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Abstract: The self-organizing fuzzy (SOF) logic classifier is an efficient and non-parametric classifier.
Its classification process is divided into an offline training stage, an online training stage, and a
testing stage. Representative samples of different categories are obtained through the first two
stages, and these representative samples are called prototypes. However, in the testing stage,
the classification of testing samples is completely dependent on the prototype with the maximum
similarity, without considering the influence of other prototypes on the classification decision of
testing samples. Aiming at the testing stage, this paper proposed a new SOF classifier based on the
harmonic mean difference (HMDSOF). In the testing stage of HMDSOF, firstly, each prototype was
sorted in descending order according to the similarity between each prototype in the same category
and the testing sample. Secondly, multiple local mean vectors of the prototypes after sorting were
calculated. Finally, the testing sample was classified into the category with the smallest harmonic
mean difference. Based on the above new method, in this paper, the multiscale permutation entropy
(MPE) was used to extract fault features, linear discriminant analysis (LDA) was used to reduce the
dimension of fault features, and the proposed HMDSOF was further used to classify the features.
At the end of this paper, the proposed fault diagnosis method was applied to the diagnosis examples
of two groups of different rolling bearings. The results verify the superiority and generalization of
the proposed fault diagnosis method.

Keywords: fault diagnosis; HMDSOF; harmonic mean difference; MPE; LDA

1. Introduction

Rotating machinery has been widely used in various modern industries such as wind turbines,
aero engines, water turbines, and gas turbines. As a key component of rotating machinery, rolling
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bearings play an important role in rotating machinery [1–5]. Due to the complicated structure and harsh
operating environment, various faults of rolling bearings (inner ring fault, outer ring fault, ball fault) is
inevitable; thus, it is of great significance to study the fault detection methods and diagnostic techniques
of rolling bearings [6–10]. In order to find out the fault location, the current frequently used fault
diagnosis method is the time-frequency analysis method, such as the variable mode decomposition,
local mean mode decomposition, empirical mode decomposition and so on [11–14].

The fault type is found by the fixed frequency of the intrinsic mode function after time-frequency
analysis. However, due to the presence of noise, the collected fault signal may be submerged. In order
to enhance the signal, filters are often used, such as minimum entropy deconvolution (MED), maximum
correlation kurtosis deconvolution (MCKD), and multipoint optimal minimum entropy deconvolution
adjusted (MOMEDA) [15–17]. However, the above algorithm is not adaptive, and misdiagnosis may
occur. The current intelligent diagnosis method is generally to combine fault extraction technology with
the machine learning method, and the first step is to extract fault feature information from the vibration
signal [18]. However, since the equipment is usually inevitably operated under friction, vibration,
and shock conditions, the vibration signal will show nonlinear and non-stationary characteristics.
Since linear analysis methods cannot extract fault features, nonlinear analysis methods are particularly
important for fault diagnosis of bearings. In recent years, many nonlinear dynamic methods such as
sample entropy (SE), fuzzy entropy (FE), permutation entropy (PE), multiscale sample entropy (MSE),
multiscale fuzzy entropy (MFE), multiscale permutation entropy (MPE), and improved methods based
on them are used to extract nonlinear fault features [19,20]. For example, Yan et al. [21] extracted
bearing fault features with the improved multiscale discrete entropy (MDE) and input them into
the extreme learning machine (ELM), obtaining satisfactory fault diagnosis results. Liu et al. [22]
used local mean decomposition to denoise the vibration data and then used MSE to extract the fault
characteristics from the denoised signal. A lot of research studies have found that MPE has a faster
calculation speed and stronger robustness than MSE, MFE, and MDE, and can better extract fault
feature information [21,22]. Therefore, this paper uses MPE to extract fault features.

It is well known that after multiscale entropy is used to extract multiscale feature sets, feature
reduction is needed to eliminate redundant features and improve computational speed. At present,
the commonly used feature dimension reduction methods are principal component analysis (PCA)
and linear discriminant analysis (LDA) [23]. For example, Aouabdi et al. [24] used multiscale sample
entropy to extract the fault features of gears and then used PCA to reduce the dimensionality of fault
features. Chen et al. [25] applied PCA to the feature reduction of high-speed train fault diagnosis.
After using empirical mode decomposition to decompose the bearing data into the intrinsic mode
function, Su et al. [26] extracted the high-dimensional feature vector set from the intrinsic mode
function and then reduced it with LDA. PCA ignores other components while retaining the principal
components with larger variance, so critical fault information may be lost during data dimensionality
reduction. As a commonly used data dimension reduction method, LDA has a simple principle and a
short calculation time. The feature set with dimensionality reduction has more sensitive features and is
easier to classify [24,26].

The next and most important step after dimensionality reduction is to input the dimensionality
reduction feature set into the classifier. Classification is one of the hot issues in machine learning
research. In recent years, various methods of machine learning have been used in the field of fault
diagnosis, such as support vector machine (SVM), decision tree (DT), k-nearest neighbor (KNN),
extreme learning machine (ELM), etc. [27–31]. The self-organizing fuzzy logic classifier (SOF) has not
been used in the field of fault diagnosis since it was proposed in 2018. SOF has the advantages of fast
calculation speed, high classification accuracy, and no parameters [32]. The classification process is
divided into three stages: the offline training stage, online training stage, and testing stage. In the
offline training and online training stage, fuzzy rules of different categories are constructed after
various types of qualified prototypes are obtained through self-iterative updating of meta-parameters.
However, in the testing stage, the testing samples are classified according to the maximum similarity
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between the testing samples and the prototypes in each category. This does not take into account the
impact of other prototypes in the same category on the classification of testing samples, so classification
accuracy may be affected. This paper have improved the testing stage of SOF from the classification
decision of SOF. The harmonic mean difference (HMDSOF) proposed in this paper not only considers
the influence of other prototypes on testing samples but also assigns different weights to different
prototypes. In the experimental part, the influence of the parameter g on the classification result of
HMDSOF is analyzed by the bearing fault data of Case Western Reserve University, and the default
value of the parameter g is given. Then, by comparing the classification results of HMDSOF with
SOF, SVM, DT, KNN, ELM, least squares support vector machine (LSSVM), and kernel extreme
learning machine (KELM), the validity and rationality of the proposed HMDSOF are illustrated.
Finally, the generalization of HMDSOF is verified by bearing testing data of coal washer.

2. Basic Theory

2.1. Multiscale Permutation Entropy

MPE can be defined as the set of permutation entropy values of time series at different scales,
and its calculation can be described as:

(1) Assuming a one-dimensional time series
{
x(i), i = 1 ∼ N

}
of length N. Set the embedded

dimension as m and set the delay time as τ, and then conduct phase space reconstruction to obtain the
matrix in the following form:

x(1) x(1 + τ) · · · x(1 + (m− 1)τ)
· · · · · · · · · · · ·

x( j) x( j + τ) · · · x( j + (m− 1)τ)
· · · · · · · · · · · ·

x(K) x(K + τ) · · · x(K + (m− 1)τ)


(1)

where K is the number of reconstruction vectors, K = N − (m− 1)τ.
To explain Formula (1), let us give an example, assuming that x = (4, 8, 9, 6, 5, 11, 7). When τ =

1, m = 3, five embedding vectors can be obtained as:
4 8 9
8 9 6
9 6 5
6 5 11
5 11 7


. (2)

(2) Arrange the reconstruction matrix of each row according to the increasing rule:

x(i + ( j1 − 1)τ) ≤ x(i + ( j2 − 1)τ) ≤ · · · ≤ x(i + ( jm − 1)τ). (3)

It is important to note that if two equal elements exist in the reconstructed vector, the two elements
are arranged in the original order. That is to say, suppose that p and q are any two numbers between
1 and m, if x(i + ( jp − 1)τ) = x(i + ( jq − 1)τ) and p < q, the following formula can be obtained.

x(i + ( jp − 1)τ) ≤ x(i + ( jq − 1)τ) (4)

(3) The symbol sequence corresponding to k reconstruction vectors of one-dimensional time series,
whose permutation entropy is expressed as:

PEP(m) = −
k∑

j=1

P j ln P j (5)
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where P j represents the probability of any time series occurring.
(4) After steps (1), (2), and (3), the permutation entropy of the first scale is calculated.

When calculating multiscale permutation entropy, it is necessary to use Formula (6) to conduct
multiscale coarse granulation treatment on time series.

y(s)j =
1
s

js∑
i=( j−1)s+1

xi, j = 1, 2, . . . ,
N
s

(6)

where s = 1, 2, . . . , is the scale factor. y(s)j represents the coarse granulation time series of length N
s ,

it can be seen from Formula (6) that the coarse graining process is achieved by calculating the average
value of the time series. y(1)j ( j = 1, 2, . . . , N) is the original time series.

(5) After coarse granulation of time series, according to steps (1), (2) and (3), permutation entropy
of different scales is calculated.

2.2. Linear Discriminant Analysis

Theoretically, the extracted multiscale permutation entropy set can be used to identify fault
categories. The high-dimensional feature contains a lot of redundant information, so it is necessary to
use the dimensionality reduction algorithm to reduce the dimension of the initial, which can not only
avoid the dimension disaster, but also improve the performance of fault diagnosis. The role of LDA is
to project a high-dimensional matrix into a low-dimensional matrix with minimal intraclass dispersion
and maximum interclass dispersion. Assume that the calculated multiscale permutation entropy set is
Y = [y1, y2, . . . , yn] ∈ Rd×n, where n is the total number of samples, d is the dimension, and d = s = 32.
LDA will supervise the learning of a linear transformation matrix W ∈ Rd×m(m� d) by itself. After the
calculation as below, the high-dimensional data set y ∈ Rd is mapped to the low-dimensional data set
x ∈ Rm.

x = WT y (7)

Y is classified as Y = [$1,$2, . . . ,$C], C represents the number of categories. $i ∈ Rd×ni is the
data set of category i, and ni is the number of data samples in the category i.

The optimal projection matrix W should satisfy the following formula:

S−1
t SwW = WΛ (8)

where Sw =
C∑

i=1

∑
y∈πi

(y− yi)(y− yi)
T is defined as an intraclass discrete matrix, yi =

1
ni

∑
y j∈πi

y j. St =

n∑
i=1

(yi − y)(yi − y)T is defined as a discrete matrix of the whole class, y = 1
n

n∑
i=1

yi, Λ is the eigenmatrix

of S−1
t Sw.

2.3. Self-Organizing Fuzzy Logic Classifier

SOF is a fuzzy rule classifier without parameters. The algorithm includes three stages: the offline
training stage, online training stage, and testing stage. In the first two stages, the fuzzy rules of each
category were constructed based on the prototype of each category after the meta-parameters were
updated iteratively, and the test samples were classified in the testing stage. The specific process is
as follows:

2.3.1. Offline Training Stage

The role of the offline training stage is to find prototypes from different categories and build fuzzy
rules that belong to different categories. Suppose there are a total of K samples, (the sample here refers
to the low-dimensional feature vector processed by LDA), and the sample set belonging to the category
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c is {x}cKc =
{
xc

1, xc
2, . . . , xc

Kc

}(
{x}cKc ⊂ {x}K

)
, where c = (1, 2, . . . , C). Since the same sample may appear

more than once, the unique sample set and the occurrence frequency of each sample in it are expressed

as {u}cUc
K
=

{
uc

1, uc
2, . . . , uc

Uc
K

}
and

{
f
}c
Uc

K
=

{
f c
1 , f c

2 , . . . , f c
Uc

K

}
, respectively. Kc is the number of samples of

{x}cKc . It can be concluded that
C∑

c=1
Kc = K and

C∑
c=1

Uc
K = UK, and UK is the unique sample set for all

categories. It should be noted that the selection of the prototypes is carried out under the premise of
the same category, and there is no influence between the samples of different categories when selecting
the prototypes. The specific process of the offline training stage is as follows:

(1) The multimodal density corresponding to each unique sample is calculated according to
Formula (9), where d represents Euclidean distance.

DMM
Kc

(
uc

i

)
= f c

i

Kc∑
l=1

Kc∑
j=1

d2
(
xc

i , xc
j

)
2Kc

Kc∑
j=1

d2
(
uc

i , xc
j

) , i = 1, 2, . . . , Uc
K (9)

(2) Sort the samples according to the calculated multimode density and mutual distance. The sorted
sample set is {r} =

{
r1, r2, . . . , rUc

K

}
, where r1 = argmax

i=1,2,...,Uc
K

(
DMM

Kc

(
uc

i

))
, and r2 is the sample that has the

smallest distance from r1, that is, r2 = argmin
(
d
(
r1, uc

i

))
i=1,2,...,Uc

K−1

. r3 is a sample with the smallest distance from

r2, and so on. The multimodal density set of the sorted sample set {r} is represented as
{
DMM

Kc (r)
}
.

Then, select the initial prototype according to Formula (10).

i f
(
DMM

Kc (ri) > DMM
Kc (ri+1)

)
and

(
DMM

Kc (ri) > DMM
Kc (ri−1)

)
then

(
ri ∈

{
p
}
0

)
(10)

where
{
p
}
0 represents a collection of initial prototypes.

(3) In order to increase the number of initial prototypes, the initial prototypes selected by
Equation (11) is used as the center to attract nearby samples to form a data cloud.

winning prototype = argmin(d(xi, p)), p ∈
{
p
}
0, xi ∈ {x}cKc (11)

It is important to note here that as mentioned above, the sample xi may not be unique, so the data
cloud may not consist of only two samples.

(4) Define the set
{
p
}
0 of the initial prototypes obtained by the Formula (10) as

{
ϕ
}
0; that is, define

the set of the data cloud center as
{
ϕ
}
0. Recalculate the multimodal density according to Equation (12).

DMM
Kc (ϕi) = Si

n∑
l=1

n∑
j=1

d2
(
ϕl,ϕ j

)
2K

n∑
j=1

d2
(
ϕi,ϕ j

) (12)

where ϕi ∈
{
ϕ
}
0, Si is the number of samples in the ith data cloud, and n is the number of elements in

the set
{
ϕ
}
0.

(5) According to Formula (13), the set
{
ϕ
}neigbor
i of adjacent centers of each data cloud center

is composed.
i f

(
d2

(
ϕi,ϕ j

)
≤ Gc,L

Kc

)
then

(
ϕ j ∈

{
ϕ
}neigbor
i

)
(13)
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Gc,L
Kc is the average radius of the locally affected area around the data sample corresponding to

the level of granularity L, with a default value of L = 12. The calculation process is as shown in
Equation (14):

Gc,L
Kc =

∑
d2(x, y)

Qc,L
Kc

(14)

where x, y ∈ {x}cKc , x , y, d2(x, y) ≤ Gc,L−1
Kc , and Gc,L−1

Kc is the average radius of the granularity level L− 1.
Qc,L

Kc is the number of times that the distance between any two samples in {x}cKc is less than Gc,L−1
Kc . Qc,1

Kc

is the number of times that the distance between any two samples in {x}cKc is less than the average
square distance dc

Kc .

dc
Kc =

1

(Kc)2

Kc∑
l=1

Kc∑
j=1

d2
(
xc

l , xc
j

)
(15)

(6) According to Formula (16), select the most representative prototype
{
p
}c in the category c from

the center of the data cloud.

i f
(
DMM

Kc (ϕi) > DMM
Kc (ϕ)

)
then(ϕi ∈

{
p
}c) (16)

where ϕ ∈
{
ϕ
}neigbor
i .

(7) After determining the representative prototypes of category c, according to Formula (17), AnYa
type fuzzy rules belonging to each category are constructed, where Nc is the number of prototypes
in

{
p
}c.

i f
(
x ∼ pc

1

)
or

(
x ∼ pc

2

)
or . . . or

(
x ∼ pc

Nc

)
then(x ∈ (category c)) (17)

where x represents a training sample, and ∼ represents similarity.

2.3.2. Online Training Stage

After the offline training stage, it is followed by the input of online training samples to continue
training. The purpose of the online training stage is to continue to select prototypes, update the
meta-parameters of the classifier, and improve the classification accuracy of the test samples. The online
training process is based on the assumption that the samples are stream data that appear one by
one. When the online training sample is input, it is assumed that the new sample of the category c is
xc

Kc+1, and the sample set after increasing the sample is defined as {x}cKc+1. In order to improve the
computational efficiency, the average radius of the locally affected area will be calculated according to
the new formula:

Gc,L
Kc+1 =

dc
Kc+1

dc
Kc

Gc,L
Kc . (18)

whether the sample xc
Kc+1 is a prototype will be determined according to Formula (19)

i f


Kc+1∑
l=1

Kc+1∑
j=1

d2
(
xc

l ,xc
j

)
2(Kc+1)

Kc+1∑
j=1

d2
(
xc

Kc+1
,xc

j

) > max


mm∑
l=1

mm∑
j=1

d2
(
pc

l ,pc
j

)
2(mm)

mm∑
j=1

d2
(
p,pc

j

)

or


Kc+1∑
l=1

Kc+1∑
j=1

d2
(
xc

l ,xc
j

)
2(Kc+1)

Kc+1∑
j=1

d2
(
xc

Kc+1
,xc

j

) < min


mm∑
l=1

mm∑
j=1

d2
(
pc

l ,pc
j

)
2(mm)

mm∑
j=1

d2
(
p,pc

j

)



then
(
xc

Kc+1 ∈
{
p
}c
) (19)

where mm is the number of elements in
{
p
}c, (p, pc

l , pc
j) ∈

{
p
}c.

If Formula (19) is not satisfied, we can continue to judge whether the sample xc
Kc+1 is a prototype

according to Formula (20).

i f
(
min

(
d2

(
xc

Kc+1, p
))
> Gc,L

Kc+1

)
then

(
xc

Kc+1 ∈
{
p
}c
)

(20)
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If any of Formula (19) or Formula (20) is satisfied, the meta-parameter of the SOF is updated
as follows:

Nc + 1→ Nc, xc
Kc+1 → pc

Nc , 1→ Sc
Nc ,

{
p
}c + pc

Nc →
{
p
}c. (21)

If neither Formulas (19) nor (20) is satisfied, the sample is assigned to the nearest prototype, that
is, pc

n∗ = argmin
(
d
(
xc

Kc+1, p
))

. The corresponding meta-parameters are updated as follows:

Sc
n∗

Sc
n∗ + 1

pc
n∗ +

1
Sc

n∗ + 1
xc

Kc+1 → pc
n∗, Sc

n∗ + 1→ Sc
n∗. (22)

After that, Equation (17) will be updated accordingly. The SOF classifier is ready to process the
next data sample or enter the testing stage.

2.3.3. Testing Stage

The role of the testing stage is to classify the input testing samples. Assuming that the testing
sample set is

{
z1, z2,...zvv

}
, in order to determine the category of a testing sample zii, the classification

process of SOF is as follows:

(1) According to Formula (23), calculate the similarity between each prototype selected in the first
two stages and the testing sample.

Similarity = e−d2(zii,p), p ∈
{
p
}c, c = 1, 2, . . . , C, ii = 1, 2, . . . , vv (23)

(2) Classify the testing sample into the category of the prototype that has the greatest similarity to
the testing sample.

label(zii) = argmax
c

Similarity(zii, p) (24)

3. Proposed HMDSOF

After the offline training phase and the online training phase, SOF selects a number of representative
prototypes from each category of samples, and when selecting prototypes, different categories of
samples will not affect each other. However, in the testing stage, the classification of the testing
sample is only related to the prototype with the greatest similarity to the testing sample. The effect of
other prototypes in the same category on the testing sample classification decisions is not considered,
which affects the classification accuracy. In order to improve the classification accuracy, in this paper,
we propose a SOF classifier based on harmonic mean difference, which is called HMDSOF. The first
two stages of HMDSOF are the same as those of SOF. In the testing stage of HMDSOF, the category of
the testing sample is determined and assigned a label corresponding to the category by calculating the
harmonic mean difference between the testing sample and each prototype. The content of innovation
is mainly two points: (1) The influence of different prototypes in the same category on the classification
of the testing sample is considered by calculating multiple local mean vectors in the samples of each
category. (2) In order to distinguish the influence of different prototypes in the same category on the
testing sample classification decision, the harmonic mean difference constructed by introducing the
concept of the harmonic mean is used as the decision of the testing sample classification. In addition,
prototypes that differ slightly from test samples have greater weight in their classification decisions.
The main process is as follows.

(1) Calculate the similarity between each prototype in each category and the test sample using
Equation (22), and arrange the results in descending order.

(2) In each category, the corresponding prototype is sorted according to the result of similarity
ranking—that is to say, the prototype with greater similarity to the test sample zii is sorted in front.
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(3) According to Formula (25), calculate the local average vector of the prototype in category c
after sorting.

ac
i =

1
i

i∑
h

pRc
h , c = 1, 2, . . . , C (25)

where 1 ≤ i ≤ g, and g is a parameter set before the test stage. In addition, g cannot be bigger than the
minimum of the number of prototypes in every category—that is g ≤ min(Nc). It is easy to conclude
that g is also the number of local average vectors aRc

i , and ac
1 = pRc

1 .
(4) Construct the harmonic mean difference by introducing the concept of the harmonic mean

value. Suppose there is a sample set
{
y1, y2, . . . , yg

}
with g elements, and its harmonic mean value is

calculated as shown in Formula (26). The calculation of difference is shown in Formula (27). It can be
seen that the value range of the difference is Di f f erence(zii, p) ≥ 1. The harmonic mean difference is
the sum of the harmonic mean value of the difference between each prototype in the same category
and the testing sample. This paper applies the proposed harmonic mean difference to the SOF-based
classification decision. The harmonic mean difference is defined as HMD(.), and the calculation process
is as shown in Equation (28).

HM
({

y1, y2, . . . , yg
})
=

g
g∑

i=1

1
yi

(26)

Di f f erence = ed2(zii,p), p ∈
{
p
}c, c = 1, 2, . . . , C, ii = 1, 2, . . . , vv (27)

HMD
(
zii,

{
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To illustrate the role of harmonic mean differences in assigning different weights to different
prototypes in the same category, Equation (29) is given. As can be seen from Equation (29), when
setting parameter g, HMD

(
zii,

{
ac

i

}g

i=1

)
is a fixed value. As a result, the prototype that has a smaller

difference from the testing sample will be given more weight.
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(5) Assign the testing sample to the category with the smallest harmonic mean difference.
It should be noted that when g = 1, Formula (30) can be converted into Formula (24); that is, when
g = 1, the HMDSOF degenerates into SOF. Equation (31) expresses the relationship between SOF
and HMDSOF.

label(zii) = argmin
c

HMD
(
zii,

{
ac

i

}g

i=1

)
(30)

HMD
(
zii,

{
ac

i

}g

i=1

)
= Di f f erence

(
zii, ac

1

)
=

1

Similarity
(
zii, ac

1

) (31)

4. Proposed Fault Diagnosis Method

The fault diagnosis method proposed in this paper is shown in Figure 1: after the vibration signal
is collected, the multiscale permutation entropy set is firstly extracted. The parameters of multiscale
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permutation entropy selected in this paper are an embedded dimension of m = 6 and delay time of
τ = 1. In order to obtain the signal features as much as possible, the scale factor is set as s = 32 [33,34].
It can be seen that such a feature set has many scales and the entropy values are crossed together, which
is not conducive to the final classification. Therefore, in this paper, linear discriminant analysis (LDA)
is used to conduct dimensionality reduction for the multiscale permutation entropy feature set and the
dimension of the feature set after the dimension reduction is nine. Then, the reduced dimensional
feature set is randomly divided into online training samples, offline training samples, and testing
samples. Finally, the proposed HMDSOF classifier is used for classification. After the training
parameters of the HMDSOF are updated in two training stages, the testing samples are classified.
For the convenience of description, this fault diagnosis method is named MPE-LDA-HMDSOF.
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Figure 1. Fault diagnosis flow chart.

5. Experiments

5.1. Experiment 1

In Experiment 1, the experimental data of rolling bearings provided by Case Western Reserve
University (CWRU) is used to verify the effectiveness of the proposed method. The experimental
equipment is shown in Figure 2. It consists mainly of a three-phase induction motor, a torque sensor,
and a load motor. The testing bearings are 6205-2RS (SKF, Sweden) deep groove bearings. The vibration
acceleration signal of the bearing is obtained from the driving end under the condition of a rotation
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speed of 1797 r/min and a sampling frequency of 12 kHz. The bearing vibration signals are first
classified into four categories, namely ordinary rolling bearings (normal) and rolling bearings with
ball failure (B), outer ring failure (OR), and inner ring failure (IR). The faulty bearing is formed on the
normal bearing by using electro-discharge machining (EDM), and each fault condition is classified
according to the fault size of 0.007, 0.014, and 0.021 inches (1 inch = 25.4 mm), so the bearing vibration
signal is finally classified into 10 categories. The first 102,400 points under each category are divided
into 50 non-overlapping data samples on average; that is, 2048 sampling points are taken as a sample,
and 50 samples can be obtained for each category, for a total of 500 samples. A detailed description of
the class label is given in Table 1. The time-domain waveforms of their typical vibration signals are
shown in Figure 3. So, a multiscale permutation entropy feature set with the size of 500× 32 is obtained.
The results of the multiscale permutation entropy corresponding to the vibration signal of Figure 3
are shown in Figure 4. In this paper, 10 samples are randomly selected from each category to form
the online training sample set. In the remaining samples, 10 samples are randomly selected in each
category to form the offline training sample set, and then the remaining samples constitute the testing
sample set. It is known that both the online training set and offline training set have 100 samples,
and the test sample set has 300 samples.
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Table 1. Labels for various states. B: Ball failure, IR: inner ring failure, OR: outer ring failure.

Stage Fault Size (Inches) Label Stage Fault Size (Inches) Label

Normal 0 1 B 0.014 6
IR 0.007 2 OR 0.014 7
B 0.007 3 IR 0.021 8

OR 0.007 4 B 0.021 9
IR 0.014 5 OR 0.021 10
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The first line in Figure 3 is the time-domain signal corresponding to the normal bearing. The three
time-domain waveforms on the left side below correspond to inner ring faults, ball faults, and outer
ring faults, and their fault size is 0.007 inches. The three time-domain waveforms on the left side
below correspond to inner ring faults, ball faults, and outer ring faults. In addition, their fault size
is 0.014 inches. The faulty bearing of the three time-domain waveforms on the right has a fault size
of 0.021 inches. In order to facilitate the classification of inner ring type faults of different scales, it is
expressed as IRD = 0.007, IRD = 0.014, and IRD = 0.021. Correspondingly, the ball element faults of
different sizes are expressed as BD = 0.007, BD = 0.014, and BD = 0.021. Outer ring faults of different
sizes are expressed as ORD = 0.007, ORD = 0.014, ORD = 0.021.

Since the experiment in this paper is conducted under the condition of randomly select samples,
in order to reduce the impact of contingency, the average value of 10 experiments is taken, and the
maximum and minimum values of classification accuracy are given. In addition, the standard deviation
of classification accuracy is given to analyze the stability of the classification method. In this paper, three
different feature extraction methods (MPE, MPE-PCA, and MPE-LDA) are used to extract fault features
and then used for the comparison between SOF and the proposed HMDSOF, and the comparison is
listed in Table 2. All the methods are implemented on MATLAB R2016a version and tested on Intel
Core CPU i5-6200U @2.30 GHz/4.00 GB RAM and a Win10 computer with a 64-bit operating system.

Table 2. Classification results. HMDSOF: harmonic mean difference, LDA: linear discriminant analysis,
MPE: multiscale permutation entropy, PCA: principal component analysis, SOF: self-organizing fuzzy.

Serial
Number

Methods
Classification Accuracy (%)

Time/s
Maximum Minimum Average Std

1 MPE-SOF 98.3333 94.3333 96.7333 0.0139 0.4243
2 MPE-HMDSOF (g = 2) 98.6667 94.3333 97.2333 0.0139 1.3394
3 MPE-HMDSOF (g = 3) 98.6667 94.6667 97.4667 0.0134 1.4819
4 MPE-HMDSOF (g = 4) 98.6667 94.6667 97.4667 0.0134 1.6589
5 MPE-PCA-SOF 98.6667 95 97.4 0.0128 0.5149
6 MPE-PCA-HMDSOF (g = 2) 98.6667 95 97.8333 0.0114 1.3203
7 MPE-PCA-HMDSOF (g = 3) 99 97 98 0.0074 1.5528
8 MPE-PCA-HMDSOF (g = 4) 99 97 98 0.0074 1.7343
9 MPE-LDA-SOF 99.3333 96.6667 98.6333 0.0074 0.4532

10 MPE-LDA-HMDSOF (g = 2) 99.3333 97.3333 98.8333 0.0059 1.2799
11 MPE-LDA-HMDSOF (g = 3) 100 98.3333 99 0.0052 1.4425
12 MPE-LDA-HMDSOF (g = 4) 100 98.3333 99 0.0052 1.5943
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The contribution rate of each principal component of MPE after PCA treatment is listed in Table 3,
and the first eight principal components of the cumulative contribution rate of 90% are selected to
form a feature set. Since the minimum number of prototypes of the third category obtained after the
end of training in this experiment is 4, the case of g ≥ 5 does not exist. It can be seen that the bigger the
value of g is, the longer the classification time will be. When the fault feature extraction method is MPE
(numbered 1–4), the average classification time of HMDSOF (g = 3) consumes 1.0576 s more than that
of SOF. The average classification accuracy of HMDSOF (g = 3) is 0.7334% higher than that of SOF,
and the standard deviation of the classification accuracy of HMDSOF (g = 3) is 0.0005 lower than that
of SOF. When the fault feature extraction method is MPE-PCA (numbered 5–8), compared with SOF,
the average classification time of HMDSOF (g = 3) is 1.0379 s longer, its average classification accuracy
is 0.6% higher, and its standard deviation of classification accuracy is 0.0054 lower. When the fault
feature extraction method is MPE-LDA (numbered 9–12), compared with SOF, the average classification
time of HMDSOF (g = 3) is 0.9893 s longer, and the classification accuracy standard deviation is
reduced by 0.0022. In addition, the average accuracy of classification was only improved by 0.3667%,
but the maximum accuracy of HMDSOF reached 100%, which was satisfactory. When the classification
method is HMDSOF and different feature extraction methods are selected (for example, numbered
2, 6, 10, or numbered 3, 7, 11), the comparison of the five indicators shows the advantages of the
proposed MPE-LDA-HMDSOF. In conclusion, three different fault extraction methods have shown
a better classification effect than SOF after being used as an input of HMDSOF, which proves the
effectiveness of the proposed HMDSOF. Under the premise of using the same classification method
HMDSOF, the rationality of the proposed fault diagnosis method MPE-LDA-HMDSOF is proved by
adopting different classifier inputs. In addition, as the value of g increases, the longer the classification
takes, and when g = 3, the classification efficiency of the HMDSOF classifier is optimal, so the default
value of g is set to 3.

Table 3. Results of PCA dimension reduction.

Principal
Component

Eigenvalue
(×10−4)

Rate of
Contribution

%

Cumulative
Contribution

Rate %

Principal
Component

Eigenvalue
(×10−4)

Rate of
Contribution

%

Cumulative
Contribution

Rate %

1 105 64.7027 64.7027 17 0.7270 0.4480 95.1333
2 23 14.1730 78.8757 18 0.7093 0.4371 95.5704
3 7.3132 4.5065 83.3822 19 0.6739 0.4153 95.9857
4 4.3134 2.6580 86.0402 20 0.6557 0.4041 96.3898
5 2.3684 1.4594 87.4996 21 0.6444 0.3971 96.7869
6 1.6289 1.0038 88.5034 22 0.6092 0.3754 97.1623
7 1.3030 0.8029 89.3063 23 0.5796 0.3572 97.5195
8 1.2143 0.7483 90.0546 24 0.5147 0.3172 97.8367
9 1.1439 0.7049 90.7595 25 0.4998 0.308 98.1447

10 1.0941 0.6742 91.4337 26 0.4887 0.3011 98.4458
11 0.9919 0.6112 92.0449 27 0.4816 0.2968 98.7426
12 0.9173 0.5653 92.6102 28 0.4705 0.2899 99.0325
13 0.8805 0.5426 93.1528 29 0.4342 0.2676 99.3001
14 0.8576 0.5285 93.6813 30 0.4059 0.2501 99.5502
15 0.8398 0.5175 94.1988 31 0.3827 0.2358 99.786
16 0.7895 0.4865 94.6853 32 0.3476 0.2142 100.0002

In order to make the proposed HMDSOF more convincing, this paper also compares it with
other common classification methods, which are SVM, DT, KNN, ELM, least squares support vector
machine (LSSVM), and kernel extreme learning machine (KELM), respectively. The input of each
classification method is the features set processed by LDA after calculating multiscale permutation
entropy. The training samples of the six classification methods as comparisons are the sum of the
online training samples and offline training samples of the HMDSOF, and the test samples used by
them are the same as those of HMDSOF. The penalty factor of a standard SVM is 100, and the kernel
function is 0.01. The minimum number of father nodes of DT is 5. The nearest neighbor number of
KNN is K = 5, and the number of hidden layer nodes of ELM is 100 [21,35]. The Gaussian kernel
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function of the LSSVM is 0.5. The kernel function of the KELM is RBF, and its regularization parameter
is 10,000 [36–39]. The classification results are shown in Table 4.

Table 4. Classification results of various methods. DT: decision tree, ELM: extreme learning machine,
KNN: k-nearest neighbor, LSSVM: least squares support vector machine, KELM: kernel extreme
learning machine, SVM: support vector machine.

Classification Method
Classification Accuracy (%)

Time/s
Maximum Minimum Average std

SVM 79.3333 73.3333 76.5667 1.8682 0.8304
DT 95.3333 89.3333 92.5333 1.7525 1.556

KNN 99 94 98.5333 1.4967 0.7318
ELM 97.6667 95 96.9667 0.7371 0.1348

LSSVM 94.6667 89.6667 92.6 1.4126 0.1149
KELM 99 97.3333 98.3 0.4583 0.0344

HMDSOF (g = 3) 100 98.3333 99 0.0052 1.4425

It can be seen from Table 4 that the SVM has the lowest classification accuracy, and it can be seen
from the standard deviation that the classification effect of this method on different testing samples
is very different, and the classification algorithm is very unstable. The standard deviation of the
classification accuracy of DT is 1.7525, the algorithm is very unstable, and the minimum classification
accuracy is 9% lower than that of HMDSOF. The maximum classification accuracy of KNN is 99%,
but the standard deviation of classification accuracy is 1.4915 higher than that of HMDSOF. The input
of different samples has a great influence on KNN classification accuracy. The average classification
accuracy of ELM is 2.0333% lower than HMDSOF, and the standard deviation of classification accuracy
is 0.7316 higher than that of HMDSOF. Compared with SVM, the calculation speed and classification
accuracy of LSSVM have been significantly improved. KELM has the fastest calculation speed, but its
maximum and minimum classification accuracy are 1% lower than HMDSOF. In addition, from
the standard deviation of classification accuracy, the KELM classification stability is not as good
as the proposed HMDSOF. In a word, the classification accuracy of HMDSOF is the highest; thus,
the classification result is the best.

In order to express the classification effects of various classification methods more intuitively,
Figure 5 shows the classification results of various classification methods in the fifth experiment.
SVM has the lowest classification accuracy. Seventy of the 300 samples do not match the real category.
Among the 70 misclassified samples, 67 samples of different categories are classified into category
6, with an overall classification accuracy of 76.6667%. In the classification results of DT, 27 samples
are misclassified, and the overall classification accuracy is 91%. In the classification results of KNN,
six samples are misclassified, of which four samples in category 6 are classified as category 3, and one
sample in category 6 is classified as category 9. In the nine categories, one sample is misclassified
as category 5, and the overall classification accuracy of KNN reached 98%. A total of 10 samples in
the classification result of ELM are misclassified, and its overall classification accuracy is 91%. In the
classification results of SOF, four samples were misclassified, among which three samples in category
6 are classified as category 3, and one sample in category 9 is classified as category 5. The total
classification accuracy of SOF is 98.6667%. There are 20 misclassified samples in the classification
results of LSSVM, and its classification accuracy is 93.3333%. There are five misclassified samples in the
classification results of KELM, and its classification accuracy is 98.3333%. In the classification results of
proposed HMDSOF, there are no misclassified samples, and the classification accuracy is 100%.
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Figure 5. Classification results of each classification method in the fifth experiment. (a) Classification
results of SVM; (b) Classification results of DT; (c) Classification results of KNN; (d) Classification
results of ELM; (e) Classification results of LSSVM; (f) Classification results of KELM; (g) Classification
results of SOF; (h) Classification results of HMDSOF.
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In addition, in order to evaluate the results of this experiment from different perspectives, F− scores
was introduced [40]. Its calculation process is shown in Formulas (32)–(34).

F− scores( j) = 2×
precision( j) ×Recall( j)
precision( j) + Recall( j)

j = 1, 2, . . . , 10 (32)

precision( j) =
CM j, j

10∑
i=1

CM j,i

(33)

Recall( j) =
CM j, j

10∑
i=1

CMi, j

(34)

where precision( j), Recall( j), and F − scores( j) represent the precision, recall, and F-scores measures
of the j-th predicted class; respectively [41]. The F − scores of each category corresponding to the
experimental results in Figure 5 is shown in Figure 6.
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5.2. Experiment 2

The fan-end bearing of CWRU has proven to be a more complex database [35]. In Experiment 2,
we use its data to verify the effectiveness of the proposed fault diagnosis method. All the parameters
used in Experiment 2 are exactly the same as those in Experiment 1. The classification results of each
classification method are shown in Table 5.

Table 5. Classification results of various methods.

Input of
Classifier

Classification
Methods

Classification Accuracy (%)
Time/s

Maximum Minimum Average Std

MPE-LDA

SVM 84 78.3333 81.9667 1.456611 0.761977
DT 92.3333 85 89.4333 2.049457 1.845077

KNN 94 91 92.3667 0.874959 0.765174
ELM 91 87.3333 89.2 1.146975 0.137345
SOF 94 90.3333 92.25 1.056215 0.504949

LSSVM 87.3333 80 84.2 2.459441 0.121701
KELM 93.6667 91.3333 92.7333 0.711821 0.025278

HMDSOF (g = 3) 97.3333 92.6667 94.4 1.27191 1.791814
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5.3. Experiment 3

This section uses the experimental data of the rolling bearing in the coal washer to verify the
generalization of the proposed fault diagnosis method. The experimental device is shown in Figure 7a.
The motor speed is 1500 r/min, and the sampling frequency is 10 KHz. There are two acceleration
sensors used to measure the bearing signal, and the position of the measuring point is shown in
Figure 7b. The two bearing models are NJ210 (NSK, Japan) and NJ405 (NSK, Japan), respectively.
NJ210 has two states, normal and crack, and NJ405 also has two states, normal and peeling. Their fault
status is shown in Figure 8. In order to distinguish the two bearings, NJ210 is defined as A and NJ405 as
B, so the collected signals can be divided into four categories. Their classification is shown in Table 6,
and the typical time-domain diagram corresponding to the four states is given in Figure 9.
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Figure 8. Fault status of two bearings. (a) Bearing NJ210 with a crack; (b) Bearing NJ405 with a piece
of peeling.

Table 6. Category labels for various states.

Label Corresponding State

1 A is normal, B is normal
2 A has a crack, B is normal
3 A is normal, B has a piece of peeling failure
4 A has a crack, B has a piece of peeling failure
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After calculating the multiscale permutation entropy of the obtained experimental data, LDA is
used for dimensionality reduction processing, and the feature set after dimensionality reduction is
input into different classification methods for comparison. In this experiment, there are 200 samples for
each state, among which 50 samples from each category were randomly selected as the online training
samples of HMDSOF and SOF. Then, 50 samples from the remaining 150 samples were randomly
selected for offline training, and the remaining 100 samples were used as the testing samples. There are
200 offline training samples, 200 online training samples, and 400 testing samples in HMDSOF and
SOF. The training samples in SVM, DT, KNN, and ELM are the sum of the training samples and the
offline training samples input to HMDSOF, and their testing samples are the testing samples used by
HMDSOF. That is to say, among the four classification algorithms SVM, DT, KNN, and ELM, there are
400 training samples and 400 test samples. The other parameters used in Experiment 3 are the same as
those used in Experiment 1, and the comparison results are shown in Table 7.

Table 7. Classification results of various methods.

Input of
Classifier

Classification
Methods

Classification Accuracy (%)
Time/s

Maximum Minimum Average Std

MPE-LDA

SVM 95.75 91.25 93.85 1.146734 0.601842
DT 95.75 93.75 94.775 0.719809 1.643364

KNN 97.75 91.5 96.05 1.627114 2.029434
ELM 96.75 94.25 95.9 0.845577 0.17406
SOF 98 96.25 97.05 0.556776 0.426295

LSSVM 95 93.5 94.325 0.447911 0.095361
KELM 98.75 95.75 96.8 1.15 0.029672

HMDSOF (g = 3) 99.25 97.75 98.425 0.447912 1.143599

It can be concluded from Table 7 that among the six classification methods, SVM has the lowest
classification accuracy and the worst classification effect. The classification result of KNN is the most
unstable, the standard deviation of classification accuracy is the largest, and the classification time
is the longest. From the four indicators of classification accuracy, the classification effect of SOF is
better than that of SVM, DT, KNN, and ELM. Although the average classification time of HMDSOF is
0.717304 s more than SOF, its maximum classification accuracy is 1.25% higher than SOF, its minimum
classification accuracy is 1.5% higher than SOF, its average classification accuracy is 1.375% higher than
SOF, and its classification standard deviation is 0.108864 lower than SOF; such results are satisfactory.
The standard deviation of the classification accuracy of LSSVM is very close to that of HMDSOF, but the
average classification accuracy is 4.1% lower than that of HMDSOF. KELM has the fastest classification
speed and the shortest classification time; However, its maximum classification accuracy is 0.5% lower
than HMDSOF, and the average classification accuracy is 1.625% lower than HMDSOF.
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6. Conclusions

In this paper, a new SOF classifier (HMDSOF) based on the harmonic mean difference is proposed.
Based on this, a new bearing fault diagnosis method is proposed. The validity and generalization of
the proposed fault diagnosis method are verified by the bearing experimental data of Case Western
Reserve University and the bearing experimental data of coal washer. The following conclusions can
be drawn in this paper.

(1) As the parameter g increases, the classification time of HMDSOF increases. When g = 3,
the classification effect of HMDSOF is optimal.

(2) Under the premise of the same input, the proposed classification effect of HMDSOF is always
higher than that of SOF, and the classification effect is better. By comparing with SVM, DT, KNN,
ELM, LSSVM, and KELM, the proposed HMDSOF has higher classification accuracy and can be
better used for bearing fault diagnosis.

(3) By changing the input of the classifier, it is proved that the proposed bearing fault diagnosis
method MPE-LDA-HMDSOF has better classification performance, and the classification accuracy
reaches 100%.
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