doppler imaging 
TSE = turbo spin echo 
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