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Abstract

Pathway-based analysis, used in conjunction with genome-wide association study (GWAS) techniques, is a powerful tool to
detect subtle but systematic patterns in genome that can help elucidate complex diseases, like cancers. Here, we stepped
back from genetic polymorphisms at a single locus and examined how multiple association signals can be orchestrated to
find pathways related to lung cancer susceptibility. We used single-nucleotide polymorphism (SNP) array data from 869
non-small cell lung cancer (NSCLC) cases from a previous GWAS at the National Cancer Center and 1,533 controls from the
Korean Association Resource project for the pathway-based analysis. After mapping single-nucleotide polymorphisms to
genes, considering their coding region and regulatory elements (620 kbp), multivariate logistic regression of additive and
dominant genetic models were fitted against disease status, with adjustments for age, gender, and smoking status. Pathway
statistics were evaluated using Gene Set Enrichment Analysis (GSEA) and Adaptive Rank Truncated Product (ARTP) methods.
Among 880 pathways, 11 showed relatively significant statistics compared to our positive controls (PGSEA#0.025, false
discovery rate#0.25). Candidate pathways were validated using the ARTP method and similarities between pathways were
computed against each other. The top-ranked pathways were ABC Transporters (PGSEA,0.001, PARTP = 0.001), VEGF Signaling
Pathway (PGSEA,0.001, PARTP = 0.008), G1/S Check Point (PGSEA = 0.004, PARTP = 0.013), and NRAGE Signals Death through JNK
(PGSEA = 0.006, PARTP = 0.001). Our results demonstrate that pathway analysis can shed light on post-GWAS research and help
identify potential targets for cancer susceptibility.
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Introduction

Lung cancer is one of the leading causes of cancer mortality in

Korea and worldwide [1–3]. Among the several lung cancer

histological types, more than 70% of Korean lung cancers are

non-small cell lung cancers (NSCLCs), the leading subtype being

adenocarcinoma [4].

Although the causes of the disease may stem from environ-

mental factors, such as carcinogens found in cigarette smoke and

the inhalation of toxic chemicals, in efforts to determine the

etiology of the disease, researchers have assessed the genetic

diversity of individuals. Several genome-wide association studies

(GWASs), which focus on scanning for disease-associated SNPs

across the entire genome, have successfully demonstrated possible

lung cancer susceptibility loci over the last decade. Most of these

GWASs were based on European and American populations and

notable suspects identified were 5p15 (hTERT-CLPTM1L) [5,6],

6p21 (BAT3-MSH5) [7], and 15q25 (CHRNA 3–5) [8–10]. In

previous GWAS involving 1,425 NSCLC patients and 3,011

controls from Korea, we reported that a novel locus, 3q29, and a

locus previously reported in subjects of European descent, 5q15,

were associated with lung cancer risk in Korean population [11].

Despite the successful identification of these disease susceptibil-

ity loci using GWASs, it is believed that they explain only a small

proportion of the estimated heritability [12]. GWASs compare half

a million to millions of markers at once and variants with modest

associations are likely to be neglected after multiple testing

correction [13]. By its nature, it is highly unlikely that a single

variant is associated with a complex disease like cancer. It is

believed that low-penetrance variants throughout the genome will

better explain the biology in question [14]. To compensate for the

shortcomings of GWAS, instead of relying on a stringent genome-

wide significance cutoff, alternative methods to improve power,

such as the use of combinations of SNP markers [15–20],

incorporation of imputed genotypes and linkage information

[21–23], and, most recently, pathway-based approaches [24] have

been developed.

Pathway-based approaches are based on the principle that genes

involved in the same functional pathway interact with each other

and constitute a network, so that their disease associations are

interrelated [25]. Current pathway-based analyses have been

inspired mostly from gene expression microarray data analysis.

Based on prior biological knowledge, gene set enrichment analysis

(GSEA) [26] measures how much association signals are enriched

in a defined set of genes. Because GSEA requires microarray data

as input, several groups have suggested modifications to the

original algorithm to incorporate GWAS data [27–30].

In the present study, we used the GSEA-based pathway analysis

suggested by Wang et al. [24] with our previous Korean lung

cancer GWAS data, from 869 cases and 1,533 controls, with the

hope of finding additional susceptibility loci and of obtaining
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insights into the underlying pathogenesis (Figure 1). Pathways

showing high statistical significance were validated using another

pathway-based method called adaptive rank truncated product

(ARTP) [31]. In contrast to GSEA, ARTP is a self-contained test

[32] that directly associates genes in a pathway to diseases and

works independently of genes outside the pathway. We report

seven pathways categorized into four cellular processes that

showed consistent associations with Korean NSCLC susceptibility.

Materials and Methods

Ethics Statement
The study was approved by the Institutional Review Board and

the Ethics Committee of National Cancer Center Korea. Blood

samples were collected from NSCLC patients who visited National

Cancer Center Korea and took a voluntary health questionnaire

survey between May 2002 and December 2005. For each blood

sample, written informed consent, approved by the Institutional

Review Board members, was obtained. All clinical investigations

were conducted according to the principles of the Declaration of

Helsinki.

Study Population
Initially, we recruited 2,441 Korean NSCLC cases and controls

(871 cases and 1,570 controls) for this study. Most NSCLC

samples (621 cases) were shared from a previous GWA study at

National Cancer Center Korea [11], and additional 250 patients

with NSCLC were newly recruited for genotyping. For compar-

ison, genotyping data of 1,570 control subjects without cancer

were provided by the Korean Association Resource (KARE)

project, an ongoing population-based cohort study that has been

conducted by Korea’s National Institute of Health (KNIH) and

Center for Disease Control and Prevention (KCDC) since 2007

[33]. We applied strict sample quality control (QC) criteria,

considering raw signal intensity, genotyping rate ($95%), clinical

information, and population stratification to filter unqualified

samples. Specifically, we removed 19 samples with low-genotyping

quality, 18 with insufficient demographic information, and two

with gender misidentification. As a result, 869 cases and 1,533

controls passed the QC and remained for the subsequent analysis.

Among 869 histologically confirmed NSCLC cases, 623 cases were

adenocarcinomas, more than 70% of our NSCLC patients, 175

cases were squamous-cell carcinomas, and the rest were other

NSCLC histological types (Table 1). More than 97% of subjects

(n = 2,334) were genotyped using Affymetrix Genome-Wide

Human SNP Array 5.0 (Affymetrix, Santa Clara, CA, USA),

Figure 1. Overview of the Study.
doi:10.1371/journal.pone.0065396.g001
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and the rest (n = 68) were genotyped using Affymetrix GeneChip

Human Mapping 500 K Array Set. Upon genotyping and

merging the data sets, we applied the following SNP QC filters:

SNPs with a minor allele frequency (MAF) of less than 5% and

genotyping call rates of less than 95%; Hardy-Weinberg equilib-

rium (HWE) test P-values#0.0001 were excluded from further

analysis.

Pathway Definition
We constructed a list of pathway definitions based on three

major publicly available pathway databases: specifically, 217 gene

sets from BioCarta [34], 186 from Kyoto Encyclopedia of Genes

and Genomes (KEGG) [35], and 430 from Reactome [36]. We

also included several curated pathway gene sets from SABios-

ciences [37], Sigma-Aldrich [38], Signal Transduction Knowledge

Environment of Science magazine [39], and Signaling Pathway

Database (SPAD) of Kyushu University [40] to cover a total of 880

biological pathways (Appendix S1).

To measure the performance of our analysis and to set a

baseline, we also compiled six custom pathways from previously

reported lung cancer susceptibility genes. First, we borrowed nine

oncogenes (IL1B, MTHFR, AKAP9, CAMKK1, SEZ6L, FAS,

FASLG, TP53, and TP53BP1) from a study conducted by the

International Lung Cancer Consortium (ILCCO) [41]. According

to the ILCCO study, genetic variants with strong evidence of an

association with lung cancer risk belonged to genes from various

cancer-related pathways, such as inflammation (IL1B), folate

metabolism (MTHFR), regulatory function (AKAP9 and

CAMKK1), cell adhesion (SEZL6), and apoptosis (FAS, FASL,

TP53, TP53BP1, and BAT3). In addition, we adopted 11 NSCLC

driver mutation genes (EGFR, KRAS, ERBB2, ALK, BRAF,

PIK3CA, AKT1, MAP2K1, MET, ROS1, and NRAS) from a

review by Pao and colleagues [42,43]. In light of their review on

how these genes affect cancer cell proliferation and survival, we

included these clinically important genes as a basis for our positive

controls. Finally, we added genes covered in lung cancer

susceptibility loci reported in several previous GWA studies:

C3ORF21 and TP63 from 3q28-29 [11,44], TERT and

CLPTM1L from 5p15 [5,7], BAT and MSH5 from 6p21 [7],

CHRNA5, CHRNA4, and CHRNA3 from 15q25 [8–10], and

DNA repair genes (XRCC1, RRM1, ERCC1) [45]. We catego-

rized genes by location or by function and designed six different

combinations of lung cancer-related gene sets as positive controls

(Table 2).

SNP Association and Mapping
Multivariate logistic regression of additive and dominant genetic

models were fitted against disease status, with adjustments for age,

gender, and smoking status, to accurately capture SNP association

signals. Because we were interested primarily in the genetic effects

of having a variant allele and MAF was generally low for our study

pool, we excluded the recessive genetic model from our analysis.

Also, 20 kbp upstream of the 59-end and 20 kbp downstream of

the 39-end were considered to be part of a gene, so as to include

the coding region and regulatory elements. The most significantly

associated SNP within a gene region was chosen to represent the

whole gene area. Only gene sets with a minimum of 20 genes and

a maximum of 200 genes were considered in the subsequent

analysis.

Pathway Analysis
We divided the pathway analysis into two-step screening and

validation processes. First, we used an SNP adaptation of the

GSEA method developed by Wang et al. [24] to screen candidate

pathways associated with NSCLC risk. Then, using the ARTP

algorithm developed by Yu et al. [31], we confirmed the statistical

significances of candidate pathways.

Gene Set Enrichment Analysis (GSEA). For each gene, the

SNP with the highest test statistic (coefficient t-statistic from

logistic regression in our case) was assigned to represent the gene.

For all N genes, association statistics were sorted from largest to

smallest (r1, r2,…,rN), and a weighted Kolmogorov-Smirnov-like

(KS) running sum enrichment score (ES) of pathway S with NP

genes was calculated from the ranked list of genes [24].

ES Sð Þ~ max
1ƒjƒN

X

Gj� [S,j�ƒj

Drj� DP
Gj� [S Drj� D

{
X

Gj� =[,j�ƒj

1

N{NP

:

Because the calculation of ES(S) was based on a maximum

statistic, pathways with large numbers of genes had definite

advantages over smaller pathways. To compare statistics between

pathways of different size, a normalized enrichment score (NES)

was calculated as follows:

Table 1. Demographic Features of Study Population.

Multivariate Multivariate (Stepwise) Univariate

Category Subcategory Cases (%) Controls (%) OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Histology Adenocarcinoma 623 (71.7)

Squamous-Cell
Carcinoma

175 (20.1)

Other NSCLC 71 (8.1)

Gender Male 466 (53.6) 892 (58.2) 0.48 (0.36–0.63) ,0.0001 0.48 (0.36–0.63) 0.0023 0.83 (0.70–0.98) 0.0303

Female 403 (46.4) 641 (41.8)

Age Median 60 59 0.98 (0.98–0.99) 0.0009 0.98 (0.98–0.99) 0.0104 0.99 (0.98–1.00) 0.0023

Range 25–85 40–70

Smoking Status Never-smoker 429 (49.4) 803 (52.4) 0.52 (0.39–0.68) ,0.0001 0.52 (0.39–0.68) ,0.0001 0.89 (0.75–1.05) 0.1557

Ever-smoker 440 (50.6) 730 (47.6)

doi:10.1371/journal.pone.0065396.t001
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NES~
ES Sð Þ{mean ESperm Sð Þ

� �

SD ESperm Sð Þ
� � :

Finally, because we were testing multiple hypotheses at once, we

assessed the expected false positive ratio by calculating the false

discovery rate (FDR).

FDR~
% of NESperm Sð Þ§NESobserved

% of all NES Sð Þ§NESobserved

:

For our GSEA, 1,000 phenotype permutations were used to

estimate each gene’s statistical significance.

Adaptive Rank Truncated Product (ARTP). For all L

genes in a pathway, the best SNP P-value of each gene was sorted

from lowest to highest (P1, P2,…, PL), and the product of K

smallest P-values in a pathway was calculated as follows:

W(K)~ P
K

i~1
Pi:

Normally, the truncation point K must be determined prior to

using the RTP statistic. However, the ARTP method suggested by

Yu et al. [31], which combines statistics derived from the observed

dataset, makes it feasible to estimate the adjusted P-value

independently of the size of the pathway. For our ARTP analysis,

the same 1,000 permutations were used to assess the significance of

each candidate pathway.

Pathway Overlap Analysis
To compare similarities between pathways, the fractions of

overlap between pathways were calculated, using the following

equation:

Suppose A and B are pathways, then:

Overlap %ð Þ~ DA\BD
Minimum DAD,DBDð Þ|100:

We used this equation to handle a situation where one pathway

is a subset of the other. Thus, 100% similarity indicates that one

pathway is a subset of the other, unless the two pathways are the

same.

Results

Demographic Characteristics
The demographic features of the study population are shown in

Table 1. In univariate analyses, gender and age showed statistical

significance (P,0.05), while smoking status did not (P = 0.16).

However, all three demographic features (gender, age, and

smoking status) showed statistically significant associations

(P,0.001) in multivariate analyses. Thus, we included all three

as adjusting covariables during the logistic regression association

analysis. Adenocarcinoma was the predominant histological type,

representing more than 70% of our NSCLC samples, a

composition consistent with the general Korean NSCLC popula-

tion profile [4].

Genotyping and Mapping
After applying the SNP QC criteria, including MAF and HWE,

440,530 genotyped SNPs were filtered down to 300,410 SNPs.

From them, we removed SNPs residing in gene deserts and the

remaining 147,970 SNPs were successfully mapped to our

definition of genes (14,089 genes). Because we mapped SNPs

located within 20 kbp upstream and downstream of a coding

region as a gene, some SNPs located between genes were counted

twice.

Positive Control Tests
As shown in Table 2, our positive control test results showed a

range of nominal P-values, from 0.014 to 0.42, and a range of

Table 2. Summary of Positive Control Tests.

GSEA ARTP

Additive Dominant Additive Dominant

Gene Set # of Genes NES
Nominal
P-value FDR NES

Nominal
P-value FDR P-value P-value

Master1 29 2.03 0.024 0.064 1.423 0.086 0.169 0.001 0.001

Without 3q28-29 Genes2 27 1.682 0.054 0.084 0.951 0.16 0.248 0.007 0.004

Without 5p15 Genes3 27 1.358 0.1 0.097 0.895 0.168 0.211 0.033 0.035

Without 6p21 Genes4 27 2.268 0.014 0.088 1.57 0.07 0.194 0.004 0.002

Without 15q25 Genes5 26 1.623 0.064 0.073 0.201 0.42 0.408 0.030 0.018

Without DNA Repair Genes6 27 2.231 0.022 0.055 1.675 0.048 0.334 0.002 0.003

1IL1B, MTHFR, AKAP9, CAMKK1, SEZ6L, FAS, FASLG, TP53, TP53BP1, EGFR, KRAS, ERBB2, ALK, BRAF, PIK3CA, AKT1, MAP2K1, MET, ROS1, NRAS, C3ORF21, TP63, TERT,
CLPTM1L, BAT3, MSH5, CHRNA3, CHRNA4, CHRNA5, XRCC1, RRM1, ERCC1.
23q28-29 Genes: C3ORF21, TP63.
35p15 Genes: TERT, CLPTM1L.
46p21 Genes: BAT3, MSH5.
515q25 Genes: CHRNA3, CHRNA4, CHRNA5.
6DNA Repair Genes: XRCC1, RRM1, ERCC1.
*GSEA P-values#0.025 and FDRs#0.25, ARTP P-values#0.01 are marked in bold.
doi:10.1371/journal.pone.0065396.t002
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FDRs, from 0.055 to 0.408, for the additive and dominant models

in the GSEA method. For the ARTP method, P-values were

stronger and ranged from 0.001 to 0.035 for the additive and

dominant models. Thus, from the positive control tests, we used

the following filtering criteria for the initial pathway discovery step

using the GSEA method: P-values#0.025 and FDRs#25% in the

additive or dominant genetic model were selected for subsequent

analysis. For the ARTP method, P-values#0.01 were considered

noteworthy.

Pathway Analysis
Among 880 pathways that we examined using the GSEA

method, 11 passed the positive control filtering criteria (Table 3).

The 11 candidate pathways were examined further using the

ARTP method and their P-values were#0.01 in the additive or

dominant model, again confirming that these pathways had

statistically significant associations with NSCLC, versus our

positive controls. However, for the Activation of the Pre-replicative

Complex, we found that the highly significant P-value of the additive

model in the GSEA method differed from an insignificant P-value

in the additive model in the ARTP method, so we excluded it from

the subsequent analysis. Examining candidate pathways in depth

following the results of the similarity tests, as shown in Figure S1,

we found several pathways that resembled each other. For

example, the G1/S Transition pathway was a subset of the Cell

Cycle pathway, and when an inclusive relationship was found, we

eliminated the superset, which, in this case, was the Cell Cycle

pathway. Similarly, the NRAGE Signals Death through JNK pathway

was a subset of the Cell Death Signaling via NRAGE, NRIF, and NADE

pathway, which were subsets of the P75 NTR Receptor Mediated

Signaling pathway. Thus, we removed two supersets of the NRAGE

Signals Death through JNK pathway. The remaining seven candidate

pathways were categorized into four types of cellular processes:

membrane transport (ABC Transporters), intracellular signaling

(VEGF Signaling Pathway, Inositol Phosphate Metabolism, Phosphatidyli-

nositol Signaling System), cell cycle (G1/S Check Point, G1/S Transition),

and programmed cell death (NRAGE Signals Death through JNK).

Notably, the G1/S Check Point pathway had the smallest number of

genes (25 genes), while maintaining statistical significance in both

the GSEA and ARTP methods (dominant model). Using GSEA

statistics as primary and ARTP statistics as secondary measure-

ments, the ABC Transporters gene set showed the best NSCLC risk

association among the seven final candidates with a GSEA

nominal P-value,0.001, FDR = 0.122, and ARTP P-val-

ue = 0.001 (both dominant model). The second best was the

VEGF Signaling Pathway with a GSEA nominal P-value,0.001,

FDR = 0.107, and ARTP P-value = 0.008 (both dominant model).

For notable pathways in each cellular process category, SNP

associations within gene sets were further examined (Table 4, S1,
S2, and S3). Apart from the ABC Transporters, which was merely a

collection of transmembrane protein pumps, network diagrams of

notable pathways were drawn as shown in Figures S2, S3, and
S4. The additional results for the pathway analysis in each subset

according to the histologic types of lung cancer are described in

Appendix S2.

Comparison with Other Lung Cancer Study
In a differentially expressed gene study with normal lung tissue,

conducted by Falvella et al. [46], a gene-expression signature

consisting of 85 genes was suggested to distinguish lung

adenocarcinoma patients from other cancer patients. We adopted

67 genes that were available in NCBI human genome build 36 and

applied the same pathway analysis procedure. Using our

genotyping data, SNP associations were successfully mapped to

54 genes. With the gene set including these 54 genes, the GSEA

method showed nominal P-values of ,0.001 for both additive and

dominant models and FDR values of 2.6% and 11.7% for the

additive and dominant models, respectively. Similarly, the ARTP

method yielded P-values of 9.9961024 and 3.0061023 for the

additive and dominant models for this gene set, respectively. This

result again confirmed that our pathway-based analysis was

legitimate and consistent with other lung cancer study involving

mRNA-based gene-expression analysis. The results from associa-

tion analysis of SNPs in 54 genes were shown in Table S4.

Discussion

Recent advances in high-throughput SNP genotyping technol-

ogy have generated massive amounts of genotyping data and have

led to valuable results regarding common genetic variants

associated with various diseases through GWASs. However, the

reports have focused mainly on a small portion of associations that

qualify for genome-wide significance level and most associations,

with moderate statistical powers, are hard to interpret. Using prior

biological knowledge, pathway-based association approaches have

recently opened up a new way to examine associations between

GWAS results and complex molecular networks. Pathway-based

analysis incorporates association data for functionally related genes

and translates them into disease susceptibility information.

In this study, we used a mix of contrasting pathway analyses

using Korean lung cancer GWAS data, consisting of 869 NSCLC

cases and 1,533 controls. We previously reported significant

associations between polymorphisms at chromosomes 3q28, 3q29,

and 5p15 and Korean lung cancer susceptibility [11,44]. We first

used a GSEA-based method with genome-wide SNP array data to

preliminarily screen for candidate pathways associated with lung

cancer susceptibility. Among 11 candidate pathways, we selected 7

that were also confirmed by the ARTP method. Four cellular

signaling pathways, VEGF Signaling Pathway, G1/S Check Point,

NRAGE Signals Death through JNK, and ABC Transporters, were highly

enriched with signals associated with lung cancer risk. Unlike

GWASs, P-values for SNPs associated with genes were generally

moderately significant and only a few of them would qualify at the

so called genome-wide significance level. This indicated that

pathway statistics emphasized the effects of subtle, but systematic,

patterns within a gene set instead of a few peak associations within

a gene set.

Gene members of the ATP-binding cassette (ABC) transporter

family have essential functions in transporting various substrates,

such as ions, sugars, lipids, and proteins, under physiological

conditions. For many years, researchers have discovered that the

ABC Transporters play significant roles in cancer chemotherapy and

are responsible for multidrug resistance (MDR), in the form of an

ATP-driven drug pump [47]. It is believed that overexpression of

the ABC Transporters reduces intracellular drug levels via enhanced

efflux of chemotherapeutic agents, resulting in drug insensitivity,

which can lead to cancer chemotherapy failure [48]. On the other

hand, ABC Transporters can also function as effective carcinogen

exporters, keeping cells free of harmful chemicals and carcinogens.

Prolonged impairments or changes in gene expression of these

transmembrane protein pumps can increase potential cancer risk.

Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-

1-butanone (NNK) is one of the most potent carcinogens of

cigarette smoke that has been shown to cause lung cancer in

rodents [49,50]. When these toxins are inhaled, the ABC

Transporters encoded by ABCB1 and ABCC1 effectively eliminate

these carcinogens from the lungs. Researchers have discovered

that common polymorphisms of ABCB1 and ABCC1 can

Pathway-Based Analysis Using GWAS Data
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Table 3. Candidate Pathways with P-value#0.025 and FDR#0.25.

Pathway Source
# of
Genes GSEA ARTP

Additive Dominant Additive Dominant

NES
Nominal P-
value FDR NES

Nominal
P-value FDR P-value P-value

G1/S Transition Reactome 77 3.139 ,0.001 0.203 1.661 0.042 0.389 0.003 0.005

Activation of the
Pre-replicative Complex

Reactome 21 2.940 ,0.001 0.223 1.498 0.030 0.430 0.066 0.010

Cell Cycle KEGG 99 2.764 0.004 0.286 2.935 0.004 0.112 0.003 0.005

G1/S Check Point BioCarta 25 2.550 0.010 0.317 2.427 0.004 0.211 0.006 0.013

ABC Transporters KEGG 38 2.295 0.014 0.362 2.848 ,0.001 0.122 0.004 0.001

VEGF Signaling Pathway KEGG 63 2.048 0.016 0.349 3.122 ,0.001 0.107 0.010 0.008

Phosphatidylinositol
Signaling System

KEGG 63 2.262 0.016 0.342 2.983 0.002 0.114 0.002 0.007

Inositol Phosphate Metabolism KEGG 43 2.277 0.024 0.346 2.833 0.002 0.120 0.009 0.001

NRAGE Signals Death
through JNK

Reactome 40 1.806 0.032 0.435 2.664 0.006 0.144 0.003 0.001

Cell Death Signaling via
NRAGE, NRIF, and NADE

Reactome 49 1.497 0.058 0.448 2.590 0.006 0.166 0.003 0.001

P75 NTR Receptor
Mediated Signaling

Reactome 62 1.409 0.084 0.469 2.525 0.006 0.179 0.005 0.003

*GSEA P-values#0.025 and FDRs#0.25, ARTP P-values#0.01 are marked in bold.
doi:10.1371/journal.pone.0065396.t003

Table 4. SNP Associations of Genes in ‘‘ABC Transporters.’’

Additive Model Dominant Model Additive Model Dominant Model

Gene # of SNPs Top SNP P-value Top SNP P-value Gene # of SNPs Top SNP P-value Top SNP P-value

ABCA1 40 rs3905000 1.6761023 rs2066882 7.7361023 ABCC2 6 rs4148389 6.3861022 rs3740065 7.8061022

ABCA2 1 rs2049040 3.9161021 rs2049040 4.6261021 ABCC3 8 rs739922 3.1661021 rs739922 2.4961021

ABCA3 4 rs2014467 5.0161022 rs2014467 2.9261022 ABCC4 64 rs9524822 6.9061026 rs9524822 1.7361026

ABCA4 37 rs4147868 2.37610215 rs4147868 7.86610217 ABCC5 15 rs17750520 9.9761023 rs17750520 1.2561022

ABCA5 6 rs817126 1.9261021 rs817126 7.7661022 ABCC6 7 rs2283508 1.8361021 rs4780599 8.0361022

ABCA6 8 rs8081118 3.8761023 rs8081118 1.4461023 ABCC8 15 rs2077654 7.3461022 rs2077654 6.3661022

ABCA8 14 rs4147983 5.5861023 rs4147983 9.3961023 ABCC9 25 rs4148663 6.8661022 rs4148663 7.9661022

ABCA9 6 rs11077858 3.4161021 rs7215642 5.0861021 ABCC10 9 rs6907066 1.9461021 rs6907066 3.0761021

ABCA10 16 rs7217887 2.1061021 rs1024598 3.8461021 ABCD2 3 rs11172502 5.1161021 rs11172502 4.2961021

ABCA12 20 rs17430358 2.7761022 rs17430358 1.3661022 ABCD3 4 rs1749541 6.5961021 rs4148057 8.6461021

ABCA13 56 rs10236551 2.6661023 rs10236551 1.5661023 ABCD4 3 rs2074946 8.8561021 rs4148077 6.8561021

ABCB1 19 rs2235047 1.5961021 rs12670317 1.9961021 ABCG1 18 rs3787968 2.5261022 rs170444 1.0461022

ABCB4 12 rs31659 1.1161022 rs2097937 2.2161022 ABCG2 11 rs3114015 2.5861021 rs1481014 2.1061021

ABCB5 18 rs17143334 1.0661021 rs10488577 1.4361021 ABCG4 1 rs674424 7.4661021 rs674424 8.1661021

ABCB8 2 rs2303922 3.1161021 rs2303922 2.6061021 ABCG5 4 rs2278357 3.6161022 rs10439467 6.1861022

ABCB9 2 rs4275659 3.8161021 rs4275659 3.0461021 ABCG8 3 rs4148202 6.5761021 rs4148202 6.6361021

ABCB10 1 rs10916508 3.4061021 rs10916508 3.6961021 CFTR 13 rs4148689 3.1261022 rs4148689 2.4661022

ABCB11 22 rs6759156 1.5961022 rs6759156 7.6561022 TAP1 2 rs12529313 8.2461021 rs12529313 6.8361021

ABCC1 33 rs12921623 2.0761027 rs12921623 3.33610211 TAP2 6 rs241429 1.6661021 rs241429 1.3461021

*P-values,561024 was considered genome-wide level significant and marked in bold.
doi:10.1371/journal.pone.0065396.t004
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influence metabolism and disposition of the well-established

carcinogen, NNK, and potentially increase the lung cancer risk

[51]. As shown in Table 4, ABCA4, ABCC1, and ABCC showed

significant associations with lung cancer susceptibility (P-val-

ues,0.0005). In our subsequent subgroup analysis, ever-smokers

showed a more significant association than never-smokers, as

shown in Table S5. Thus, it is possible to modulate individual

lung cancer risk according to genetic polymorphisms in those

genes through different cellular functions.

The VEGF Signaling Pathway also ranked high in our pathway

analysis. Members of this pathway may influence an angiogenesis-

dependent biological pathway, which is a critical component of

oncogenesis. Associations between genetic polymorphisms in

VEGF/VEGFR and the risk of developing cancers have been

reported in various cancer types, including lung cancer [52].

Among 63 gene members, phosphatidylinositol 3-kinase

(PIK3R5), phospholipase C (PLCG2), and SHC adaptor protein

showed strong associations with lung cancer susceptibility in our

GWAS (Table S1, Figure S2).

Although a pathway-based approach is an attractive trial in a

post-GWAS era, we note some limitations in our design. In our

study, following the SNP QC, associations of more than

300,000 SNPs remained and were analyzed, but only about half

of them were mapped successfully, to 14,089 genes. Many SNPs

within non-coding regions were simply neglected. Unfortunately,

with the current GWAS genotyping platform, the number of

markers that cover genes is limited. Moreover, even the 880

pathways we analyzed were clearly an incomplete set of pathways

because many human genes have not yet been assigned to

pathways because their function(s) are unknown. Finally, our

GWAS set containing genome-wide SNP data of more than 2,400

Koreans originated from a single population. The aim of the study

was to find pathways associated with lung cancer susceptibility

within Korean population, and we could not find a comparable

Korean lung cancer GWAS data set for validating our findings. As

more data become available, our results should be compared to

other East Asian populations considering ethnic differences.

In conclusion, we demonstrated that lung cancer susceptibility

can be linked to biological pathways using GWAS data, and

multiple subtle association signals can be interpreted in a

systematic manner. Our results suggest that genetic variation in

genes involved in four signaling pathways may contribute to

individual lung cancer susceptibility. Moreover, our findings

indicate that pathway-based approaches are important analytical

methods in a post-GWAS era that could possibly be used to

address the functional relevance of genetic susceptibility.
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