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Abstract

Cell line models have been widely used to investigate glioblastoma multiforme (GBM) pathobiology and in the development of targeted
therapies. However, GBM tumours are molecularly heterogeneous and how cell lines can best model that diversity is unknown. In 
this report, we investigated gene expression profiles of three preclinical growth models of glioma cell lines, in vitro and in vivo as 
subcutaneous and intracerebral xenografts to examine which cell line model most resembles the clinical samples. Whole genome DNA
microarrays were used to profile gene expression in a collection of 25 high-grade glioblastomas, and comparisons were made to pro-
files of cell lines under three different growth models. Hierarchical clustering revealed three molecular subtypes of the glioblastoma
patient samples. Supervised learning algorithm, trained on glioma subtypes predicted the intracerebral cell line model with one glioma
subtype (r � 0.68; 95% bootstrap CI –0.41, 0.46). Survival analysis of enriched gene sets (P � 0.05) revealed 19 biological categories
(146 genes) belonging to neuronal, signal transduction, apoptosis- and glutamate-mediated neurotransmitter activation signals that are
associated with poor prognosis in this glioma subclass. We validated the expression profiles of these gene categories in an independent
cohort of patients from ‘The Cancer Genome Atlas’ project (r � 0.62, 95% bootstrap CI: –0.42, 0.43). We then used these data to select
and inhibit a novel target (glutamate receptor) and showed that LY341595, a glutamate receptor specific antagonist, could prolong survival
in intracerebral tumour-implanted mice in combination with irradiation, providing an in vivo cell line system of preclinical studies.
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Introduction

Despite advances in neurooncology treatment regimens, the over-
all prognosis of patients with glioblastoma multiforme (GBM)
tumours remains dismal. Aimed at developing more effective GBM
treatment strategies, most preclinical studies have relied on
glioma cell lines grown and maintained as in vitro (iv) monolayer

cultures. This experimental model has served as an essential 
system for cancer drug development and has proven invaluable in
identifying cytotoxic agents [1, 2]. However, its application is
based on the critical assumption that the iv cells simulate the can-
cer phenotype in situ. Whereas this may be valid for some tumour
types, for GBM this assumption remains questionable.

An obvious deficiency of the iv culture model is the failure 
to account for the microenvironment, which can significantly 
influence tumour cell biology and may thus affect the molecular
determinants of treatment response. To account for the microen-
vironment, the subcutaneously (sc) grown tumour xenograft is
frequently applied for therapy development and preclinical testing.
However, with respect to GBMs, the sc microenvironment may not
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sufficiently mimic the unique circumstances of the growth within
the brain. Along these lines, using gene expression profiles to
compare tumour phenotypes, we have previously shown that 
the gene expression patterns of glioma cell lines U87 and U251
grown in vitro, subcutaneously  and intracerebrally are signifi-
cantly different [3]. These results also showed that although the
two glioma lines have disparate gene expression profiles when
evaluated in vitro or as subcutaneous tumours, under intracere-
bral conditions their profiles are very similar. Finally, as compared
to the other growth conditions, the glioma cells grown intracere-
brally (ic) expressed genes related to central nervous system
development and function. Whereas these data suggested a pro-
found effect of the orthotopic microenvironment on the phenotype
of the glioma cell lines, whether this model system better simu-
lates GBM in situ was unclear.

Thus, in the present work we sought to determine if the gene
expression profile of the ic model replicates the gene expression pro-
file of clinical samples implying a similar biology. Moreover, if the ic
model represented the clinical situation then the ic gene expression
profile could be used to select novel targeted agents to be used alone
or in combination with irradiation. The data presented indicate that
the ic gene expression profile is similar to the gene expression pro-
file of a subset of clinical GBM specimens. Moreover, the gene
expression profile and relevant gene ontology (GO) pathway analysis
lead to a new molecular pathway whose inhibition in combination
with irradiation inhibited ic tumour growth in our xenograft model.

Materials and methods

Cell lines

The human glioma cell lines U251 and U87 grown in vitro and in vivo as sc
or ic implants were subjected to RNA extraction procedures and processed
on microarray with 7680 human clones as described [3].

Study populations

Gene expression profiling data [4] from 25 grade IV glial brain tumours
(GBM) and four normal brains using 42,000-feature cDNA microarrays (from
total RNA) was used (GEO accession number GSE2223). All glioma speci-
mens were subjected to standard WHO classification. The normal brain sam-
ples were used as a negative validation set. For positive validation, the RMA
pre-processed Affymetrix U133A chip transcriptomic profiles of 255
glioblastomas generated by Broad Institute, were retrieved from Controlled-
Access Data Tiers Portal (http://tcga-data.nci.nih.gov/tcga/findArchives.htm)
of The Cancer Genome Atlas (TCGA) pilot project [5] upon National Human
Genome Research Institute approval.

Gene expression profiling

For both cell line and GBM study sets, Universal Common Reference was
used as reference RNA. For cell line data, each sample had a biological

replicate and each replicate was run on duplicate arrays. Amplified RNA
was labelled with Cy5-dUTP (experimental RNA) or Cy3-dUTP (Stratagene)
and hybridized to 7680 human cDNA clone microarrays in duplicate. For
glioma tissue samples, tumour samples and universal human reference
total RNA were reverse transcribed using Cy5- and Cy3-specific primers
and hybridized to 42,000-feature cDNA microarray. Ratios (sample/refer-
ence RNA) of background corrected and filtered raw data from cell lines
(downloaded from mAdb repository available at http://madb.nci.nih.gov/)
and GBM tissue samples were normalized using locally weighted scatter-
plot smoothing (LOWESS) algorithm. Datasets were exported to R biocon-
ductor package (available at www.r-project.org) and all further statistical
and computational analyses were performed in R (http://www.R-
project.org) [6]. Raw data were further subjected to filtering if each row on
the array contained greater than 60% missing values. The rest of the arrays
were imputed for the missing values using k-nearest neighbour method
and duplicate samples in cell line data were averaged. Because of different
number of features for each sample set, only common features between
the two arrays were used giving a total of 3322 genes. Finally, the gene
expression data are log2 transformed and standardized to z-scores that will
allow direct comparison between the datasets independent of original
hybridization intensities.

Statistical methods: unsupervised analysis

Unsupervised analysis employs unbiased searches for the patterns of
expression that can be used to develop hypothesis regarding the mecha-
nistic associations between genotype and phenotype. These approaches
are useful for identifying expression patterns within the set of differentially
regulated genes that may have phenotypic significance. An unsupervised
average linkage hierarchical clustering was used to separate GBM tissue
samples into genotypic groups. Three major clusters were identified and
these sets were used for supervised class prediction method. To visualize
the data, we used classical multidimensional scaling, which takes as an
input, a distance matrix between samples and returns a set of points in a
lower dimensional space such that the distances between the points are
approximately equivalent to original distances.

Class prediction

Supervised methods employ known phenotypic relationships between
samples as well as information about molecular signatures that can be
used for tumour classification. For supervised learning model, prediction
analysis for microarrays (PAM) [7] method was employed to identify 10-
fold cross-validated gene expression predictor for the hierarchical cluster
defined classes. Cell line data were used to test the prediction model using
the centroids found in training set after cross validation. To ascertain the
relative degree of similarity between training and test classes, we
employed Pearson correlation measure corrected by bootstrap confidence
limits after 1000 randomizations.

Gene set enrichment analysis

To screen for differentially expressed groups of genes between computa-
tionally defined sample clusters we used the gene set analysis (GSA) meth-
ods proposed previously [8]. GSA was chosen because it uses a stringent
max-mean algorithm to identify significantly differentially regulated gene
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sets. The cutoff P value was adjusted to 0.05. We used precompiled
module of gene lists from KEGG (Kyoto Encyclopaedia of Genes and
Genomes, http://www.genome.ad.jp/kegg) categories available at
(MolSigDB2, Stanford repository).

Survival analysis

To discover clinically relevant signatures from the list of enriched gene
sets, we employed Kaplan–Meier survival analysis. To determine the prog-
nostic relevance we assessed the significance (P � 0.05) using log-rank
test. For function level analysis, an overall multivariate survival profile was
built using the genes belonging to each gene set and it was tested whether
this signature added to the predictive significance. The significance of each
gene was measured based on a univariate Cox proportional hazards
regression of survival time versus the log expression level.

Clonogenic survival following radiation

Cultures were trypsinized to generate a single cell suspension and a spec-
ified number of cells were seeded into each well of a 6-well tissue culture
plate. After allowing cells time to attach (4 hrs), cultures received
LY341495 (1 �M) or dimethyl sulfoxide (DMSO) (vehicle control) for 16 hrs
prior to irradiation: media were then removed and replaced with drug-free
media. Ten to 14 days after seeding, colonies were stained with crystal 
violet; the number of colonies containing at least 50 cells was determined
and surviving fractions calculated. Survival curves were then generated
after normalizing for the amount of LY341495-induced cell death. Data pre-
sented are representative of three independent experiments.

Subcutaneous tumour model and tumour growth
delay assay

Four- to 6-week-old female nude mice were caged in groups of five or less,
and all animals were fed a diet of animal chow and water ad libitum. U251
tumour cells (5 � 106 cells) were injected sc into the right hind leg. When
tumours grew to a mean volume of ~172 mm3, mice were randomized into
four groups: vehicle alone, LY351495 (10 mg/kg) alone, IR (4 Gy) alone or
LY341495 � IR. The mice were given a single dose of LY341495 
(10 mg/kg) by intraperitoneal injection 1 hr before local tumour irradiation
(4 Gy). Irradiation was performed with a Pantak irradiator with animals
restrained in a custom jig. To obtain tumour growth curves, perpendicular
diameter measurements of each tumour were made every 2 days with dig-
ital callipers, and volumes were calculated using formula (L � W � W)/2.
Tumours were followed until the group’s tumours reached a mean size of
2000 mm3. Specific tumour growth delay was calculated for each individ-
ual animal in a treatment group as the number of days for the mean of the
treated tumours to grow to 2000 mm3 minus the number of days for the
mean of the control group to reach the same size. Standard errors (S.E.) in
days were calculated about the mean of the treated groups. Each experi-
mental group contained 6 mice; 10 mice were included in the control
group. All animal studies were conducted in accordance with the principles
and procedures outlined in the NIH Guide for the Care and Use of Animals.

Intracerebral xenograft survival model

Four- to 6-week-old mice were anesthetized by i.p. injection of ketamine
(83 mg/kg) and rompun (8.3 mg/kg) dissolved in saline. Using a blank

syringe, 1 � 106 of U251 tumour cells suspended in 5 �l of phosphate-
buffered saline were injected into the caudate nucleus at a depth of 3 mm
from the dura over 10 min. The needle was left in place for 2 min. and then
withdrawn slowly. The scalp wound was closed with 5–0  synthetic 
polydioxanone suture (PDS) suture. Surgery was performed with sterile
technique. Mice were placed on a heating pad in sterile cages and allowed
to awaken from anaesthesia. Three days after implantation, animals were
randomized into one of four treatment groups: vehicle alone, LY341495
alone, IR alone or LY341495 � IR. The mice were given a single dose of
LY341495 (10 mg/kg) by intraperitoneal injection 1 hr before local tumour
irradiation (4 Gy). Each experimental group contained five mice. The day of
tumour implantation was assigned as day 0.

Results

Selection of a representative subset of genes

To maximize cross platform compatibility all datasets were stan-
dardized as described in the methods. Initially, common genes
were identified by matching Human Genome Organization nomen-
clature gene symbols between the training and test sets. To com-
pare our previously published glioma cell line gene expression
data (test set) with that derived from clinical samples (training set)
and to reduce platform dependent variability, we used cDNA
microarray datasets for the initial analysis. The test set was
derived from glioma cell lines grown under three experimental
conditions iv, sc and ic [3] and the training set was derived from
clinical tumour samples from patients with GBM [9]. The 3322
genes common between these two datasets were used for further
analysis. To determine whether this common gene set divided the
patient samples into categories, as reported for other clinical
datasets, we performed an unsupervised agglomerative hierarchi-
cal cluster analysis showing that the clinical samples sub-grouped
into three major classes (Fig. 1A): these were arbitrarily named
GBM1, GBM2 and GBM3 for further analysis. To determine
whether this classification was influenced by the subset of genes
selected, the clustering was verified by normalizing the initial data
before selecting the common genes, which lead to a similar clus-
tering pattern (data not shown).

We have previously shown that the microarray profiles for
glioma cells grown as orthotopic tumours are more similar to each
other than they are when grown as subcutaneous tumours or as
in vitro cultures [3]. To determine if this pattern was maintained
when using the 3322 gene subset we used scatterplots to directly
compare the expression levels of the selected genes in the U251
and U87 cell lines. For each growth condition, the gene expression
profile of U251 cells was plotted against the corresponding profile
of U87 cells (Fig. 1B–D). As a measure of similarity of gene
expression profiles, Pearson correlation coefficients were calcu-
lated. As shown in Figure 1D, the gene expression profiles for
U251 and U87 cells grown as orthotopic tumours were highly con-
cordant (r � 0.98) in comparison to cells grown as subcutaneous
tumours (r � 0.56) or cells grown as monolayer cultures 
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(r � 0.31) indicating that the 3322 gene subset used for this analy-
sis did not deviate significantly from our earlier reported results.

Supervised analysis of GBM classes predicts 
the orthotopic model to subset GBM1

Having established that this gene list divides the clinical GBM
specimens into three categories and accurately reproduces the
delineation of glioma cell lines as a function of growth condition,

we determined whether there were any similarities between GBM
subgroups and cell line expression profiles. Towards this end, a
robust subset of genes was selected that defines each GBM sub-
group using the PAM method [7] with a 10-fold cross validation to
build a class prediction model. This analysis identified 1215 genes
(Table S1) (GBM1 � 614; GBM2 � 723; GBM3 � 577 genes) that
accurately predicted the three GBM classes with zero misclassifi-
cations (Fig. 2A). As shown in Table 1A, by using the classifier
model, the in vitro cell lines were predicted into two different GBM
sets (GBM2 and GBM3) consistent with disparate expression
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Fig. 1 GBM sample classification and comparison of cell line models using a subset of common genes between two array platforms (n � 3322). (A)
Identification of three major cluster groups of GBM patient samples by hierarchical agglomerative cluster analysis. The dendrogram was created using 
1-correlation distance metric and average linkage measure. (B–D) Scatterplots comparing U251 (x-axis) and U87 (y-axis) gene expression of cell grown
in vitro (B) and in vivo as sc (C) and ic (D) tumours in mice. Pearson correlation coefficients were calculated for each comparison and listed in each plot.
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profiles for those cell lines grown in monolayer culture. The cell
lines grown as sc tumours were predicted with the GBM3 subset
and the cell lines grown as orthotopic ic tumours were predicted
with the GBM1 subset. To quantitate the degree of similarity
between the sample classes from each of the datasets, we deter-
mined the Pearson correlation coefficient followed by bootstrap
analysis between each of the GBM subgroups and each of the cell
line growth conditions for the 1215 gene subset selected by the
PAM model. As shown in Table 1B, there was a high correlation
between the tumours grown ic and the clinical GBM1 subgroup, a
nominal correlation between sc model cell lines and GBM3 sub-
group, whereas the rest of paired sample measurements had cor-
relations that overlapped with the bootstrap confidence intervals
signifying that the correlations were no better than random asso-
ciations. As an additional verification of the similarity between the
cell lines grown as ic tumours and GBM1, the correlation between
the cell line growth environment and the GBM subgroups was

analysed by heatmap (Fig. 2B), and multidimensional analysis
(Fig. 2C). Taken together, these three analyses show a strong
association of the gene expression profile derived from cell lines
grown as orthotopic ic tumours with the GBM1 subgroup of clin-
ical samples.

Gene set analysis similarities and survival 
significance of ic model and GBM1 tumours

To identify the underlying pathways or gene modules that are sim-
ilar between the ic tumours and the GBM1 subgroup we used the
gene set analysis (GSA) algorithm. GSA uses lists of genes that
are empirically related to the transcriptional profiles between two
diverse datasets [8]. As shown in Figure 3, GSA computed 36
unique, statistically significant, KEGG-defined gene sets. The 
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Fig. 2 Supervised model of GBM sub class and association of cell line models using the subset of genes selected by the model (n � 1215). (A) Cross-
validated error curves from the nearest shrunken centroid classifier with the three subclasses of GBM patient samples. (B) Heatmap of correlation between
GBM and cell line sample data showing a close cluster between GBM1 with ic model (C) Principle component analysis showing the association of ic cell
lines with GBM1 in comparison with other samples in the dataset.



550

corresponding heatmap, plotted using the feature scores, indi-
cated that the ic tumours had profiles that clustered with the pro-
files from the tumours in the GBM1 subclass (yellow box). To
assess if the pathways had potential clinical significance, the asso-
ciated survival times for each clinical subgroup was estimated by
Kaplan–Meier product-limit method, and the survival distributions
between groups were compared using log-rank test statistic. To
view the gene functional organization, we plotted this output next
to the hierarchically clustered KEGG categories. Only KEGG cate-
gories with a significant difference in survival between the groups
of GBM would result in significant P values (P � 0.05); thus, this
approach highlights large sets of co-regulated KEGG categories of
the GBM1 subgroup whose expression is associated with patient
survival. A representative Kaplan–Meier analysis using four KEGG
categories among the three GBM subgroups is available as 
Figure S2A–D. We identified a total of 19 KEGG categories with a
significant survival difference between the GBM1–3 subgroups 
(P � 0.05). Sixteen of these 19 categories were up regulated in
the GBM1 subgroup and the ic model. For comparison, we have
computed the log-rank test statistic for all the genes associated
with the 36 KEGG categories shown in Figure 3, and these data are
available in Table S2. The pathways associated with survival
included many of the previously confirmed signatures such as
neurogenesis [10], growth factor-induced signal transduction [11,
12], processes that control cell cycle progression such as p53 and
apoptosis pathways [12, 13]. Additional top pathways from our

analysis that are less well described included long-term depres-
sion, long-term potentiation and glutamate-mediated neurotrans-
mitter activation signals.

Independent validation of GBM subtype classifiers

To determine if the PAM model classifiers of GBM subclasses is
independent of the dataset used and to determine if the classifiers
correlate with the most comprehensive malignant glioma tumour
data, we selected 255 GBM expression profiles from the TCGA
portal (Affymetrix platform) for conformation [5]. We used our
classifiers to stratify TCGA sample data using the subset of 3322
matching genes used to train our model. Interestingly, the propor-
tion of samples predicted into the three GBM subtypes 1 to 3 is
0.2:0.4:0.4 that is the same distribution of samples assigned in
our training model. Next, Pearson correlations and bootstrap 95%
confidence intervals were calculated measuring the similarity in
the subset of gene expression patterns corresponding to the 19
clinically significant categories. As shown in Table 2, comparisons
were made between the cell line growth models, the GBM test
dataset, the normal brain as negative validation dataset and the
TCGA GBM as independent validation dataset. There was a strong
correlation between the ic cell line model with both GBM1 (r �

0.68) and TCGA1 (r � 0.62). A similar comparison with the nor-
mal brain dataset showed no correlation between any of the cell
line growth conditions and the normal brain (correlation values
near zero). As expected, when we tested for similarity at the path-
way level, a similar trend in correlations was observed between
cell line ic model with both GBM1 and TCGA1 whereas the corre-
lations with normal brain sample data either had a negative or near
zero values (Fig. S1 and Table S3). Taken together these results
suggest that the ic model of cell line growth has the most similar
profile to a subset of patient samples irrespective of source or
platform type.

Evaluation of a glutamate receptor antagonist 
as a radiation modifier

If the ic growth of glioma cells provides a more biologically accu-
rate model of GBM in situ, as suggested by the data presented
above, then the gene expression profiles generated from the ic
xenografts may provide unique insights into the development of
clinically relevant treatment strategies. To illustrate this potential
with respect to radiosensitization we focused on the glutamate
receptor. As shown in Figure 3, multiple KEGG pathways contain 
glutamate receptor (neuroactive ligand receptor interaction, long-
term potentiation and neurodegenerative diseases) as well as sig-
nalling molecules downstream of the glutamate receptor (calcium
signalling pathway and phosphatidylinositol signalling system)
implying that inhibition of glutamate receptor may lead to growth
inhibition. When glutamate receptor is stimulated by ligand, the
signal is propagated through both the MAPK and PI3K pathways
[14]. As inhibition of MAPK and PI3K has been shown to enhance
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Table 1 Classification and prediction of training and test data using
supervised PAM model

(a) Prediction of sample classes using gene profiles from supervised
learning model.

S. no. True Predicted

1 U251 (iv) GBM2

2 U87 (iv) GBM3

3 U251 (sc) GBM3

4 U87 (sc) GBM3

5 U251 (ic) GBM1

6 U87 (ic) GBM1

(b) Pearson correlation measures between GBM classes and the 
average cell line data for each growth condition. 95% C.I. after 
bootstrap permutation analysis are shown as numbers within 
parenthesis next to r-value.

ic sc iv

GBM1 0.73 (�0.37, 0.44) �0.54 (�0.35, 0.29) �0.49 (�0.32, 0.28)

GBM2 �0.12 (�0.38, 0.43) 0.03 (�0.34, 0.33) 0.15 (�0.31, 0.29)

GBM3 �0.47 (�0.38, 0.44) 0.4 (�0.35, 0.31) 0.26 (�0.31, 0.27)
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tumour radiosensitivity [15] we suggested that inhibition of gluta-
mate receptor signalling may sensitize ic tumours to irradiation.
To test whether inhibiting the activity of glutamate receptor
enhances radiosensitivity under each growth condition we used
LY341495, which has previously been shown to inhibit glutamate
receptor activity in vitro and to inhibit the growth of glioma sc
xenografts [16]. The effect of LY341495 on radiosensitivity was
first defined in vitro according to clonogenic survival analysis.
Exposure of U87 and U251 cells to LY341495 (1 �M), a dose pre-
viously shown to inhibit downstream signalling of mGlu2/3 [17],
for 16 hrs resulted in surviving fractions of 67% and 95%, respec-
tively, which is an appropriate range for evaluating clonogenic sur-
vival in combination with irradiation. For the combination studies,
cells were exposed to drug for 16 hrs, irradiated and colonies
counted 12 days later. As shown in Figure 4A and B, there was no
enhancement of radiosensitivity in either cell line when grown as

in vitro mono-layer cultures. To determine whether LY341495
enhances tumour cell radiosensitivity under in vivo growth condi-
tions we focused on U251 cells. Initially, the effect of the gluta-
mate receptor inhibitor on U251 cells grown as sc xenografts was
determined using a tumour growth delay assay. Mice bearing
U251 sc xenografts (172 mm3) were randomized into one of four
groups: vehicle; LY341495 only (10 mg/kg); irradiation only (4 Gy)
and LY341495 (10 mg/kg) given as an i.p. injection 1 hr prior to
irradiation (4 Gy). As shown in Figure 4C, LY351495 had no sig-
nificant effect on the radiosensitivity of U251 cells grown sc as
determined by tumour growth delay. The combination of
LY351495 was then evaluated against U251 cell grown as ic
xenografts following the same treatment protocol used for sc
tumours. Specifically, 5 days after undergoing intracerebral
implantation, groups of five mice were randomized into control,
LY341495 only (10 mg/kg), irradiation only (4 Gy) or LY341495

Fig. 3 Heatmap of co-regulated categories that correlate with patient survival. Gene sets were enriched for functional categories using GSA method. The
resulting feature score for each of the categories is used to build the heatmap. The log-rank statistic was calculated for each category using the 25 GBMs
for which we could obtain survival data. These scores were plotted adjacent to the heatmap of functional categories.
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(10 mg/kg) given as an i.p. injection 1 hr prior to irradiation (4 Gy).
As shown in the Kaplan–Meier plot in Figure 4D, there was a 
significant prolongation of survival in the combination group 
consistent with LY341495-induced radiosensitization. Thus, these
results suggest that the glutamate receptor provides a novel 
target for GBM radiosensitization, information that would not be
generated from the more standard glioma models of in vitro
monolayer culture and sc xenografts.

Discussion

Gene expression profiling of human GBM specimens has recently
led to the identification of molecular subgroups prognostic of
patient survival, independent of traditional factors such as age,

© 2011 The Authors
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Table 2 Validation of gene functional categories enriched in GBM
classes and ic model with independent datasets. 95% C.I. after 
bootstrap permutation are shown as numbers within parenthesis 
next to r-value.

ic Sc iv

GBM1 0.68 (�0.41,0.46) �0.6 (�0.47,0.41) �0.34 (�0.32,0.3)

GBM2 �0.02 (�0.4,0.46) �0.04 (�0.47,0.41) 0.07 (�0.29,0.28)

GBM3 �0.47 (�0.45,0.45) 0.47 (�0.42,0.44) 0.19 (�0.28,0.29)

BRAIN �0.1 (�0.43,0.43) 0.01 (�0.46,0.38) 0.13 (�0.31,0.29)

TCGA1 0.62 (�0.42,0.43) �0.61 (�0.44,0.4) �0.25 (�0.28,0.3)

TCGA2 0.16 (�0.44,0.45) �0.16 (�0.44,0.42) �0.06 (�0.31,0.31)

TCGA3 �0.51 (�0.43,0.44) 0.51 (�0.44,0.43) 0.20 (�0.29,0.31)

Fig. 4 Effect of glutamate receptor antagonist LY341495 on tumour cell radiosensitivity. (A, B) Cells were exposed to the designated concentrations of
drug for 16 hrs before irradiation. Colony-forming efficiency was determined 10–14 days later and survival curves were generated after normalizing for
the cytotoxicity induced by drug alone. PE: plating efficiency; IR: irradiation. (C) Tumour volume in mice after treatment with LY341495 	 irradiation.
When tumours reached 172 mm2, mice were randomized into four groups: vehicle, LY341495 (10 mg/kg), irradiation (4 Gy) or drug/irradiation. To obtain
tumour growth curve, perpendicular diameter measurements of each tumour were measured every two days. (D) Kaplan–Meier survival curve showing
survival of mice with implanted ic with U251 cells and randomized to either vehicle, LY341495 (10 mg/kg), irradiation (4 Gy) or drug/irradiation. Log-rank
statistic was computed comparing the survival curves and is shown in the figure.
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resection status and mental status [18–20]. This categorization of
GBMs into distinct molecular entities has suggested that a given
subgroup may preferentially respond to a specific targeted therapy
[21, 22]. Although it is possible to test suggested targets through
clinical trials, the availability of a model system that simulates a
given GBM subgroup would be of considerable benefit in testing
novel therapeutic strategies. Towards this end, the data presented
here indicate that the gene expression profiles generated for the
established glioma cell lines U87 and U251 grown as orthotopic
xenografts in nude mice recapitulate those of a specific GBM 
subgroup.

Our classification system of GBM clinical samples was based
entirely on gene expression profiles without prior knowledge of
pathological, genetic or clinical subgroups, allowing the unbiased
selection of GBM subtype classifiers. Several studies attempted to
classify gliomas to identify differentially expressed genes among
morphologically defined glioma subsets [23]. These studies con-
firmed that morphological differences among gliomas are
reflected at the mRNA transcript level and that differentially
expressed genes could be utilized to distinguish among morpho-
logically defined subtypes. Recently, two large transcriptome
studies examined specimens from patients with high-grade
gliomas. Phillips et al., using only WHO grade III and IV astrocy-
tomas, showed that the gene expression profiles divided the
tumours into three molecular subclasses (proneural, proliferation
and mesenchymal) with a significantly longer survival in the
proneural subgroup [21]. However, the majority of the grade 3
astrocytomas were in the proneural subgroup consistent with the
longer survival in this subgroup. The second study by Li et al.,
using both oligodendrogliomas and astrocytomas, showed that
transcriptome profiles divided into two oligodendroglioma sub-
groups (OA and OB) and four glioma subgroups (GA1, GA2, GB1
and GB2) with the GA1 subgroup having a significantly shorter
survival [24]. In the GA1–GB2 subgroups there was a range in the
number of grade IV astrocytomas in each group (53–73%).
Although we only evaluated WHO grade IV astrocytomas, there are
similarities between our dataset and the larger glioma classes
from Li et al. as well as their glioma subclasses (GA1–GB2). Gene
set analysis derived pathways separating the larger glioma class
included DNA damage, Cell cycle regulation and Proliferation and
for the GB1 subclass Neuronal function and G-protein signalling,
which were similar to our IPA-derived GBM1 pathways including
Nervous system development, DNA repair/recombination and
Cellular assembly. Determining whether these similarities between
GBM1 and GB1 can be extended to the level of gene expression
will require additional analyses.

Given that similar gene expression profiles imply similar biology,
if the ic xenograft transcriptome recapitulates that of the GBM1 
clinical subset, then the orthotopic growth of glioma cells may also
provide a preclinical model for testing targeted therapies. As an 
initial investigation into this potential application we focused on the
glutamate receptor. Metabotropic glutamate receptors have previ-
ously been suggested as possible therapeutic targets for GBMs [16,
17]. The data presented here indicate that the glutamate receptor
antagonist LY341495 enhanced the radiosensitivity of a glioma cell

line grown as an ic xenograft, yet had no effect on the radiosensitiv-
ity of glioma cells grown in vitro or as subcutaneous leg xenografts.
These results are consistent with the unique biology of the ic
xenografts as compared to the more standard experimental growth
conditions and provide support for the use of the orthotopic model
in the development of novel therapies for GBM1 subgroup.

The training model used in this study was based on the limited
number of genes (3322), i.e. those common to the two experi-
mental datasets. It would appear that further analyses using
microarray platforms encompassing larger gene sets would allow
for the identification of additional genes/pathways that may be of
significance. Moreover, whereas U87/U251 xenografts were found
to model a single subgroup of GBMs, it would seem that extend-
ing these studies to ic xenografts initiated from additional cell lines
including lines derived from GBM tumour stem cells may provide
experimental models simulating other subgroups. Clearly, the goal
would be to establish preclinical models with which to develop tar-
geted therapies against each GBM subtype.
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Additional Supporting Information may be found in the online ver-
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Fig. S1 Heatmap of pairwise correlations of ic cell line model and
tissue samples.

Pairwise Pearson correlation coefficients were estimated
between all samples under study using the GSA scores. The cor-
relation measures were plotted as heatmap to show the relative
association of ic cell line model with GBM1 and TCGA1 subsets of
clinical samples.

Fig. S2 Survival curves of gene set functions showing differences
between three GBM subtypes. Kaplan–Meier analyses were
conducted on four representative pathways with statistically
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significant differences (a–b) and insignificant differences (c–d)
between the GBM subsets. Differences in survival between the
three GBM subsets are summarized by log-rank test statistic
(insert in legend title) in all comparisons.

Table S1 List of significant genes identified by PAM analysis. The
scores are the shrunken centroid measures from the model for
each group.

Table S2 Results of gene set enrichment analysis. Log-rank test
statistic for genes associated with each of the significant pathway

identified in Fig. 3. The ‘N’ column is the number of genes from
the KEGG category found in the study.

Table S3 Summary of pairwise correlations showing similarity
between i.c. model with subset of GBM samples from test and val-
idation sets.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to
the corresponding author for the article.
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