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The aim of this review was to assess the evidence for deep learning (DL) analysis of resting electrocardiograms (ECGs) to predict struc-
tural cardiac pathologies such as left ventricular (LV) systolic dysfunction, myocardial hypertrophy, and ischaemic heart disease. A system-
atic literature search was conducted to identify published original articles on end-to-end DL analysis of resting ECG signals for the detec-
tion of structural cardiac pathologies. Studies were excluded if the ECG was acquired by ambulatory, stress, intracardiac, or implantable
devices, and if the pathology of interest was arrhythmic in nature. After duplicate reviewers screened search results, 12 articles met the in-
clusion criteria and were included. Three articles used DL to detect LV systolic dysfunction, achieving an area under the curve (AUC) of
0.89–0.93 and an accuracy of 98%. One study used DL to detect LV hypertrophy, achieving an AUC of 0.87 and an accuracy of 87%. Six
articles used DL to detect acute myocardial infarction, achieving an AUC of 0.88–1.00 and an accuracy of 83–99.9%. Two articles used DL
to detect stable ischaemic heart disease, achieving an accuracy of 95–99.9%. Deep learning models, particularly those that used convolu-
tional neural networks, outperformed rules-based models and other machine learning models. Deep learning is a promising technique to
analyse resting ECG signals for the detection of structural cardiac pathologies, which has clinical applicability for more effective screening
of asymptomatic populations and expedited diagnostic work-up of symptomatic patients at risk for cardiovascular disease.
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Introduction

The electrocardiogram (ECG) is one of the most commonly used
diagnostic tools in clinical medicine, providing a broad range of infor-
mation vital in the diagnosis and management of cardiovascular dis-
ease.1 The utility of the ECG extends broadly beyond acute hospital
care to outpatient primary care, home care, preoperative screening,
athletic screening, telemedicine, and self-monitoring.

Computer-assisted interpretation of the ECG has become integral in
clinical workflows since its introduction over 50 years ago, serving as an
adjunct to physician interpretation.2,3 Traditional models are dependent
on computer recognition and measurement of pre-defined ECG fea-
tures (waves, segments, and intervals) and rules-based classification of
their normality or abnormality. These classification rules are pro-
grammed by humans based on known criteria for various pathologies,
such that the computer algorithm ‘sees’ what the expert human would
see, but faster and more consistently without the influence of fatigue
and other human factors. However, the performance of traditional
models for computer-assisted ECG interpretation remains subopti-
mal,4,5 which has been attributed to the low accuracy of (archaic) classifi-
cation rules and their lack of robustness in the face of imperfect tracings.

To address this, artificial intelligence models have been applied to
ECG analysis with varying success. Earlier models used machine
learning algorithms such as support vector machines and random for-
ests to predict the likelihood of specific cardiac pathologies irrespect-
ive of pre-defined classification rules; notwithstanding, training these
models still required the analyst to laboriously define and extract
(‘engineer’) the features of interest from the ECG tracing. More re-
cent models employed deep learning (DL) algorithms such as convo-
lutional neural networks to perform the feature engineering step or
obviate the need for this step altogether, and ultimately improve effi-
ciency and predictive accuracy. Deep learning is a form of representa-
tion-based learning that consists of an input layer for the raw ECG
signals, multiple hidden layers for the signal analysis, and an output
layer for the final prediction of cardiac pathology (Figure 1).6 Thus,
the DL algorithm may ‘see’ informative features that the expert
human may not visually appreciate or be trained to look for.

Much of the published research on DL-based analysis of ECGs has
focused on the detection of atrial arrhythmias from ambulatory ECG
devices and wearables, with less emphasis on the detection of

structural cardiac pathologies from the resting ECG. Structural car-
diac pathologies such as heart failure (HF), hypertensive heart dis-
ease, and ischaemic heart disease are the pre-eminent causes of
cardiovascular mortality and morbidity globally.7 Therefore, our goal
was to conduct a systematic review to address this gap and ascertain
whether DL models could be used to detect left ventricular (LV) sys-
tolic dysfunction, hypertrophy, and acute or chronic forms ischaemic
heart disease.

Methods

A systematic review was conducted to identify and aggregate published
original studies that reported on DL-based analyses of resting ECGs (DL
ECG) for the assessment of structural cardiac pathologies. The manu-
script was prepared in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-analyses (PRISMA) guidelines.8

Data sources and search strategy
PubMed MEDLINE was systematically searched from inception to 19
December 2019 and then focused on articles from 1 January 2009 to 19
December 2019 to correspond with the contemporary big bang of DL.9

The following search terms were used: (‘Artificial Intelligence’[Mesh] OR
‘artificial intelligence’ OR ‘machine learning’ OR ‘deep learning’) AND
(‘Electrocardiography’[MeSH] or electrocardiogra* or ‘ECG’ or ‘EKG’).
Search results were imported and screened using Rayyan (https://rayyan.
qcri.org/)—a web-based software platform that allows duplicate
reviewers to independently screen abstracts and full-text manuscripts
and flag those that meet inclusion and exclusion criteria in a blinded fash-
ion. In addition to our search results, references from retrieved studies
were hand searched. When necessary, study investigators were con-
tacted for clarification or to provide missing data. The complete list of
search results may be made available upon request.

Study selection
Two independent reviewers screened search results for articles that met
the following inclusion criteria: (i) human adults; (ii) >_18 years of age; (iii)
underwent a resting surface ECG; (iv) end-to-end DL model used for
analysis. Studies in which a DL algorithm was used for feature extraction
and a non-DL algorithm was used for classification, or vice versa, were
not considered to be end-to-end DL and therefore were not included.
Exclusion criteria were: (i) underwent an ambulatory, stress, intracardiac,
implantable, or bedside cardiac monitor ECG; (ii) non-original research

Figure 1 Deep neural network. Sample architecture of a deep convolutional neural network composed of a first input layer for receiving the elec-
trocardiogram signals, four hidden convolutional layers with multiple kernels for analysing the electrocardiogram signal features, and a dense output
layer for generating the predicted left ventricular function and mass.
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articles (reviews, editorials, and opinions); and (iii) non-English language
articles. The reviewers were blinded to each other’s selections for inclu-
sion and exclusion, and disagreements were resolved by consensus with
the senior author.

Data extraction
Included studies were categorized according to whether the output of
interest was prediction of LV dysfunction, hypertrophy, acute myocardial
infarction, or stable ischaemic heart disease. For each study, the following

parameters were extracted: author, journal, year of publication, number
of patients, proportion of females, mean age, duration of ECG recording,
number of ECG leads, and algorithms used. The following statistical met-
rics of model performance were extracted and presented for the test set
of ECGs (i.e. ECGs other than those analysed as part of the training set):
sensitivity, specificity, accuracy, and area under the receiver operating
characteristics curve (AUC).

Results

Our literature search returned 794 unique articles. After screening,
76 articles were deemed to be potentially eligible based on their titles
and abstracts. After full-text review, 12 articles fulfilled the selection
criteria and were included in this systematic review. The flow diagram
for study selection is shown in Figure 2 and study characteristics are
shown in Table 1.

Studies of left ventricular function and
morphology
Three studies used DL ECG analysis to detect LV systolic dysfunc-
tion, achieving an AUC of 0.89–0.93 and an accuracy of 98% (Table
2). Left ventricular systolic dysfunction was defined by echocardiog-
raphy as an ejection fraction of <35% or <40% (depending on the
study), with the ECG and echocardiogram having been done within 2
to 4 weeks of each other with no major changes in clinical status.
Two of these studies compared different models and found that the
predictive accuracy of neural network DL models was superior to
other non-DL models and superior to expert interpretation by
board-certified cardiologists. One study used DL ECG to detect left
ventricular hypertrophy (LVH), achieving an AUC of 0.87 and an ac-
curacy of 87%. No published study used DL ECG to detect LV cham-
ber dilation.

Studies of ischaemic heart disease
Six studies used DL ECG analysis to detect acute myocardial infarc-
tion and two to detect stable ischaemic heart disease, achieving an

Figure 2 Flow diagram.

....................................................................................................................................................................................................................

Table 1 Characteristics of included studies

Patients, N Female, % Age, mean (SD) ECG, leads ECG, seconds

Attia et al.10 52 870 43.0 61.8 (16.5) 12 10

Kwon et al.11 22 765 36.21 64.3 (14.2) 12 �

Li et al.12 573 � � 1 2

Kwon et al.13 21 286 50.6 59.5 12 8

Liu et al.14 200 25.5 51.9 12þ 3 >30

Han and Shi15 165 25.5 51.9 12þ 3 >30

Acharya et al.16 200 25.5 51.9 12þ 3 >30

Liu et al.17 200 25.5 51.9 12þ 3 >30

Liu et al.18 290 � � 4 >30

Tan et al.19 47 55.0 58 1 5

Acharya et al.20 47 55.3 58 1 5

Goto et al.21 243 � � 12 10

ECG, electrocardiogram; SD, standard deviation; �, not reported/available.

418 G. Al Hinai et al.
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AUC of 0.88–1.00 and accuracy of 83–99.9% (Table 3).
Electrocardiograms were extracted from the Physikalisch-
Technische Bundesanstalt (PTB) Database22 and the St Petersburg
Institute of Cardiological Technics 12-lead Arrhythmia Database.22

Ischaemic heart disease was confirmed by coronary angiography and
cardiac biomarkers alongside clinical history. The predictive accuracy
of DL models was very high to detect both acute or stable forms of
ischaemic heart disease, and furthermore, two studies demonstrated
an accuracy of 99.81%14 and 99.72%15 to localize the territory of
infarction.

Discussion

This systematic review has highlighted the evidence on the accuracy
and discrimination of DL models for the detection of structural car-
diac pathologies. Our review has shown that DL models achieved a
high degree of sensitivity and specificity for the detection of LV systol-
ic dysfunction and acute or stable forms of ischaemic heart disease. A
single study showed that DL achieved a high degree of specificity al-
beit low sensitivity to detect LVH. Our review has also shown that
DL models appeared to outperform other common machine learning
models such as support vector machines, random forests, and logistic
regression. Thus, initiatives to implement machine learning into ECG
analysis systems should consider DL as a favorable approach.

There are relevant use-cases for implementing DL ECG analysis
alongside clinician interpretation in cardiovascular medicine; ranging
from screening electrocardiography performed in routine primary
care, preoperative evaluation, or competitive sports, to diagnostic
electrocardiography performed in inpatient, outpatient, and pre-hos-
pital settings. The use of DL ECG analysis may help clinicians and
paramedical personnel uncover new cardiac pathologies that would

not otherwise have been suspected or that would have been diag-
nosed hours, days, or even weeks later after a specialist’s assessment
or an echocardiogram. Expedited diagnosis of cardiovascular disease
translates to earlier initiation of treatment and better outcomes,
while missed diagnosis translates to the opposite scenario. The use of
DL ECG analysis goes beyond the clinical setting and may be
employed in wearable and implantable devices allowing for continu-
ous monitoring of health. This can improve the quality of care by
allowing people, in particular older persons, to continue living inde-
pendently at home while providing a means for the early identifica-
tion of structural and electrical cardiac abnormalities.23,24

In patients presenting to the emergency department with signs and
symptoms of HF, the odds of hospital mortality increased by 2.1% for
every 4-h delay in diagnosis and ‘door-to-furosemide time’.25 In
patients with Stage B HF, defined as structural heart disease without
current or prior symptoms, 26% developed symptomatic Stage C HF
and 40% died during an average follow-up of 5 years in the
Framingham Study.26 The risk of death or incident HF was reduced
by 39% when asymptomatic patients were treated with the angioten-
sin-converting enzyme inhibitor enalapril in the Studies of Left
Ventricular Dysfunction (SOLVD) trial.27 HF affects 26 million people
worldwide and 3.5 million new people every year,28 however, effect-
ive population-based screening is still lacking.29,30 Given that the num-
ber of persons living with Stage B HF is four times greater than Stages
C and D combined, the potential benefits of screening to detect and
treat asymptomatic LV systolic dysfunction, with tools such as DL
ECG analysis, are considerable.31

With the rising global burden of hypertension and hypertensive
heart disease, the population-level benefits of detecting LVH with DL
ECG analysis are even greater. LVH is a haemodynamic manifestation
of hypertensive end-organ damage and a risk factor for incident HF,
stroke, and cardiovascular mortality.32 In numerous studies, these

....................................................................................................................................................................................................................

Table 2 Left ventricular function and hypertrophy—performance of various deep learning models

Model AUC Accuracy Sensitivity Specificity

LV systolic function

Attia et al.10 CNN 0.932 � 86.0 86.0

Kwon et al.11 DNN 0.889 � � �

RF 0.853 � � �

LR 0.847 � � �

Li et al.12 CNN-RNN � 97.6 96.3 97.4

MLP � 93.3 85.7 84.4

RF � 82.1 83.4 81.7

CART � 72.3 76.6 78.8

SVM � 66.0 73.3 61.2

LV hypertrophy

Kwon et al.13 Combination NN 0.868 86.6 49.6 93.6

RF 0.831 85.2 40.3 85.2

LR 0.81 84.6 36.4 84.6

ECG machine interpretation 0.679 85.1 34.5 93.6

Expert interpretation � 85.5 28.4 95.1

AUC, area under the curve; CART, classification and regression tree; CNN, convolutional neural network; DNN, deep neural network; ECG, electrocardiogram; LR, logistic re-
gression; LV, left ventricular; MLP, multi-layer perceptron; NN, neural network; RF, random forest; RNN, recurrent neural network; SVM, support vector machine; �, not
reported/available.

Deep learning analysis of ECG 419



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..risks were reduced by early initiation of antihypertensive drugs (not-
ably with angiotensin-converting enzyme inhibitors and angiotensin
receptor blockers), weight loss, or dietary sodium reduction.
Progressive LVH leads to diastolic dysfunction and, in turn, HF with
preserved ejection fraction—a growing epidemic.33 In addition to
detecting LVH from the resting ECG signals, machine learning models
have been developed to detect diastolic dysfunction as defined by
Doppler echocardiography34–36; while these studies are of great
interest, they did not strictly use end-to-end DL models and hence
were not included in this systematic review. One of these studies
used a hybrid model with a DL algorithm for feature engineering of
the 12-lead ECG and a non-DL machine learning algorithm for the
classification of structural cardiac pathologies.37 This hybrid model
yielded good discrimination for the detection of LVH (AUC 0.87),
diastolic dysfunction (AUC 0.84), and hypertrophic cardiomyopathy
(AUC 0.91).

In certain cases, LVH may be a phenotypic manifestation of hyper-
trophic cardiomyopathy, which is the most common cause of sudden
cardiac death in competitive athletes38—a tragic outcome that can
often be prevented by pre-emptive detection. Unfortunately, trad-
itional ECG criteria are only 7–35% sensitive for mild LVH and 10–
50% sensitive for moderate-to-severe LVH,39 and echocardiography
is not logistically feasible for all those at-risk. Adoption of DL ECG
analysis as a screening modality for hypertrophic cardiomyopathy
(AUC 0.91) or for LVH in general (AUC 0.87) could be justified as it
performs similarly to other common screening modalities such as
cervical cytology for cervical cancer (AUC 0.7), mammography for
breast cancer (AUC 0.85), and prostate-specific antigen for prostate
cancer (0.92).10

Traditional ECG criteria are imperfect for the diagnosis of acute or
chronic presentation of ischaemic heart disease, underperforming as
a gatekeeper to stress cardiac imaging and invasive cardiac catheter-
ization. Factors associated with false positive or negative ECG inter-
pretations include pre-existing conduction disturbances, early
repolarization patterns, pacemakers, lateral infarcts, and less experi-
enced reading clinicians. One study showed that the inter-rater reli-
ability for the diagnosis of acute myocardial infarction was particularly
poor when minimal clinical information was provided to the reading

clinicians, an increasingly common scenario in the era of telemedicine
and pre-hospital activations.40 The sensitivity and specificity for the
pre-hospital diagnosis of acute myocardial infarction were shown to
be 69% and 99% with rules-based computerized interpretation,41 as
compared with an average of 95% and 96% with DL-based interpret-
ation in this review. The clinical implications should not be under-
stated as ischaemic heart disease is a leading cause of death
worldwide.42 The ECG is an inexpensive and non-invasive test that
can be coupled with DL models to assist clinicians in diagnostication;
of special interest in developing countries where access to more
costly testing is limited.

In this review, the highest reported accuracies were achieved with
DL models that combined convolutional and other neural networks,
effectively learning different types of functions in a single network
model. One of the main strengths of end-to-end DL models is their
ability to learn the discriminating features from complex and heter-
ogenous types of inputs (such as ECG signals or radiographic images)
automatically without necessarily requiring the analyst to define, ex-
tract, and process the features of interest, also known as feature en-
gineering. Non-DL machine learning models, on the other hand,
require pre-processing and feature engineering, which is a multi-step
process that has the potential to miss potentially informative features.
There are numerous such features present on the resting ECG that
reflect the structural and metabolic changes associated with LV dys-
function,10 but many of these are subtle and not discernible to the
human eye. Even after building a DL model, the nature of the inform-
ative features remains ‘hidden’, rendering it difficult for the clinician to
understand or apply them in a non-computer-assisted interpretation.

Whereas high predictive accuracy is one of the main advantages of
DL, low interpretability is one of its main disadvantages. Deep learn-
ing is sometimes referred to as a ‘black box’, wherein the user cannot
comprehend precisely what the DL model is seeing (in terms of fea-
tures) and how it is reaching a particular prediction. Conversely, trad-
itional statistical modelling approaches tend to have lower predictive
accuracy but higher interpretability, sometimes referred to as algo-
rithmic transparency, wherein the user can gain insights into the spe-
cific features and their relative contributions to the final prediction.
There are emerging DL techniques to enable (to some extent) the

....................................................................................................................................................................................................................

Table 3 Ischaemic heart disease—performance of various deep learning models

Model Accuracy AUC Sensitivity Specificity

Acute MI

Liu et al.14 MFB-CNN 99.95 0.9998 99.97 99.90

Han et al.15 ML-ResNet 99.92 1 99.98 99.77

Acharya et al.16 CNN 93.5 � 93.71 92.83

Liu et al.17 MFB-CBRNN 99.9 � 99.97 99.54

Liu et al.18 CNN 96.0 � 95.40 97.37

Goto el al.21 CNN-BLSTM 83 0.88 79 87

Stable IHD

Tan et al.19 Stacked CNN-LSTM 99.9 � 99.84 99.85

Acharya et al.20 Deep CNN 95.1 � 91.13 95.88

AUC, area under the curve; CBRNN, convolutional bidirectional recurrent neural network; CNN, convolutional neural network; IHD, ischaemic heart disease; (B)LSTM, (bidir-
ectional) long short-term memory; MFB, multi-feature branch; MI, acute myocardial infarction; ML-ResNet, multi-lead residual neural network; �, not reported/available.

420 G. Al Hinai et al.
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Table 4 Deep learning model architectures and data partitioning

DL model Input ECG format Train and internal valid-

ation sets

External validation set

Attia et al.10 CNN: 6 layers of Conv þ BN

þ MxP

12-lead ECG with 5000 data

points in each lead as a 2D

matrix of size 12� 5000

50% of entire data: 80% for

train and 20% for internal

validation

50% of entire data: for test

Kwon et al.11 DNN: 5 hidden layers, 45

nodes, and dropout layers

10 ECG and demographic fea-

tures as a 1D array

Data from Hospital 1: 80%

for train and 20% for in-

ternal validation

Data from Hospital 2: for

test

Li et al.12 CNN: 8 layers of Conv þ
MxP þ FC

RNN: 4 layers of LSTM þ FC

Each ECG lead as 1D array 10-fold cross-validation �

Kwon et al.13 ENN: CNN (6 layers of Conv

þ MxP) þ DNN (5 layers

and 56 nodes)

12-lead ECG with 4000 data

points in each lead as a 2D

matrix of size 12� 4000

for CNN

Demographic data and fea-

tures from CNN as a 1D

array for DNN

Data from Hospital A: 80%

for train and 20% for in-

ternal validation

Data from Hospital B: for

test

Liu et al.14 MFB-CNN: 7 layers of Conv

þ MP þ FC

Each ECG lead as a 1D array,

results combined in final

FC layer

Five-fold cross-validation �

Han et al.15 ML-ResNet: 12 feature

branch of residual blocks þ
GAP þ DropOut þ Flatten

þ FC

Each ECG lead as a 1D array Intra-patient scheme: five-fold

cross-validation

Inter-patient scheme: 4740

controls and 10 721

patients for train, 2205

controls and 6491 patients

for test

Acharya et al.16 CNN: 11 layers of Conv þ
MxP þ FC

Lead II as a 1D array 90% of entire data: 70% for

train and 30% for internal

validation

10-fold cross-validation

10% of entire data: for test

Liu et al.17 MFB-CBRNN: 10 layers of

Conv þ BN þ MP þ GAP

þ LRM þ BLSTM þ FC

Each ECG lead as a 1D array,

results combined in final

FC layer

Five-fold cross-validation for

class-based and subject-

based experiments

�

Liu et al.18 CNN: 7 layers of Conv þ
LAP

4 selected ECG leads as a 2D

matrix

Five-fold cross-validation �

Tan et al.19 CNN-LSTM: 8 layers of Conv

þ MxP þ LSTM þ FC

Lead II as a 2D matrix of size

211 � 24

Approach 1: 10% of randomly

selected data for train

Approach 2: first 37.5% of

controls and 43% of

patients for train

Approach 1: 90% of random-

ly selected data for test

Approach 2: first 62.5% of

controls and 57% of

patients for test

Acharya et al.20 Deep CNN: 11 layers of

Conv þ MxP þ FC

Lead II as a 1D array 10-fold cross-validation �

Goto et al.21 CNN-LSTM: 7 layers of Conv

þ BLSTM þ Dense

12-lead ECG with 10 000

data points in each lead as

a 2D matrix of size 12� 10

000

249 urgent and 300 non-ur-

gent revascularizations for

train

113 urgent and 130 non-ur-

gent revascularizations for

test

Types of Algorithms: CNN, convolutional neural network; DNN, deep neural network; RNN, recurrent neural network; LSTM: Long-Short Term Memory, a type of RNN with
backward feedback loops; BLSTM: Bilateral Long-Short Term Memory, a type of RNN with backward and forward feedback loops; MFB-CBRNN: Multiple Feature Branch
Convolutional Bidirectional Recurrent Neural Network; ENN: Ensemble Neural Network, more than one type of neural network used on the same data.
Types of Layers: BN: Batch-Normalization layer, used to normalize the batches of input ECG data; Conv: Convolutional layer, used to extract the various features from the input
ECG data; MP: Mean-Pooling layer, used to downsample the mean values from sections of the feature map; MxP: Max-Pooling layer, used to down sample the maximum values
from sections of the feature map; GAP: Global Average Pooling layer, used to downsample the mean values from the full feature map; LAP: Lead Asymmetric Pooling layer used
to downsample a multiscale feature map; FC: Fully Connected layer, used to compile values extracted by previous layers to classify the output(s); LRM: Lead Random Mask
layer, used to randomly drop feature branches in the training phase.

Deep learning analysis of ECG 421



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
interpretation of model predictions.43–45 While a detailed discussion
of these techniques is beyond the scope of this review, one interest-
ing study in this field generated images of synthetic ECG signals corre-
sponding to the condition of interest (hyperkalaemia) in order to
visually illustrate the model’s predictive features (widened QRS com-
plexes, peaked T waves, etc.).44

It is worth noting that the pre-processing steps taken for the prepar-
ation of ECG signals before feeding them into DL models were most
frequently upsampling and downsampling, denoising, regularization,
normalization, and segmentation. The reviewed papers mostly
employed z-score transformation,12,16,17,19 Pan-Tompkins QRS-wave
detection algorithm,14,16,17 fuzzy information granulation,18 or discrete
wavelet transform20 for the aforementioned pre-processing steps. The
modelling steps summarized in Table 4 were equally variable in terms
of number and type of layers. Some papers15,16 employed state-of-the-
art architectures for feature extraction; others employed methods
such as grid search13 to determine the optimal number of layers and
nodes for their respective models to maximize accuracy according to
their dataset and testing method. These methodological differences
show that the approach for model selection and optimization remains
an open topic in the field of DL ECG signal analysis.

As opposed to the other fields of DL such as computer vision
where there are multiple large-scale annotated image datasets (e.g.
ImageNet, Open Images), there are relatively few publicly available
annotated ECG datasets. Even then, annotated labels typically span a
narrow range of cardiovascular changes and diagnoses. Accordingly
in our review, five studies used local hospital-based ECG datasets to
train and test their proposed model,10–13,21 five studies used the pub-
licly available PTB ECG dataset,14–18 and two studies used a combin-
ation of ECG datasets from PhysioNet, Fantasia, and St-Petersburg
Institute of Cardiology Technics.19,20 Expanding the volume and
depth of publicly available annotated ECG datasets would appear to
be a priority to equip researchers with the source data needed to
catalyse further research efforts, ultimately leading to improvements
in predictive accuracy and reliability.

There are limitations that merit discussion. First, a number of stud-
ies particularly in the field of ischaemic heart disease used databases
that consisted of ECGs from a singular hospital system or narrow pa-
tient population. External validation in geographically diverse multi-
centre populations with multi-vendor ECG systems would be crucial
for generalizability. Second, few studies provided direct head-to-
head comparisons against traditional rules-based computer programs
or expert interpretations. Extrapolating from historical studies sug-
gests that DL would likely outperform them, since expert cardiolo-
gists achieved a pooled 75% accuracy for detecting ECG
pathologies,46 and rules-based computer programs achieved 57%
sensitivity for detecting LV hypertrophy and 59–77% for detecting
myocardial infarction.47,48 Third, there was study-to-study variability
in technical ECG acquisition in terms of the number of leads and the
duration of recording, and it is unclear to what extent these parame-
ters may or may not influence the performance of the DL models.
From a clinical standpoint, the 12-lead 10-second resting ECG is of
specific interest given that this is the current standard of care in most
centres. Finally, implementation of the DL models was not a focal
point of the reviewed studies. Further research is needed to

determine the effect of these DL models on clinical decision-making
and ultimately patient outcomes.

Conclusions

When applied to the analysis of resting ECG signals, DL models
achieve a high degree of accuracy and (inherent) reliability in detect-
ing LV systolic dysfunction, LVH, and acute or chronic forms of is-
chaemic heart disease. Deep learning models appear to outperform
traditional computerized interpretations and non-DL machine learn-
ing models. Gains in predictive performance could translate to earlier
diagnosis of symptomatic cardiovascular pathologies and pre-emptive
detection of asymptomatic ones. Enhanced screening with DL ECG
has the potential to shift the emphasis towards the prevention of car-
diovascular disease and its complications by early detection of at-risk
groups. While current screening and diagnostic pathways rely on re-
source-intensive imaging tests and biomarkers, implementation of DL
to a widely available tool like the ECG could help provide an access-
ible front-line option to assist clinicians in caring for their patients.
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