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Abstract 
Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical appli-
cations since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, 
and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium 
promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. 
These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are 
manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential 
applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform 
for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we 
review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms 
of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed 
toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and 
laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, 
and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine 
applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, 
is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials.
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Introduction

In recent years, the number of patients in need of replac-
ing failed tissue with artificial alternatives or implants, 
such as arthroplasty, hip joints, craniofacial, maxillofa-
cial, dental implants, prostheses, and surgical instrumental 
applications, has increased [1]. Researchers estimate that 
demand for the replacement of hip and knee arthroplasties 
could reach 3.48 billion operations (673%) in 2030 com-
pared to 2005 in the USA [2]. Therefore, many endeavors 
have targeted recognizing appropriate biomaterials for the 
fabrication of durable medical implants [3]. Biomateri-
als are utilizable owing to their superior mechanical and 
thermal conductivity properties. The main essential fac-
tor for metals to be recognized as biomaterials should be 
that no adverse reaction occurs when used in the targeted 
biomedical application; that is, they act as biocompatible 
materials. Metallic biomaterials are generally utilized for 
load-bearing applications; thus, they should have adequate 
fatigue strength. In comparison with ceramics and poly-
meric materials, using metals as biomaterials and the rel-
evant technologies are continually enhancing because their 
properties can be modified in the function of the manu-
facturing processes [4]. Among various types of materi-
als, metallic biomaterials such as 316L stainless steels, 
Co–Cr-based alloys, titanium, and its alloys have desirable 
properties and hence remain the most adequate choice for 
replacing failed hard tissue [5].

Grade 316L stainless steels (18Cr–14Ni–2.5Mo wt%) 
have been used as implants since the 1920 s. The “L” in 
316L stainless steel denotes low carbon content, which can 
intercept the formation of chromium carbides and increase 
the corrosion resistance. However, stress corrosion crack-
ing, which cannot be prevented in 316L stainless steel, can 
be triggered by the combined effect of tensile stress and 
a Cl-rich environment such as human body fluid, result-
ing in an undesirable sudden failure of the implant under 
stresses [6]. Moreover, although Co–Cr-based alloys have 
a higher corrosion resistance compared to 316L stainless 
steels in human body fluid, some undesirable ions such 
as Cr and Co are released due to wear and corrosion [7]. 
There have been reports of Co exhibiting carcinogenic-
ity in many animal researches and cases of neurological 
symptoms in patients after implantation. The released Cr 
could affect the blood cells, kidney, and liver by oxidative 
reactions; therefore, Co–Cr-based alloys and 316L stain-
less steel have potential risks as implants [8]. Hence, these 
two alloys may not be the best alternative for orthopedic 
implants, making titanium (Ti) deserve more attention.

Titanium and its alloys have been used as medical 
implants due to their long fatigue life, corrosion resist-
ance, high biocompatibility, and lower Young’s modulus 

compared to other implants [9]. Despite the advantages 
of Ti alloys, supplementary development and modifica-
tion are essential to devise clinically useful applications. 
Owing to the inadequate biocompatibility of alloys in this 
category, which are used in medical implant manufactur-
ing, the risk of implant failure may be enhanced. This may 
also cause the poisonous agglomeration of ion discharge 
and wear debris entering the human body. To overcome 
these drawbacks, different types of advanced manufactur-
ing and surface modification have been proposed [10].

Consequently, it is necessary to conduct comprehensive 
research on suitable biomaterials like titanium for biomedi-
cal applications. The present review focuses on the develop-
ment of titanium and its multiple biomedical applications, 
such as bone replacement, dental implants, craniofacial, 
maxillofacial, surgical instruments, and prostheses. Then, 
we explore its functional properties, such as biocompatibil-
ity, density, corrosion resistance in the biomedical environ-
ment, ductility, thermal expansion, yield strength, tensile 
strength, magnetism, toxicity, host tissue response, protein 
adsorption, and antibacterial activity. Moreover, we carefully 
examine the different surface modifications and advanced 
manufacturing technologies of titanium and its alloys to 
improve its biomaterial properties. Finally, the applications 
of Ti in nanomedicine are discussed along with the future 
directions of research.

History of development of titanium alloys

The first reported application of commercially pure tita-
nium (CP-Ti) in medicine originated from 1940, when this 
metal was found to have excellent compatibility with bones 
based on results from testing the reaction of bone to multiple 
metallic implants on animals [11]. During the subsequent 
decade of the 1940s, achievements made in industrial-scale 
manufacturing processes for titanium paved the way for an 
increasing number of studies on the medical applications 
of titanium [12]. During the 1950s, discoveries were made 
regarding the compatibility of titanium with soft tissue and 
the bone of rabbits, as well as its non-cytotoxic properties 
due to its remarkable corrosion resistance in biological 
environments, where research on the surgical application 
of titanium in dogs showed its excellent biocompatibility 
[13]. Clinical evaluations further confirmed this advanta-
geous characteristic of Ti in long-term animal testing [14]. 
Subsequently, the utility of CP-Ti was developed through 
additional clinical reviews of its biocompatibility.

Observations on the long-term medical application of 
CP-Ti in the human body established that it is prone to 
fracture in this type of biological environment. However, 
CP-Ti has currently many applications in the medical field, 
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such as an artificial tooth root, internal fixation plates, and 
mandibular reinforcement plates. Therefore, the safety of 
long-term applications prompts the appropriate design pro-
cess for stress conditions [15–17]. Proposals were made 
to utilize Ti − 6Al − 4V, which is the most widely utilized 
titanium alloy in the aerospace industry and is an alterna-
tive biomaterial for artificial joints and bone fixators [18]. 
Subsequently, β-type and α + β-type titanium alloys pos-
sessing low Young’s modulus and free of vanadium (V) 
or aluminum (Al) compounds were developed [19]. A new 
α + β-type titanium alloy, Ti − 6Al − 7Nb, was created by 
replacing the vanadium (V) in Ti − 6Al − 4V titanium alloy 
with a safer element, niobium (Nb), to reduce the cytotoxic-
ity of titanium and associated alloys [20]. The development 
of other types of α + β-type titanium alloys also began dur-
ing the 1970s using iron (Fe), molybdenum (Mo), and tan-
talum (Ta), which included Ti − 6Al − 2Nb − 1Ta − 0.8Mo 
and Ti − 6Al − 2.5Fe [21–23].

The advancement of enhancing β-type titanium alloys for 
biomedical applications was prolific in the USA and Japan. 
Different β-type titanium alloys compounded with ele-
ments such as oxygen (O), silicon (Si), and zirconium (Zr) 
to produce Ti − 13Zr − 13Ta (a near β-type titanium alloy), 
Ti − 12Mo − 6Zr − 2Fe, T − 15Mo, and Ti − 15Mo − 2.8Nb − 
0.2Si − 0.28O, were developed in the USA. On the Japanese 
front, β-type titanium alloys such as Ti − 15Mo − 5Zr − 3Al, 
Ti − 15Mo − 5Zr, and Ti − 15Zr − 4Nb − 4Ta were formu-
lated [24–30].

The dentistry field has seen successful implementations 
of CP-Ti from 1965 with the introduction of cast titanium-
base partial denture for use as dental implants, which was 
based on research establishing the excellent compatibility of 
titanium with hard tissue [31]. Further advances spurred the 
use of titanium in dentistry from 1982, when the argon-arc 
casting machine and magnesia-system investment material 
were developed following the establishment of multiple den-
tal casting systems utilized in dental restoratives [32].

At the turn of the century, attempts were made to develop 
novel β-metastable titanium alloys by designing titanium alloys 
through transformation-induced plasticity (TRIP) and twin-
ning-induced plasticity (TWIP). The TRIP and TWIP concepts 
originated from application on steels, which consequently 
lead to their adaptation to titanium in the form of Ti–Ni shape 
memory alloy. This opened the future possibility for β-type 
titanium alloy with extremely high rates of strain-hardening to 
be utilized in biomedical applications. In addition to the devel-
opment of TRIP and TWIP concepts for titanium alloy-based 
medical devices, extensive research is also being conducted 
on the design and development of new β-type titanium alloys 
as biomaterials for implants based upon the design theory of 
d-electron [33]. The history of development of titanium alloys 
for biomedical applications is summarized in Table 1.

Biomedical applications of titanium alloys

Titanium and its alloys are widely used in various biomedical 
treatment scenarios, including arthroplasty and bone replace-
ment, craniofacial, maxillofacial and dental implants, surgical 
instruments, healthcare goods, or external and internal pros-
theses. The utilization of titanium alloys in medical devices 
throughout the entire human body, as well as the specifications 
of titanium alloys used in medical devices, is shown in Fig. 1.

Arthroplasty and bone replacement

Titanium is used extensively throughout the whole human 
musculoskeletal structure. The most prevalent biomedical 
application of titanium is currently for hip and knee replace-
ments, with shoulder and elbow joint implants following 
closely. Titanium has also seen frequent utilization in the spi-
nal area for spinal correction parts, spinal fixation devices, 
spinal fusion cages, and in recent years, replacements of spinal 
disks [45, 46]. Rib cages for children made of titanium allow 
the implant to expand as the body grows, thereby allowing 
young patients to grow with the rib cage [47]. Finger and toe 
implants, as well as tibial nails employed in the reinforcement 
of lower leg fractures, are also made of titanium [48]. Fixation 
and reconstructive devices that support broken bones, such as 
bone plates, mesh, pins, screws, and rods made of titanium, 
are frequently used nowadays [49]. To increase implant life-
time for younger patients, some of these applications utilize 
roughened bioactive surfaces to limit resorption and stimulate 
osseointegration.

Craniofacial and maxillofacial applications

Neurosurgical and cranioplasty applications of titanium 
include cranial plates, mesh, and acrylic. The biocompatible 
properties of titanium facilitate faster recovery and reduce 
the chance of infection. Maxillofacial prosthetics made from 
titanium alloys with appropriate levels of biocompatibility, 
strength, and osseointegration are able to stabilize soft tissue 
prostheses [50]. The application of maxillofacial prosthetics 
after maxillofacial surgery may often be necessary to restore 
the patients’ cosmetic appearance, their ability to eat or speak 
and replace any missing facial features due to disease or acci-
dent damage [51]. A schematic briefly depicting the design 
and fabrication process of a patient-specific mandibular pros-
thetic implant for defects related to maxillofacial clinical appli-
cations is shown in Fig. 2.

Dental implants

Titanium alloys are utilized in restorative dental practice 
as dental implants, functioning as artificial roots to provide 
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Table 1   History of development of titanium alloys for utilization in biomedical applications

Year Material Application Type of alloy Reference

1940 CP-Ti Compatibility with bones as a metallic implant α type [11]
1940 Ductile Ti Launching industrial production and smelting by the Kroll 

process for medical applications
α type [12]

1950 Ti Compatibility of titanium with soft tissue and the bone of 
rabbits as well as the non-cytotoxic properties of titanium

α type [13]

1957 Ti Non-toxicity with long term implantation α type [14]
1959 Ti–Ni Shape memory alloy β type [34]
1960 Ti Artificial joints α type [35]
1970 Ti-6Al-4V Orthopedic implants β-type and α + β-type [36]
1979 Ti − 6Al − 2Nb − 1Ta − 0.8Mo Surgical implants α + β-type [21]
1970s Ti − 6Al − 2.5Fe Medical devices α + β-type [37]
1985 Ti–6Al–7Nb Joint replacement α + β-type [38]
1996 Ti − 12Mo − 6Zr − 2Fe Surgical implants β-type [25]
1996 Ti-15Mo–2.8Nb–0.2Si Prosthetic implants β-type [39]
1997 Ti − 15Mo − 5Zr − 3Al Dental casting and surgical implants β-type [28, 30]
1998 Ti–15Sn–4Nb–2Ta–0.2Pd Medical implants α + β type [40]
After 2000 Ti − 13Zr − 13Ta Implant β-type [24]
After 2000 T − 15Mo Biomedical β-type [26]
After 2000 Ti − 15Mo − 2.8Nb − 0.2Si − 0.28O orthopedic β-type [27]
After 2000 Ti − 15Zr − 4Nb − 4Ta Implant β-type [29]
After 2000 Ti–35.3Nb–5.1Ta–7.1Zr Biomedical β-type [41]
After 2000 Ti–29Nb–13Ta–4.6Zr Biomedical β-type [42]
After 2000 Ti–15Zr–4Nb–4Ta–0.2Pd Medical implants α + β type [43]
After 2000 Ti–5Al–1.5B Biomedical – [44]

Fig. 1   Titanium alloys used in medical devices throughout the entire human body
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a secure base for a single tooth to a complete dental arch. 
The titanium dental root comprises biocompatible anchors 
surgically implanted into the jawbone where the natural 
tooth is missing to support the artificial crown once the 
osseointegration period has occurred over time. During 
this period, the bone grows into and surrounds the titanium 
implant to create a firm structural support. Thereafter, the 
higher assembly of tooth superstructure is attached onto 
the implant as a dental replacement using cementation or 
the screw-tightening retaining method. Orthodontic braces 
made of titanium alloys are lighter, stronger, and feature 
better biocompatibility than steel [52, 53]. In this regard, 
pure titanium, Ti–6Al–4V, and Ti–6Al–7Nb are the primary 
titanium alloys utilized in surgical and dental applications. 
The mechanical properties of the various titanium alloys 
used in dental applications are listed in Fig. 3 [54].

The casting process is instrumental for the dental appli-
cations of Ti, with an emphasis on low elongation and high 
strength [55]. Hydrogenation processing and dehydrogena-
tion processing are efficient techniques to improve elonga-
tion without compromising the strength of cast titanium 
alloys. These include thermochemical processing by post-
heat treatments such as broken-up structure or β and α-β 
solution treatment [56]. Titanium alloys have a higher melt-
ing point and are more reactive than other dental alloys, such 

as Ag- and Au-based alloys that are preferred for precision 
dental castings.

External prostheses

Owing to the inherent properties of titanium, such as cor-
rosive resistance, low weight, and toughness, its alloys are 
used extensively for the fabrication of temporary or long-
term external devices and fixations, including artificial limbs 
and orthopedic calipers [57–59].

Internal prostheses

Titanium alloy pegs are used to secure false ears and eyes, 
while pure titanium grid implants provide fixation for inter-
orbital fractures. The aural applications of titanium include 
bone conduction hearing aids anchored with devices made 
of titanium that are connected to the middle ear [60].

The carrier structure for replacement heart valves, cor-
onary angioplasty catheters, defibrillators, intravascular 
stents, pacemaker cases, and vascular access ports are also 
made of titanium alloys [61–66]. Infusion pumps utilize 
titanium–nickel shape memory alloys that flex when the 
applied electrical current enables the creation of a heating 
and cooling cycle that changes the shape of the chamber 

Fig. 2   a-e Brief illustration of the design and fabrication process of a patient-specific mandibular prosthetic implant for defects related to maxil-
lofacial clinical applications
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[67]. Urethral strictures are treated with urethral stents 
made from titanium [68].

Surgical instruments

An extensive range of surgical instruments, such as dental 
drills, forceps, and laser electrodes, often contain titanium 
due to its antibacterial properties, resistance to corrosion, 
compatibility with radiation, durability, and lightweight 
nature [69]. The low weight of titanium reduces the 
onset of fatigue for surgeons wielding the instrument for 
extended periods of time [70]. For microsurgical opera-
tions, such as ocular surgery, titanium surgical instruments 
are usually anodized to produce a non-reflecting surface 
essential for such operations [70, 71]. The non-magnetic 
property of titanium reduces the possibility for electro-
magnetic damage or interference to small and sensitive 
implants during surgery [72]. The durability of titanium 
surgical instruments enables them to withstand repeated 
sterilization cycles without compromising their corrosive 
resistance, strength, edge quality, and surface quality.

Utilization in healthcare products

The utilization of titanium alloys for the fabrication of 
healthcare goods is expanding. Such uses include exter-
nal prostheses and wheelchairs, particularly those used 
for sporting purposes, due to their outstanding biocom-
patibility, low weight, and high-strength properties. The 
titanium alloys widely used in this aspect are TFCA 
(Ti–4.0Fe–6.7Cr–3.0Al) and TFC (Ti–4.2Fe–6.9Cr) due to 
their lower cost than pure titanium, as recycling titanium 
with iron (Fe) contents, or low-cost ferrochrome (FeCr) 
can be utilized for this purpose [73, 74].

Even though healthcare goods are not implanted into 
the patient’s body, biocompatibility issues such as aller-
gic reactions still need to be addressed, especially for the 
elderly who have weaker immune systems and a higher 
propensity to use these healthcare devices. A study involv-
ing pure titanium, Ti–6Al–4V, TFC and TFCA, has shown 
that TFC and TFCA had greater cell viability among the 
groups. As such, there is a potential for TFC and TFCA 
to be used more widely in other types of healthcare goods 
[75].

Fig. 3   a-d Various titanium alloys used in dental implants and their associated mechanical properties
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Functional properties of titanium alloys 
used in biomedical applications

Commercially pure titanium possesses several functional 
properties that are particularly advantageous for various 
biomedical uses. Here, we explore the characteristics that 
make titanium a suitable option as a biomedical material 
for such applications. Table 2 presents the properties of 
titanium compared to other lightweight metals used in 
the biomedical field. It can be seen that titanium has a 
higher melting and boiling point compared to aluminum 
and magnesium. The demand for biomaterials is related 
to different parameters based on their applications, such 
as elasticity modulus; hence, alloys with higher strength 
have a broader usage in biomedicine [76].

Bio‑inertness (inert to chemical reactions 
with human bodily fluids)

Decades of medical studies and evaluation performed on 
titanium as a biomaterial demonstrated its excellent resist-
ance to chemical reactions in the biological environment of 
the human body under fatigue, stress, as well as in crevice 
conditions [77]. The bio-inertness property of titanium is the 
result of its ability to naturally form a protective oxide film 
under the presence of even trace amounts of oxygen. This 
protective film is chemically impermeable, highly adherent, 
insoluble, and prevents chemical reactions between human 
tissue and titanium under the biological environment of the 
human tissues [78].

Ductility and malleability

Pure titanium possesses a relatively high level of ductility 
and malleability, which allows the use of conventional 
metal processing techniques and tools to form, machine, 
and join the biomaterial into functional biomedical 
implants. Such level of workability enables sheet metal 
techniques, such as tungsten inert gas welding performed 
without vacuum, to fabricate biomedical implants with 
larger and more complex designs [79, 80].

Tensile strength

Titanium exhibits the highest strength ratio of any metal 
suitable for medical application as a biomaterial [81, 82]. 
Titanium is lighter than stainless steel by approximately 56% 
but possesses twice the yield strength and an ultimate tensile 
strength that is approximately greater by 25% [83, 84].

Magnetism

Titanium is not susceptible to magnetization. Due to its 
non-magnetic properties, the benefits for patients with tita-
nium inserted into the human body include reducing com-
plications when undergoing CT scan or X-ray, avoiding the 
magnetization of titanium insert or prosthetic when near an 
electromagnetic source (such as most modern electronics), 
and not triggering metal detectors at airports [85].

Density

Titanium possesses the lowest density among the metal-
lic biomaterials. Matching the density of the biomaterial 
with that of the already low density of human bone also 
contributes to the reduction of the stress shielding phenom-
enon by maintaining the proper distribution of body weight 
throughout the skeletal structure. Moreover, these properties 
enhance the image quality produced by computed tomogra-
phy, magnetic resonance imaging (MRI), and X-ray [86]. 
Typically, β-type titanium alloys that have niobium and zir-
conium elements are utilized in applications where a low 
modulus of elasticity is required, while α + β-type titanium 
alloys are employed in cases where a high modulus of elas-
ticity is required, such as for bone plate.

Corrosion resistance

Titanium exhibits excellent resistance to corrosion due to 
the self-formation of a passive titanium dioxide film that 
protects the metal from further oxidation, thereby induc-
ing low toxicity in comparison with most other biometals. 
However, the property of corrosion resistance alone is not a 
determinant of the excellent tissue compatibility of titanium 
[87, 88]. The electrical plating of titanium with platinum 
improves its corrosion resistance at the cost of depleting 

Table 2   Physical properties 
of lightweight metals used as 
biomaterials

Metallic element Boiling 
point 
(°C)

Metal 
density 
(g·cm−3)

Melting 
point 
(°C)

Hard-
ness 
(HBW)

Elastic 
modulus 
(GPa)

Tensile 
strength 
(MPa)

Thermal con-
ductivity  
(W/(m·K))

Titanium 3289 4.512 1678 716 120 220 26
Aluminum 2520 2.7 660 160 70 90 238
Magnesium 1090 1.74 650 44 45 175 156
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the bone formation capability due to the surface property of 
titanium being shielded [89, 90]. Several studies investigated 
the corrosion resistance of Ti–6Al–4V and Ti–6Al–7Nb in 
phosphate-buffered saline (PBS) solution. The corrosion 
potential and current density of Ti–6Al–4V are − 0.143 V 
and 4.334 × 10−5 μA·cm−2, respectively, and their values 
are − 0.217 V and 4.83 × 10−5 μA·cm−2 for Ti–6Al–7Nb, 
respectively, which demonstrated that the corrosion resist-
ance of Ti–6Al–7Nb is better than that of Ti–6Al–4V for 
biomedical purpose. This also results from the fact that nio-
bium has higher corrosion resistance compared to vanadium 
[88, 91].

Resemblance of thermal expansion and elasticity 
modulus of Ti to human bone

The coefficient of thermal expansion as well as the modulus 
of elasticity of titanium closely resembles those of human 
bone, which in turn significantly reduces the potential for 
the patient receiving titanium implants to experience stress 
shielding, as the loads will be comparatively well distributed 
across the skeletal structure [92, 93].

Rigidity of titanium alloys

Most titanium alloys are designed with low rigidity as the 
fundamental property for biomedical application as implants 
and prosthetics [94]. Taking the cortical bone as an example, 
it is important for the Young’s modulus of a biomaterial to 
be as close as possible to that of cortical bone, as resorption 
may occur if this value is higher [95]. The α + β-type tita-
nium alloy Ti–6Al–4V is commonly utilized in biomedicine 
[96]. Its Young’s modulus is lower than that of cobalt-based 
alloys and stainless steel, but still much higher than that of 
cortical bone. The Young’s moduli of β-type titanium alloys 
have been established to be lower than those of α + β-type 
or α-type titanium alloys, thereby allowing β-type titanium 
alloys to feature the required property of low rigidity. Fur-
thermore, these alloys display high strength and outstanding 
cold workability [97].

The mechanical biocompatibility of titanium alloys with 
low rigidity for biomedical use was established on rabbits. 
In the relevant model, an experimental tibial fracture was 
induced in the tibia beneath the tibial tuberosity through 
the utilization of an oscillating saw [98]. The fracture was 
treated with the insertion of an intramedullary rod into the 
intramedullary canal, which was fabricated from Ti–6Al–4V 
ELI, Ti–29Nb–13Ta–4.6Zr, or stainless-steel SUS 316L. 
Atrophy, bone healing, and remodeling were monitored via 
X-ray imagery every fortnight for a period of 24 weeks. The 
shape of the fracture callus for Ti–29Nb–13Ta–4.6Zr was 
discovered to be very smooth, gradually decreasing from 
week 6, and traces of fracture disappearing by week 10. 

Some atrophy change at the posterior of the tibial bone was 
observed after week 20. Ti–6Al–4V ELI displayed similar 
results, albeit at a slower rate. For SUS 316L stainless steel, 
significant fracture calluses were detected that remained 
until the end of the subsequent period. Observations of the 
proximal tibial bone at week 10 showed bone atrophy at the 
posterior part, which became more apparent every fortnight. 
The posterior tibial bone at week 24 showed signs of the 
bone structure becoming severely weakened. The low-rigid-
ity titanium alloy Ti–29Nb–13Ta–4.6Zr has therefore shown 
a potential to address the load transmission issue faced by 
current implants [99, 100].

Elasticity and shape memory of titanium alloys

Ti–Ni is a shape memory titanium alloy used extensively in 
the wider industry beyond the field of biomedicine. In fact, 
Ti–Ni has seen limited biomedical applications due to its 
significant Ni content, which causes high rates of allergy. 
However, Ti–Ni has the potential for applications as cath-
eters or stents where shape memory and superelastic prop-
erties are desirable [101]. To address the issue of metallic 
allergy due to the high Ni content, ongoing research and 
development have been underway for non-toxic titanium 
alloys with shape memory as well as superelastic properties.

A β-type titanium alloy known as “Gum Metal” (also 
called TNTZ) has a similar chemical composition to 
Ti–Nb–Ta–Zr system titanium alloys utilized in biomedi-
cal applications and has been used as flexible glass frames. 
Modifications to the chemical composition of “Gum Metal” 
may enable its potential for biomedical use. The superelas-
tic feature of Ti–29Nb–13Ta–4.6Zr has been established 
for biomedical application with reports describing the very 
low density of dislocations post-deformation [102]. Devel-
opments are ongoing for Ti–Nb–Sn system titanium alloys 
as shape memory Ni-free titanium alloys for biomedicine 
[103]. Research and development on various β-type sys-
tem titanium alloys for biomedical use, such as Ti–Mo–Ga, 
Ti–Mo–Ge or Ti–Mo–Al, Ti–Ta, Ti–Ta–Zr, and Ti–Sc–Mo, 
have also been intensive [104–108].

Bioactive surface treatments

Titanium alloys are generally treated with bioactive 
surface modifications to enhance their biocompatibil-
ity. Despite demonstrating superior biocompatibility in 
comparison with their metallic counterparts for biomedi-
cal use, titanium alloys exhibit similar bio-inertness to 
ceramics such as alumina and zirconia. Therefore, bio-
active materials including phosphate calcium (CaP), 
β-CPP (β-Ca2P2O7), and β-TCP (β-Ca3 (PO4)2) coatings 
are applied on the titanium alloy surface to facilitate the 
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formation of hydroxyapatite (HAP). The various bioactive 
surface modification processes are categorized into dry or 
wet processes [109–111].

Dry processes consist of direct and indirect HAP forming 
methods. The former includes the ion beam dynamic mix-
ing method, ion plating, the plasma spray method, the pulse 
laser deposition method, the superplastic joining method, 
and radio frequencies (RF) magnetron sputtering, whereby 
the formation of HAP occurs directly on the surface of the 
titanium alloy [112–116]. Indirect HAP forming methods 
include calcium ion implantation, in which calcium alloys 
are incorporated into titanium alloy, and the calcium ion 
mixing method where calcium is deposited on the surface 
of titanium alloy, followed by the implantation of argon ion. 
These treatments enhance the precipitation of phosphate cal-
cium on biomedical titanium alloy surfaces [117].

In a similar manner, wet processes consist of direct and 
indirect HAP forming methods. Electrochemical treatment 
is a direct HAP forming method, while alkali treatment is an 
indirect HAP forming method that involves heating the tita-
nium alloy during immersion in sodium hydroxide solution 
(NaOH), followed by immersion of the said titanium alloy 
in simulated body fluid [118, 119]. In addition, several other 
methods have been applied to form an apatite layer on the Ti 
surface in simulated body fluid (SBF) for various biomedical 
applications, as follows: NaOH and heat treatments; NaOH, 
CaCl2, heat and water treatments; H2SO4/HCl and heat treat-
ments; NaOH, and acid and heat treatments [120].

Biocompatibility of and host tissue 
responses to titanium alloys

Host tissue response

Observations on the structural interface located between the 
titanium biomaterial and bone tissue both at the microscale 
and the nanoscale facilitate the understanding of the osse-
ointegration mechanism. The titanium substrate is covered 
by several layers of materials in the following order: titanium 
oxide with a thickness of a few nanometers; an amorphous 
layer of proteoglycans with a thickness of 20–50 nm; a slim 
layer of cells; a region with mild calcification; and bone 
tissue. Researchers have recently investigated the reaction 
mechanisms contributing to the capability of titanium for 
osseointegration. The influencing factors found include 
effects of healing and immune modulation; hydrophilicity 
and wettability; increase in gene expression associated with 
angiogenesis, neurogenesis and osteogenesis; inflamma-
tion–immunological balance; interactions between platelets 
and red blood cells; and molecular signaling mechanisms 
related to immune osteocytes [121–123].

Surface hydroxyl groups

The properties of the surface oxide film covering the tita-
nium substrate govern reaction mechanisms at the interface 
located between the titanium biomaterial and living tissue. 
Hydroxyl groups are formed on the surface oxide film due to 
interactions with moisture from the air, which in turn form 
electric charges after dissociating in aqueous solutions, such 
as bodily fluids. The pH of the surrounding solution deter-
mines the value of the electric charge, which becomes zero 
at a certain pH value. This pH is also called point of zero 
charge (PZC) that is dependent on the oxide and is an indi-
cator showing acid or base property. In the case of titanium 
oxide, the PZC of anatase is 6.2, while that of rutile is 5.3, 
which translates to an almost neutral property that is neither 
significantly acidic nor basic. The concentration of surface 
hydroxyl groups on titanium oxide, at 4.9–12.5 nm−2, is rela-
tively large [121, 124]. This large concentration or wettabil-
ity increases post-immersion in an aqueous solution, which 
promotes the absorption of proteins such as cytokines and 
integrins.

Protein adsorption

Since proteins carry charges depending on the pH environ-
ment, their conformation is altered via adsorption onto the 
biomaterial surface. The relative permittivity of the surface 
oxide film determines the electrostatic force between pro-
teins and the metal surface; that is, a larger relative permit-
tivity translates to a smaller electrostatic force. Titanium 
oxide has a relative permittivity of 82.1, which is similar 
to that of water at 80.0 and is significantly larger than that 
of other oxides. Thus, the conformational fluctuations of 
protein adsorbed on titanium oxide are comparatively small. 
The absorption layer for fibrinogen is thicker, though the 
absorption amount in aqueous solution is smaller on tita-
nium than on gold. Titanium is covered with TiO2, whereas 
gold is an exposed metal without surface oxide; hence, the 
electrostatic force for titanium is much smaller than that 
for gold. Therefore, the change in protein conformation is 
smaller on titanium, and proteins adsorbed on titanium are 
less susceptible to conformational changes compared with 
those adsorbed on gold [125, 126].

Formation of calcium phosphate

While the surface oxide film is macroscopically stable, 
its chemical state and composition vary based on the sur-
rounding conditions. The composition of surface oxide 
film continuously changes based on the environment; from 
a microscopic viewpoint, it participates in a constant cycle 
of partial dissolution and reprecipitation in the electrolyte. 
In a biological environment, calcium phosphates easily 
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form on the surface of titanium and titanium alloys, while 
under cell culture, they form sulfite and sulfide, respec-
tively. The Ca/P atomic ratio to stimulate the generation 
of a bone-like apatite layer is considered as a key feature 
for rapid bone rehabilitation. Titanium is stabilized follow-
ing calcium phosphate formation with a Ca/P atomic ratio 
of around 1.6 when soaked in Hank’s solution, which is 
close to the stoichiometric molar ratio of hydroxyapatite. 
Furthermore, phosphorous and calcium can be detected at 
the interface located between the titanium biomaterial and 
bone tissue. The capability of titanium to form calcium 
phosphate is one of the contributing factors to its outstand-
ing hard-tissue compatibility [127, 128].

Osseointegration

For a patient’s body to successfully accept the biomedical 
implant, it is instrumental to establish safe implant place-
ment and shorten the postoperative healing period, as the 
human body will begin to reject the implants after a response 
to osseointegration for a minimum period [129, 130].

Due to the high dielectric constant of its surface oxide, 
titanium possesses the capability to form a direct interface 
with and bond well to living bone tissue without inter-
vening soft tissue. This high dielectric constant does not 
denature proteins when titanium biomedical implants are 
inserted into the body. Such functional ankylosis enhances 
the durability and mechanical stability of load-bearing 
titanium implants as compared to biomaterials that require 
the use of adhesives, as the amount of force required to 
break the physical bond formed between the human bone 
and titanium inset is considerable [129, 131]. However, 
according to other researches, in early implementations 
of implants into the human body made of CP-Ti, the sur-
face of the biomaterial is unable to integrate with the 
patient’s bone due to the bioinert surface property of tita-
nium [132, 133]. This leads to a longer healing duration 
and occasionally the surface encapsulation of the implant 
over time. The possible consequences are the loosening of 
the implant, the formation of wear debris or fibrous tissue 
developing at the implant site, micromotion, and the pos-
sibility of fracture or delamination at the implant–bone 
interface [134, 135].

The key factors that determine the successful osseointe-
gration of implants include biological compatibility in that 
the implant is not toxic to the surrounding living tissues, 
mechanical compatibility in that the implant is able to trans-
fer stress loads between the receiving living tissue and the 
root of the placed implant, and morphological compatibility 
in that the implant is able to promote bone cell growth at the 
implant location [136, 137].

Strategies to enhance the antimicrobial 
properties of titanium alloys 
through ultraviolet (UV) irradiation

The surface of pure titanium shows signs of decreased his-
tocompatibility over time. The application of UV irradia-
tion reverses the effects of the biological aging phenom-
enon through the physiochemical alteration of the titanium 
surface, a process known as photo-functionalization [138]. 
Titanium implants used in dental surgery are sterilized 
via UV irradiation [139]. In addition, there is potential 
in exploring the antibacterial effects of UV irradiation on 
orthopedic biomaterials typically comprised of titanium 
alloys, including Ti–6Al–4V. Accordingly, evaluations 
have been performed on the antimicrobial and bactericidal 
effects of UV irradiation, at a shorter and lower dosage 
than in prior applications, to treat Ti and titanium alloy 
Ti–6Al–4V for utilization in implant surgery [140, 141].

Postoperative infections involving the use of metal-
lic biomaterials comprise a significant complication for 
patients. Thus, multiple studies have attempted to develop 
methodologies that can alter the surface of implants to pre-
vent or reduce the initial bacterial adhesion. These altera-
tions are based on the principle of hindering the ability of 
microorganisms to form biofilms by enabling the patient’s 
cells to attach to the implant surface first. Pure TiO2 sub-
strates with photocatalytic properties have been demon-
strated as capable to function as disinfectants and elimi-
nate organic compounds when exposed to UV irradiation 
[142, 143]. Prior studies have shown the bactericidal effect 
of Ti–6Al–4V alloy surface exposed to UV subtype UV-C 
light at 227 J/cm2 dosages for 15 h. Studies have also indi-
cated that exposing Ti–6Al–4V alloy to UV irradiation 
at lower duration and energy induces increased bioactiv-
ity and osteoconduction. However, the dimensions of the 
implant are typically determined perioperatively, which 
leads to challenges in preparing the implants by UV irra-
diation before surgery. The difficulties experienced in the 
perioperative replication of the aforementioned antimicro-
bial strategies in clinical practice involving total implant 
surgeries have led to the conclusion that it is necessary 
to evaluate the antimicrobial and bactericidal effects of 
exposing Ti and Ti–6Al–4V to UV irradiation of shorter 
durations and energy levels [140].

Based on previous knowledge, one study investigated 
how UV irradiation contributes to the antimicrobial effect, 
which involved seeding Staphylococcus aureus 834 bac-
terial suspensions onto Ti and Ti–6Al–4V disks that had 
been exposed to a 9 J/cm2 dosage of UV light for a period 
of 15 min. The evaluation of the bactericidal effect of UV 
irradiation involved seeding the bacteria onto the disks 
at different time points after UV irradiation under the 



381Bio-Design and Manufacturing (2022) 5:371–395	

1 3

same conditions. The time periods were 0, 0.5, 1, 6, 24, 
and 48 h, followed by 3 and 7 days. After harvesting and 
culturing the bacteria, the colonies were counted in both 
groups. Findings showed the absence of colonies on the 
UV-irradiated disks after seeding the bacteria. After the 
addition of bacteria onto the UV-irradiated disks, the num-
ber of live bacteria initially decreased before showing a 
steady rise. However, the antimicrobial effect faded over 
time [140].

The conclusive results showed that UV-irradiated Ti and 
Ti–6Al–4V exhibited similar antimicrobial properties, the 
bactericidal effect was maintained for a week post-UV irra-
diation on both disks, and this effect was similar on both 
types of disk. In addition, low-energy and short-duration UV 
irradiation was determined to contribute to the bactericidal 
effect on both Ti and Ti-6Al-4V [140].

Surface modifications of titanium

The detailed description of the surface properties of the bio-
medical implant, such as its surface morphology, structure, 
and chemistry, is critical to determine the reactions between 
the biomaterial implanted into the body and the associated 
live tissues [144]. The biocompatibility of a biomaterial 
is typically improved via modifying its surface properties 
through a combination of biochemical coatings and mor-
phological changes. The main aim of these surface modi-
fications performed on implants is to avoid foreign body 
response, decrease bacterial adhesion and inflammatory 
reaction, as well as increase implant integration and tissue 
adhesion [145].

Biocompatibility has shown to be dependent on the inter-
relation of various factors influencing the bulk and surface 
properties of biomaterials, which include surface topography 
(e.g., surface roughness), surface chemistry (e.g., surface 
tension and purity for wetting), and nature of tissue integra-
tion (e.g., fibrous, osseous, or mixed) [146–148].

Roughness modifications commonly applied to titanium 
and titanium alloys can yield significant improvements in 
biomedical performance without compromising the bioin-
ert nature of these materials. Furthermore, chemical modi-
fications may be required to ensure rapid osseointegration. 
These include deposition methods, such as precipitating 
calcium phosphate through immersion into synthetic body 
fluid, electrodeposition, protein absorption, and plasma 
spray [149, 150]. Alternatives to chemical modification have 
also been developed, such as the biomolecular functionaliza-
tion of implant surface with various biomolecules, including 
collagen, fibronectin, peptides, as well as bioengineered pro-
tein fragments. Regardless, the critical mechanism involved 
pertains to how the bioactive molecule binds to the surface 

of the implant, as well as the method of immobilization 
[151–153].

The host environment has been reported to have the most 
significant influence on the biomaterial-to-tissue interface 
zone, where the interaction occurs between the implanted 
biomaterial and recipient tissues. This interface zone, which 
involves the implant surface layer and several nanometers 
into the recipient tissues, determines the circumstances of 
healing, as well as the clinical longevity of the implant’s 
load-bearing function [121].

The mechanical methods generally used for titanium and 
titanium alloys to obtain rough surfaces are subtraction pro-
cesses, such as blasting, grinding, machining, and polishing, 
while smoothing the surfaces requires attrition processes, 
such as milling. The objective of such mechanical modifica-
tions is to produce a surface with specific topographies for 
improved adhesion in bonding while cleaning or roughening 
the surface, since the increased surface roughness of the 
implant structure is deemed more conducive for biominer-
alization [154, 155].

Chemical methods, such as acid and alkaline etching, 
biochemical surface coating methods, chemical deposition, 
and electrochemical anodization, are generally utilized to 
provide titanium and titanium alloys with bioactive surface 
characteristics. The aim is to improve bioactivity, biocom-
patibility, corrosion resistance, and osteoconduction and 
remove any contaminations. Obtaining irregular morpholo-
gies for titanium implant surfaces on the nanoscale can be 
achieved through a multitude of chemical methods, while 
electrochemical anodization is generally used when the aim 
is to fabricate controlled nanostructures, such as nanodots, 
nanorods, and nanotubes [156–158]. The fabrication process 
of titanium dioxide nanotube (TNT) arrays by anodization 
is shown in Fig. 4.

Physical surface modification methods do not require 
chemical reactions to produce the desired engineered sur-
face. Such methods include glow discharge plasma treat-
ments, ion implantation, physical vapor deposition, and 
thermal spraying. The resulting layer of coating or film 
formation on the surface of titanium substrate is simply 
a product of transferring various types of energy, such 
as kinetic, electrical, or thermal, which is unique to each 
method [159–161].

Titanium/silver physical vapor deposition (PVD) 
coatings

The formation of biofilm and endoprosthesis infection are 
regular issues pertaining to complications of implant surger-
ies. Adjustments to the implant surface prior to implantation 
have been applied to overcome such postoperative infections. 
One of the techniques for surface modification to improve 
the biocompatibility and antimicrobial properties of titanium 
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is silver coating by PVD. Several researches have been con-
ducted to develop antimicrobial coatings with titanium and 
silver using PVD [162, 163]. Some of the recent studies 
investigated the mixed system of anodization and PVD to 
improve the titanium/silver coating, and the results showed 
the deposition of Ag2O on the edges of highly ordered TiO2 
nanotubular arrays (schematic shown in Fig. 5) [128].

Relevant techniques involve direct impregnation utilizing 
antibiotics before implantation, or polymer coatings doped 
with antibiotics or silver. The antimicrobial activity and 
non-toxic nature of active silver ions to human cells have 
been well established, as only a few bacteria are intrinsi-
cally resistant to silver via resistance mechanisms derived 
from plasmids [162, 164]. The incorporation of silver ions 
into polymeric materials has been extensively performed 
for some time [165]. Urinary and central venous catheters 
use silver coatings, while dialysis units or heart valves have 
silver dotted surfaces to reduce infection [166]. Unfortu-
nately, the relevant techniques may not meet the mechani-
cal requirements for load-bearing biomedical implants, par-
ticularly those implanted into bone, due to the high levels 
of abrasive and shear forces occurring at the implant-bone 
interface.

Moreover, the PVD process is commonly utilized in 
medical and technical applications due to the excellent 
adhesiveness and wear resistance of ceramic and metal-
lic coatings. In one study, silver–titanium was applied to 
samples of titanium alloys by PVD and tested for bacteri-
cidal action, biocompatibility, and hardness. The objective 
of the study was to assess the antimicrobial capability of 
coatings with silver ion under an aqueous environment, 
without compromising the hardness and biocompatibility 
of titanium with soft and hard tissue, for utilization in 
biomedical implants with load-bearing requirements, such 
as knee joints or hip joints [167].

In one study, both titanium and silver were vaporized 
in an atmosphere filled with inert argon, and antimicrobial 
coatings with a thickness of about 2 µm were deposited on 
the titanium surface. Through X-ray analysis, the silver 
content of the coatings was determined to be about 0.7% 
to 9%. Subsequently, eukaryotic culture cells and micro-
organisms were grown on these surfaces. After immersion 
in phosphate-buffered saline (PBS), the coatings released 
adequate amounts silver ions (between 0.5 and 2.3 ppb) and 
displayed remarkable antimicrobial potency against Kleb-
siella pneumoniae and Staphylococcus epidermidis strains. 

Fig. 4   Schematic of anodization process to fabricate titanium diox-
ide nanotube (TNT) arrays: a oxide layer formation, b pit creation, c 
pit growth, d oxidation and field-assisted dissolution of the metallic 

region between the pores, e fully developed nanotubular configura-
tions with f a corresponding top view and g cross-sectional view with 
inner and outer oxides
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Furthermore, the coatings had no cytotoxic effects on the 
epithelial cells and osteoblasts [168].

Using commercial grade 2 pure titanium as control, the 
reaction of Klebsiella pneumoniae and Staphylococcus epi-
dermidis bacterial strains on surfaces dotted with silver was 
observed. The datum for the adherence of bacteria to the 
control surface was defined as 100%, and bacterial contami-
nation on the surfaces containing silver was subsequently 
recorded. Klebsiella pneumoniae displayed reduced adhe-
sion (p < 0.05) on the surfaces with 0.7% silver to 4% silver 
in the range of 32–64%, respectively. Meanwhile, Staphylo-
coccus epidermidis displayed reduced adhesion (p < 0.01) 
on the surfaces with 0.7–4% silver in the range of 43–52%, 
respectively. Due to their similar mechanical performance 
to pure titanium, titanium silver (Ti-Ag) coatings may be a 
viable antimicrobial strategy for load-bearing implant sur-
faces [168].

Advanced manufacturing (AM) of titanium 
alloys for biomedical application

The fabrication techniques of titanium alloys for biomedi-
cal application include casting and powder metallurgy, cold 
working and hot working, machining, and additive manufac-
turing. Titanium alloys are manufactured into three types, 
including α, β, and α + β. Some alloying elements are dis-
solved preferentially in α phase such as Zr, Al, Sn, O, and 
Si raising the α + β-phase. The addition of these elements 
results in the modification of alloy properties, such as in 

hardening and tensile strength improvement. Oxygen plays 
a dominant role controlling the range of strength of several 
grades, which are collectively called CP-Ti. The β-phase 
transformation stabilizes titanium alloys and makes them 
suitable for biomedical application because of their sub-
sequent low modulus (which is below that of the α- and 
α + β-phase and near that of the human femoral bone), and 
confers them high specific strength [76].

The CP-Ti and Ti-64 are manufactured via the traditional 
routes, such as strips, sheets, plates, bars, billets, forgings, 
and wires, specified according to the American Society for 
Testing and Materials (ASTM) as grades 1–5. Grades 1–4 
comprise the unalloyed CP-Ti, and grade 5 is the alloyed 
Ti-64 [169]. One of the AM methods is the powder-based 
additive manufacturing technology of titanium and its alloys, 
with the advantages of low-cost, resource-saving, suitable 
time, and customized parameters for fabrication, and has 
received great attention for biomedical application [170]. 
The quality of additively manufactured implants highly 
depends on the selected additive manufacturing technique 
and the quality of titanium and its alloy powders. Additive 
manufacturing techniques employed to fabricate the bioma-
terials include directed energy deposition [171], laser-based 
powder bed fusion of metals (PBF-LB/M) [172], powder 
fed system of binder jetting [173], electron beam powder 
bed fusion of metals (PBF-EB/M) [174], plasma atomization 
[175], gas atomization [176], and plasma rotating electrode 
process [177].

Developments in porous titanium structures for bioma-
terial application have enabled design optimizations for 

Fig. 5   a–c Schematic of a mixed system of anodization and PVD to deposit silver oxide on the edges of highly ordered TiO2 nanotubular arrays 
on Ti64
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patient-tailored implants. The additive manufacturing tech-
niques allow for the fabrication of porous surface structures 
with predetermined, predictable unit cells for a biomedical 
implant, which have the necessary capabilities such as pro-
moting cell proliferation and osseointegration. Thus, bio-
medical implants can achieve mechanical properties similar 
to those of human bone, such as compressive strength and 
elastic modulus, thereby preventing post-implantation com-
plications, like stress shielding effects [178, 179]. To achieve 
such desired traits, it is necessary for biomedical implants to 
have an accurate design of porosities and pores to replicate 
the various mechanical properties and characteristics of the 
two main categories of bones, namely cortical bone and tra-
becular bone [180]. Despite having a similar composition, 
these two bone types vary in the degree of porosity and the 
proportion of organic and inorganic materials. The combina-
tion and organization of these two categories of bone differ 
according to the applied mechanical loading, as well as the 
skeletal region. Cell differentiation and proliferation are also 
affected by the morphology of pores, which is related to the 
pore size, porosity, and pore quantity [181].

Cellular structures can be classified into two main types, 
namely stochastic and non-stochastic. The cells in stochas-
tic structures vary randomly in shape and size, while non-
stochastic structures can be defined by the periodic repeti-
tion of the lattice structure with a unique shape and size of 
cells. Due to the absence of random variations in their cell 
shapes and sizes, non-stochastic metal structures are con-
sidered superior to stochastic metal foams on the basis of 
fabrication via powder bed technologies, which leads to bet-
ter mechanical properties and the ease of removal of unfused 
powder [182, 183].

Evaluations have been performed on how variances in 
non-stochastic structures, such as the shape and size of 
pores, permeability, and porosity, affect the in vitro bio-
logical outcomes, as well as the mechanical properties of 
Ti–6Al–4V scaffolds fabricated via selective laser melting 
(SLM). The different pore shapes had an effect on cell per-
meability and consequently the number of cells attached to 
the Ti–6Al–4V scaffold. Other studies also reported that 
the circular cell growth pattern was not dependent on the 
shape and size of pore, which was primarily attributed to 
the amount of pore occlusion being higher on hexagonal 
pores in comparison to rectangular or triangular pores [184].

Moreover, research has been carried out on titanium 
hip implants with the aim of reducing the stress shielding 
effects without compromising mechanical strength. This 
was achieved by applying finite element analysis (FEA) 
to the design process and utilizing electron beam melting 
(EBM) fabrication technologies. A periodic lattice structure 
was used to modify the solid stems to achieve the desired 
reduction in implant stiffness. The comparisons between the 
constructed model and the simulated model demonstrated 

the possibility of utilizing EBM to fabricate non-stochastic 
lattice structures. The orientation of lattice struts was also 
instrumental to the fabrication process. Due to differences 
among the surfaces of struts between the EBM-fabricated 
model and the FEA-simulated model, the design of implants 
had to incorporate safety factors. The FEA model featured a 
consistent cross-section with a smooth surface, whereas the 
fabricated struts exhibited cross sections with slight vari-
ances coupled with textured surfaces. The study involved 
three model configurations, namely complete solid, hole 
configuration, and mesh configuration. The mesh configu-
ration incorporated into the Ti–6Al–4V stem was found to 
possess better stress distribution characteristics at the proxi-
mal portion of the femur [185–188].

Another study was conducted to determine the proper-
ties of porous structures in terms of internal geometry, pore 
size, and pore density in Ti–6Al–4V fabricated by con-
tinuous laser melting deposition (LMD) and pulsed LMD. 
Both fabrication methods were shown to produce different 
internal porous structures, while optimizing the parameters 
such as laser power and powder mass flow rate yielded dif-
ferent densities in both cases. Ti–6Al–4V powder was used 
as the deposition material on the substrate, and parameter 
optimization resulted in the fabrication of suitable pores for 
osseointegration. Analytical models of the processes built 
by using Wolfram Mathematica software are also necessary 
to find interacting, transient heat, temperature, and mass 
flow models [189]. A more controlled porosity was obtain-
able by utilizing a pulsed beam fabrication methodology as 
compared to a continuous beam. A regular structure was 
instrumental to avoid premature failure [190].

Effect of alloying elements on biocompatibility, 
corrosion resistance, and mechanical properties

In order to develop safer biological Ti alloys with high 
strength and ductility, biocompatible alloying elements 
were examined as alternatives to V and Al. The strength 
of the alloy was found to increase with the Zr and Sn con-
tent. In this regard, Sn is more effective than Zr, while Nb, 
Ta, and Pd are less potent; therefore, the tensile strength of 
Ti–15Sn–4Nb–2Ta–0.2Pd is higher than that of Ti–6Al–4V 
for medial implants [191, 192]. Elements such as Mo, Zr, 
Ta, Sn, and Nb are selected as the safest alloying metals 
to adjust the properties of the biomaterial and maintain its 
suitability for implantation [76]. The β alloying elements 
of titanium, including V, Mo, Nb, Ta, and Zr, improve its 
corrosion behavior. Accordingly, it has been proven that 
Ti–6Al–4V has higher corrosion resistance compared to 
titanium alloyed with elements such as Co and Cr alloys, 
while pure titanium has higher pitting corrosion resistance 
rate. The β-phase stabilizing elements, such as Mo and V, 
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improve the stress corrosion cracking of titanium owing to 
the increased heat treatment capability [193–195].

Titanium β-phase alloys, including Ta, Nb, Zr, and Sn, 
have excellent mechanical properties, such as low Young’s 
modulus, high strength, good cold workability, and good 
biocompatibility and, therefore, have been more commonly 
used in recent years [76, 196, 197]. Moreover, Mo in tita-
nium is not suitable for biomaterial application in high 
amounts due to the increased possibility of ion releasing to 
the surrounding tissue, resulting in totally diminished cyto-
plasm content and reduced cell spreading. Therefore, this 
element must be used in small quantities, just as Ni, V, and 
Al [198]. Cell culture experiments on osteoblast cells with 
Ti–5Nb–xFe alloys showed that the rate of cell proliferation 
is related to the amount of Fe and the chemical bonding 
between Fe and cells and that Fe with specific ratio has good 
biocompatibility [199]. The ranking of elements added to Ti 
in bioimplants regarding their cell viability enhancing effect, 
from lowest to highest, is Cu < Al < Ag < V < Mn < Cr < Zr 
< Nb < Mo < Cp-Ti, and that regarding their cytotoxicity is 
Cp-Ti < Sn < Ta < Mo < Nb < Zr < Cr < Mn < V < Ag < Ni = 
Al < Cu [200–204].

Potential of titanium alloys for regenerative 
medicine and nanomedicine

Properties of titania nanotube arrays (TNA)

Nanomedicine aspires to supply a valuable set of research 
tools and clinically functional devices for different biomedi-
cal applications. Titania nanotube arrays (TNA), also known 
as titanium dioxide nanotube (TNT) arrays, are garnering 
significant prominence as nanomedicine technique thanks 
to improvements to orthopedic procedures due to its unique 
properties, including a high specific surface area and the 
capability to exhibit a positive cellular response. TNA can be 
fabricated by various chemical, electrochemical, and physi-
cal methods. Self-assembled nanotube arrays grown using 
anodic oxidation have been of particular interest due to the 
cost efficiency and ease of fabrication, combined with the 
exceptional electrical, optical, structural, and thermal prop-
erties exhibited by these nanotubes. The anodization layer-
ing process produces a continuous array of TiO2 nanotubes 
vertically aligned on the surface of titanium alloy [205–207].

Applications in localized drug delivery systems

TiO2 nanotubes (TNT) comprise a viable option for local-
ized drug delivery systems to address shortfalls in conven-
tional drug delivery. Several methodologies can be utilized 
to control extended drug release in small dosages for long-
term therapies, such as adjustment of pore openings via 

biopolymer coatings, modification of internal chemical char-
acteristics, regulation of TNT dimensions, and utilization of 
polymeric micelles as drug nanocarriers [208, 209]. Strate-
gies to control drug delivery from TNTs are shown in Fig. 6. 
Emergency conditions, such as the sudden onset of inflam-
mation, osteomyelitis, and unexpected viral attack, may arise 
with an imminent requirement for high concentrations of 
drugs [210]. Such critical situations can be addressed by 
employing stimuli-responsive drug delivery systems trig-
gered by external conditions, such as magnetic, pH, radi-
ofrequency (RF), temperature, ultrasound, ultraviolet (UV) 
light, or voltage-sensitive drug delivery systems. The con-
cept of stimuli release is based on the application of mag-
netic field, RF signal, ultrasonic wave, UV light, or voltage 
field to induce the movement of related stimuli particles, and 
forcing the release of polymer micelles out from the TNT. 
External stimuli for on-demand and responsive drug delivery 
can also be triggered via changes in the pH and temperature 
of the surrounding bioenvironment. The internal volume of 
TNT may be filled with biomolecules and chemicals, such 
as proteins or enzymes. Extrapolating this approach, tita-
nia nanotube arrays (TNA) may be coated with drugs that 
reduce inflammation, an example being dexamethasone, by 
utilizing the physical adsorption or deposition of a drug via a 
drug delivery system that is stimuli responsive. This applica-
tion can work in conjunction with post-remission therapies, 
such as stem cell transplant and radiation therapy [211, 212].

Some researchers have attempted to fabricate smart 
implants with an on–off drug release capability using tem-
perature as the external stimulus. It is assumed that the for-
mation of a thermosensitive polymer coating on the surface 
of TiO2 NTs endows a sustained release potential, resulting 
in lower required drug dosages and decreased systemic tox-
icity. The schematic of the drug encapsulation and release 
mechanisms is shown in Fig. 7. The polymer coating on 
top of the nanotubes undergoes a rapid transition from a 
hydrophilic state with coil-shaped polymer chains to hydro-
phobic globules at a specific temperature, which results in 
the release of the drugs in a specific area of the human body. 
This phenomenon leads to the partial removal of the protec-
tive shell from the surface of TiO2 NTs and the generation of 
preferred trajectories for drug diffusion within the surround-
ing environment [213, 214].

Applications as immunomodulatory agents

Recent advancements in nanomedicine have facilitated 
the development of new immunomodulatory agents that 
include immunosuppressive agents or immunologically 
active components. In conjunction with an immunosuppres-
sive agent, the unique surface structure of TNA enables the 
effective reduction of compromising immune responses that 
would contribute to unsuccessful transplants as a result of 
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localized autoimmune or allergic reactions [205, 215]. Such 
applications have the potential to significantly enhance clin-
ical outcomes for a range of infectious and non-infectious 
diseases.

Applications as antibacterial agents

Coating the TNA nanomatrix surface with drugs that 
reduce infections, including streptomycin and penicillin, 
can be utilized to mitigate the bacterial colonization of in-
dwelling medical devices. The medical device surface is 
aligned with TNA to act as an antimicrobial chemotherapy 
agent. The internal cylindrical surface of the aligned TNA 
is then coated with bactericidal antibiotics such as strepto-
mycin and penicillin. This antibacterial surface provided 
by the TNA coated with bactericidal antibiotics has proved 
to inhibit and mitigate bacterial growth, thereby reducing 
the risk of bacterial infection originating from the sys-
tem [216, 217]. Nanomedicine approaches also provide an 
enhanced solution to limit bacterial infection by delivering 
traditional antibiotic treatments. Research has established 
the utilization of nanotubes with larger diameters (30 to 

100 nm) as compared to nanotubes with smaller diameters 
(around 20 nm), which may potentially stunt the growth of 
bacteria such as Staphylococcus epidermidis or Staphylo-
coccus aureus [218].

Applications for hemocompatibility

TNA is a viable option as a nano-blood-contacting agent; 
it has the ability to transform fibrinogen to fibrin, thereby 
increasing the formation of a dense fibrin network and 
subsequently reducing the clotting time. The topology of 
TNA is conducive to enhancing the activation and adhe-
sion of platelets, protein absorption of the blood serum, 
and kinetics of blood coagulation. In addition, the surface 
of TNA has the potential to act as a link between bio-
logical substances for propitious implants that are blood 
related [219]. TNA also evokes low cytokine secretion and 
monocyte activation. The adsorption of blood on TNA 
enables further evaluation through the utilization of micro 
bicinchoninic acid (BCA) assay, as well as X-ray photo-
electron spectroscopy [220–222].

Fig. 6   Strategies for controlling drug release from TNTs. a Con-
trolling the diameter and length of nanotubes; b surface chemistry 
(hydrophobic, hydrophilic, charged); c tuning the nanotube opening 
by plasma polymerization; d degradation of dip-coated polymer film 
closing the nanotubes (PLGA or chitosan); e using drug nanocarriers 

(micelles) for multidrug delivery; f delayed/sequential drug release of 
drugs/drug carriers. External field-triggered drug release using g tem-
perature, h magnetic field, i ultrasound, j light, and k radiofrequency 
with gold nanoparticles. Only a single nanotube structure is shown to 
present an array of TNTs
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Conclusions and future directions

Pure titanium (Ti) and its alloys have been used exten-
sively as medical implants owing to their high biocompati-
bility, fatigue life, corrosion resistance, and lower Young’s 
modulus compared to other medical implants. With the 
development of AM technologies over recent years, 
the fabrication of medical devices has not only become 
cheaper and faster in comparison with conventional manu-
facturing techniques, but also these products have dem-
onstrated superior mechanical properties with reduced 
tooling operations and material wastage. The biomedical 
application of AM technologies has garnered considerable 
popularity in recent years due to improved capabilities in 
the fabrication of implants specifically tailored to indi-
vidual patients. AM technologies using biomaterials such 
as titanium can replicate patient organs and tissues with 
precision, which allows for the reproduction of complex 
porous structures that enable tailored cell morphologies, 
promote cell differentiation and proliferation, a require-
ment for bone in-growth, and act as an antimicrobial agent. 
These benefits consequently reduce the risk of implant 
rejection and accelerate the healing process.

Ongoing research is being conducted on orthopedic 
devices constructed from porous metal. Based on clini-
cal studies using such porous metals like titanium foam, 
the formation of vascular systems in a porous area seems 
viable. The mechanisms of osseointegration in titanium 
foams share similarities with that in bone grafts, whereby 
the porous properties of the titanium foam facilitate con-
siderable bone infiltration, allowing osteoblast activity to 
occur. Furthermore, the porous structure enhances vas-
cularization and the adherence of soft tissue within the 
implant. Therefore, the utility of porous materials may see 
a future expansion in replacement arthroplasty and dental 
applications.

In the nanotechnology field, biomedical research and 
development primarily target improvements to current 
diagnostic and therapeutic methodologies. The ultimate 
goal is to reduce the overall medical cost by improving the 
efficiency and reusability of available practices. Thus far, 
titanium nanostructures have proved to be a viable option 
for advanced biomedical implants, as well as theragnostic 
applications; however, a more in-depth understanding of the 
biomolecular interactions involving titanium as a nanomate-
rial is necessary for further developments in this field.

Fig. 7   Proposed mechanism of thermal-triggered drug release from 
polymer-coated TiO2 nanotubular structures before a and after b 
heating. At low temperatures, the polymer capping forms a uniform 
protective layer on the nanotubes, resulting in a negligible level of 

uncontrolled drug release. However, heating of the implant to a spe-
cific temperature leads to the coil-to-globule transition of the polymer 
shell and the provision of preferred routes for drug diffusion
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