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Multichannel intraluminal impedance (MII) for the evaluation of esophageal diseases was created in 1991 trying to solve previous
limitations of esophageal function test. MII-pH is able to determine the physical characteristics of the refluxate (liquid, gas, or
mixed) and nonacidic GER. MII-manometry can determine the presence of bolus and its relation with peristalsis. This paper
makes a critical analysis of the clinical applications of MII 20 years after its creation. Literature review shows that MII made great
contributions for the understanding of esophageal physiology; however, direct clinical applications are few. MII-pH was expected
to identify patients with normal acid reflux and abnormal nonacidic reflux. These patients are rarely found off therapy, that
is, nonacidic reflux parallels acid reflux. Furthermore, the significance of isolated nonacidic reflux is unclear. Contradictory MII-
manometry and conventional manometry findings lack better understanding and clinical implication as well as the real significance
of bolus transit.

1. Introduction

Esophageal manometry and pH monitoring are ambulatory
techniques for detection of gastroesophageal reflux (GER)
and esophageal motility disorders that were introduced into
clinical practice in the 1970s; however, significant improve-
ment was achieved over the last decades [1], including the
development of multichannel intraluminal impedance (MII)
in 1991 [2]. These new achievements try to solve previous
limitations of esophageal function test, such as the lack of
ability to detect bolus transit and nonacid reflux.

A great enthusiasm came when MII was applied to
esophageal physiology. First of all, the expectation that
patients with suspected GER and a negative pH monitoring
would have the disease objectively diagnosed came into
mind. Second, the detection of bolus transport through the
esophagus brought hope to the treatment of patients with
dysphagia and normal manometry. This initial enthusiasm;
however, subsided along time. This paper will focus on the
critical analysis of the clinical applications of MII, 20 years
after its creation.

2. MII Technique

Impedance is the measurement in Ohms of the electrical
resistance between 2 points. In simple words, 2 consecutive
sensors are in contact with the esophageal mucosa that has
specific impedance value, but when the lumen is filled with
any substance and this substance bridges these 2 sensors,
the equipment will detect this variance. Because of their
differential conductivity, gas, liquid, or a mixture of the two
can be distinguished independent of the pH of the material.
The order in which the sensor detects the material also allows
determining the direction of its flow. The passage of liquid
substances between the sensors decreases the impedance
value. It is detected as a drop in the impedance of more than
50% from the baseline. In contrast, gas has high electrical
resistance, leading to an increase in impedance of more than
50% the baseline, or an absolute value >7,000 ohms and mix
of gas and liquid will be a combination of both. Return to
50% of the baseline is considered the end of the episode.
During deglutition, lumen substances are detected first in the
most proximal sensors and then progresses distally. A reflux
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Figure 1: Multichannel Intraluminal Impedance and pH-
monitoring catheter. ∗—impedance sensors, +—pH sensors, and
LES—lower esophageal sphincter.

episode is considered when lumen substances are detected
first in distal sensors and then propagates aborally in at least
two proximal sensors. Simultaneous detection of an episode
of reflux by the pH sensor and by the impedance sensors
denotes an acid reflux. Detection of an episode of reflux only
by the impedance sensors denotes a non-acid reflux [3, 4].

MII-pH is a catheter-based technology. It consists of
a catheter comparable to the conventional pH-monitoring
where antimony sensors are similarly used to detect pH,
but impedance sensors are also displaced in the catheter.
The arrangement of the sensors is variable according to
the manufacturer; however, the most common placement is
shown in Figure 1.

Baseline measurement of impedance levels may denote
mucosal integrity [4, 5] although its clinical significance is
still elusive.

3. Assessment of Gastroesophageal Reflux

Conventional catheter-based prolonged ambulatory eso-
phageal pH monitoring has been used since the 1970s. Its
usefulness in clinical practice and research has been proven
and reassured along time [6].

The first attempt to detect GER was accomplished in 1884
by Reichman, who lowered a sponge into the esophagus of
a patient with heartburn and showed that it contained acid
when retrieved. Over 50 years later, Aylwin in 1953 found
acid and pepsin in the esophageal juice—retrieved with the
aid of a tube—of patients with esophagitis [1]. The first in
situ measurement of acid reflux in the esophagus is credited
to Tuttle and Grossman in 1958 who used equipment
previously described to study gastric pH and combined it
with esophageal manometry. They studied different probe
positions and pH levels and ultimately concluded that
acid drop below 3 at 2 cm proximal to the respiratory
inversion point was indicative of acid reflux [7]. Many other
studies on the subject followed. Initially, recording machines
were not portable, forcing patients to be wired to large
equipments, making the procedure an in-patient system [1].
Radiofrequency transmission of pH data is not a modern
technology; in fact its development started in the 1950s,
and it was almost parallel to the “conventional” catheter
technique. However, state-of-the-art technology for catheter-
free wireless pH sensors and a new technology to attach the
capsule were introduced in 2001 [8].

Detection of intraluminal esophageal impedance was
developed in the early 1990s [2]. The combination of
simultaneous detection of esophageal acidity (pH) and

impedance-MII was also a landmark in understanding and
evaluating GER.

Gastric and duodenal contents both can reflux into the
esophagus and adjacent organs. Gastric hydrochloric acid
has long been recognized as harmful to the esophagus [9].
Currently, it is recognized that bile reflux is also noxious to
the esophagus [10].

Detection of non-acidic has been tried for decades.
Researchers were motivated by patients with clinical and
endoscopic evidence of GER but normal pH monitoring
[11, 12], when non-acid reflux was suspected as the etiology
of symptoms and mucosal damage in these patients [13, 14]
since bile-induced esophagtis en experimental models [15,
16]. Different methods have been developed to detect non-
acidic reflux, such as: esophageal intubation and aspiration
[17–19], detection of bile in the sputum [20, 21], alkaline
pH shift at the pH monitoring [22, 23], and scintigraphy
[24]. All described methods did not prove useful due to
technical limitations, low sensitivity, nonphysiologic situa-
tions, and nonprolonged measurements. Probably the most
promising technology was bilirubin monitoring through
spectrophotometry (Bilitec 2000). It consists of a portable
sensor coupled to a pH sensor in the tip of a catheter. It
allows ambulatory measuring similar do conventional pH
monitoring [25].

MII-pH goes further than the previous technologies and
it is also able to determine the physical characteristics of the
refluxate (liquid, gas, or mixed) and non-acidic GER [26, 27].

New concepts became evident only after the advent of
MII-pH. For instance, rereflux (or superimposed reflux) is
characterized by reflux episodes detected at impedance in a
background pH < 4 after the initialization of a primary reflux
event [28]. It seems to be associated to patients with severe
esophagitis, postprandially, and in the recumbent posture
[29]; however, its clinical relevance must be clarified.

Also, the correlation between symptoms and the pH of
the refluxate have been studied. It was demonstrated that
MII-pH improves the sensibility to correlate symptoms with
episodes of reflux, since a significant number of symptoms
may occur during non-acid episodes [30]. Various studies
showed that heartburn is more commonly experienced in
acid reflux [31–33], while regurgitation [31, 32] and cough
[33, 34] are symptoms most associated to non-acid reflux.

Different publications studied the effect of antisecretory
drugs on the composition of GER. Their results, either
studying volunteers [35] or patients [32], showed that the
number and duration of reflux episodes were not changed
by proton pump inhibitors, only the pH of the refluxate.

MMI-pH, different from conventional pH monitoring,
can discriminate the physical characteristics of the refluxate
(liquid, gas, or mixed). The clinical importance of this
characteristic is still elusive. Tutuian et al. [36] have shown
that reflux episodes that were associated with symptoms in
patients who failed clinical therapy were primarily composed
of both gas and liquid. Emerenziani et al. [37] showed
that in heartburn patients the risk of reflux perception was
significantly higher when gas was present in the refluxate. On
the other side, mixed reflux (gas + liquids) comprises half of
the episodes of reflux in volunteers [37, 38] and patients with
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erosive GER, nonerosive GER, and healthy individuals have
the same amount of gas containing episodes of reflux [38,
39]. Both surgical [40] and clinical [37] therapy decreases
the number of gas-containing reflux episodes; however, it
is unclear if symptomatic relieve is linked to this finding
since other forms of refluxate are also controlled by these
therapies.

4. Critical Analysis of MII-pH

Previous methods to detect non-acid reflux (Bilitec, eso-
phageal aspiration, scintigraphy, etc.) were contributory;
however, technical limitations precluded widespread use of
the technology. Even though, they made great contributions
for the understanding of gastroesophageal reflux disease and
esophageal physiology. MII-pH is probably the most effective
method to detect non-acid reflux.

The aforementioned characteristics of the MMI-pH
technology also brought great contribution for the under-
standing of gastroesophageal reflux disease and esophageal
physiology. Clinical implications are; however, limited by: (1)
studies with controversial results, (2) the rarity of isolated
alkaline reflux, and (3) the lack of clinical implication on
prognosis, therapeutic decision or postoperative evaluation.

The prevalence of weak-acidic GER (esophageal pH 4–
7 + reflux detected at he MII) is variable in different series.
Weakly acidic reflux ranges from 20 to 66% of the episodes
of GER in healthy individuals [26, 41, 42]. In GER patients,
weakly acidic GER shows no higher percentage—30–70%
[43–45]. The reasons for the difference in prevalence of
weakly acidic reflux between studies are unclear and require
further investigation. Ambulatory impedance pH studies
suggest that patients with moderate and severe esophagitis
have rates of weakly acidic reflux similar to or slightly
greater than healthy controls. Furthermore, distal esophageal
exposure to weakly acidic refluxate is similar in esophagitis
and nonerosive reflux disease (NERD) patients [46]. Also,
the composition of the refluxate must be better clarified.
Weakly acidic reflux is more likely to occur early after a meal,
both in controls and in patients with reflux disease [47].
Studies using pH-Bilitec recordings have shown that most
bile reflux events occur in an acid setting, with esophageal
pH below 4 [48]. It is possible that differences in mixing and
distribution of postprandial gastric contents might explain
the occurrence of either weakly acidic reflux with little or
no biliopancreatic secretion [47]. If patients with abnormal
weakly acidic reflux and physiologic acid reflux can be
classified as refluxers is a question to be answered. Alkaline
reflux (pH > 7) is a rare event [26, 41, 42].

MII-pH has not showed to be useful to predict treatment
response. Bredenoord et al. [40] showed that MII parameters
for non-acid reflux (symptom association or number of
episodes of reflux) are not predictive for response to proton-
pump inhibitors in GER patients. Similarly, MII parameters
do not predict outcomes after antireflux surgery (fundoplica-
tion) [49, 50]. On therapy MII-pH is a common method for
the detection of the persistence of GER in patients refractory
to pharmacologic therapeutic [51]. Although we honestly

believe that for patients with proven GER off therapy, this
evaluation is unnecessary.

MII-pH has not shown to be useful in the postoperative
period of antireflux operation (fundoplication). Arnold
et al. [52] showed that in asymptomatic patients with a
negative pH monitoring, the rate of false positive MII-pH of
50% renders the test clinically irrelevant. This may explain
findings such as a lack of decrease in nonacid reflux episodes
after endoscopic fundoplication as it is not selective to the
type of refluxate [53].

Further considerations are necessary. Catheter-based
esophageal function tests are nonphysiologic methods. One
of the reasons appointed to a false-negative pH monitoring is
alteration in normal life style, food intake, and hypersaliva-
tion due to the presence of the transnasal catheter. Wireless
catheter-free implantable capsule-based pH-monitoring was
created to prevent the discomfort associated to the pres-
ence of the esophagonasal catheter [54, 55]. Unfortunately,
untoward effects and limitations are frequent, most of them
related to the fixation method that pins the capsule to the
esophageal mucosa. Thus, problems reported are: (1) the
capsule fails to deploy and attach to the esophageal mucosa
in a significant percentage of patients (ranging from 0.5
to 20% [56–60]); (2) the presence of the capsule in the
esophagus may cause symptoms. The majority of patients
experience foreign body sensation, especially with swallow
and dysphagia [56, 60, 61]. Chest pain occurs in 33–50% of
patients previously free of this symptom [58, 59]. The pain
may be severe in 1 to 9% of the patients and removal of
the capsule may be occasionally necessary in 2 to 5% of the
patients, from 1 hour up to 5 days after the procedure [61].
Nausea was also reported in 6% of the studies [58]; (3) in
a significant number of studies (2 to 12% [56, 57, 60]) data
cannot be completely retrieved. Reasons for incomplete data
retrieval are unexplainable failure of the device (either the
capsule or the receiver), interference due to other wireless
devices, permanence of the receiver to far from the patient,
and detachment of the capsule. The capsule is designed to
detach in 3–7 days and be expelled in the stool. Premature
detachment of the capsule can occur in 2 to 5.5% of the cases
[56, 57, 59, 60]; (4) in the opposite direction, nondetachment
of the capsule after 15 days requiring endoscopic removal
was reported [61]; (5) the number of reflux episodes are
consistently lower when Bravo capsule is compared to
conventional pH monitoring [59]. This is credited to the
lower sampling rate (every 6.25 seconds, compared to 4
per second) of the Bravo system [62], fixed position of the
wireless capsule that prevents it to dip inside the stomach
during swallows [63], and inaccuracy in calibration of the
capsule [64]; and (6) a precise positioning based on the
LES can be accomplished using Bravo system if manometry
is done previously and transnasal route is used to place
the capsule. However, the squamous-columnar transition, a
variable anatomical position, is utilized as landmark if the
transoral route is used. Currently, there is no system able to
measure nonacid reflux through a wireless capsule. Other
point is a prolonged (more than 1 day) measurement of
GER. Different studies showed that increasing the period of
analysis increases the sensitivity for GER detection [55, 65,
66].



4 ISRN Gastroenterology

LES 5 cm 10 cm 15 cm 20 cm

∗++ ∗ ∗+ ∗ ∗+ ∗ ∗+ ∗

Figure 2: Multichannel intraluminal impedance and esophageal
manometry catheter. ∗—impedance sensors, +—manometry sen-
sors, and LES—lower esophageal sphincter.

5. Assessment of Esophageal Motility

The same technology for MII-pH has been used in com-
bination with esophageal manometry. MII-manometry can
determine the presence of bolus and its relation with
peristalsis. Analysis of MII-manometry is very similar to the
analysis of MII-pH. Transit of the bolus induces the same
pattern of impedance measurement.

Similarly to MII-pH, impedance sensors are also dis-
placed along a conventional manometry catheter. Both water
perfused [32] and solid state [28] catheters can be used,
although the former is more common. The arrangement
of the sensors is variable according to the manufacturer;
however, the most common format is shown in Figure 2.

Analysis of MII-EM tracings is very similar to the analysis
of MII-pH. Transit of the bolus induces the same pattern of
impedance measurement. Usually, 10 viscous swallows, not
only 10 liquid swallows, are usually added to the analysis
[67] allowing higher detection of esophageal function defects
compared to liquid swallows [68]. Obviously, the addition
of viscous swallows can be integrated to the conventional
manometry as well [69]. More recently, solid swallows have
also been added to MII [70]. Multiple parameters can be
recorded; nevertheless bolus clearance and transit time are
simple but informative parameters (Figure 3). This technol-
ogy allows (1) monitoring of bolus transport patterns, (2)
calculation of bolus transit parameters, (3) evaluation of
bolus clearance, (4) monitoring of swallow associated events
such as air movement and reflux, and (5) investigation of the
relationships between bolus transit and LES relaxation [71].

Tutuian and Castell [72] studying 350 patients with a
wide range of esophageal diseases reported that complete
bolus transit detected with the impedance was identified in
96% of manometric normal swallows, 33% of ineffective, and
53% of simultaneous waves considering liquids swallows.
Furthermore, distal esophageal amplitude was higher in
patients with complete bolus clearance, as expected.

Different motility disorders have been studied by MII-
manometry. Published studies showed that patients with
achalasia and scleroderma have always abnormal bolus
transit [72–74]. Almost half of patients with ineffective
esophageal motility and diffuse esophageal spasm have
normal bolus transit, while almost all patients with normal
esophageal manometry, nutcracker esophagus, poor relaxing
LES, hypertensive LES, and hypotensive LES have normal
bolus transit [72, 74]. The analysis of these results according
to subgroups of diseases, not only reinforces some previous
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Figure 3: Impedance parameters in the multichannel intraluminal
impedance and esophageal manometry. Bolus clearance is complete
if bolus is detected at the most proximal sensor and it “exits” all
sensors in sequence, as shown in the figure. Bolus transit time is the
period of time between the first and the last detection of the bolus,
in the most proximal and in the most distal sensor, respectively. +—
begin of bolus detection and ∗—end of bolus detection.

concepts but also changes some of them. Esophageal motility
abnormalities can be classified as transit defect or pressure
defect [75]. Some conclusions are: (a) achalasia and scle-
roderma are associated to manometric abnormalities and
abnormal bolus transit, as expect; (b) isolated sphincter
abnormalities do not affect bolus transit; (c) ineffective
esophageal motility may have a normal bolus clearance;
(d) diffuse esophageal spasm may have a normal bolus
clearance; (f) nutcracker esophagus is a disease of abnormal
pressures, not abnormal bolus transit; and (g) abnormal
bolus clearance can be seen in a small number of patients
with normal manometry.

MII role in the workup for belching disorders and
rumination seems promising [76].

6. Critical Analysis of MII-Manometry

Similarly to MII-pH, MII-manometry made great contri-
butions for the understanding of esophageal physiology;
however, direct clinical application is jeopardized by 3 points:
(1) different MII findings are found in the same series
of patients; (2) abnormal MII findings did not prove a
real value in changing current treatment options; (3) MII-
manometry does not predict treatment outcomes; and (4)
the significance of discrepant MII and manometry results is
elusive.

A percentage of altered and normal MII has been
reported in healthy volunteers [55], patients with dysphagia
and without dysphagia [77, 78], and patients in the postop-
erative of Nissen fundoplication with and without dysphagia
[79]. Bogte et al. [80] affirmed that stasis of both liquid and



ISRN Gastroenterology 5

(a) (b)

(c) (d)

Figure 4: Multichannel intraluminal impedance (MII) patterns for bolus transport. (a) Normal bolus transport. A decrease in basal
impedance measurement and subsequent return to basal levels is noticed in all channels (proximal, medium, and distal). (b) Abnormal bolus
transport. All channels display a low basal impedance level unchanged by swallow. This may be explained by fluid repletion of the esophagus?
It is a common pattern in achalasia patients. (c) Abnormal bolus transport. The proximal channel shows a normal bolus propagation. More
distal channels display a retention of the bolus distally. This may be explained by outflow resistance at the esophagogastric junction. (d)
Abnormal bolus transport. Retention of the bolus is noticed in the midesophagus. This may be explained by segmental aperistalsis.

solid boluses occurs frequently in patients and in controls
and can be regarded as physiological!

Classically, esophageal motility disorders have been clas-
sified, named, and treated based on manometric characteris-
tics [81]. The recent advent of high-resolution manometry
allowed the development of a different classification [82]
but again with direct clinical implications for treatment
[83, 84]. Moreover, MII have been recently coupled with
high-resolution manometry [85–89], interestingly; however,
MII proved to validate high-resolution manometry ability to
detect bolus transport and not the opposite [89, 90]. No MII-
specific patterns were identified in order to create dysmotility
classifications. Also, the lack of correlation between symp-
tom (dysphagia) and abnormal bolus transit increases the
confusion to understand MII-manometry findings [91, 92].
Furthermore, low baseline impedance levels, air entrapment
and erratic liquids movement in the esophagus limit the
application of MII in achalasia and other motility disorders
with serious impairment of esophageal clearance [3, 6, 93]
(Figure 4).

MII-manometry did not show to be useful to predict
dysphagia after antireflux operations [78]. Impaired flow
through the esophagogastric junction may lead to dysphagia
after fundoplication, however, this finding correlates with
conventional manometric findings [94].

The combination of impedance and esophageal manom-
etry allowed the identification of 4 patterns of swallows: (1)
peristaltic waves (based on manometry) and bolus cleared
(based on MII); (2) peristaltic waves without bolus clearance;
(3) nonperistaltic or ineffective waves and bolus cleared;
and (4) nonperistaltic or ineffective waves without bolus
clearance. It is intuitive to understand and explain the
concordance of MII and manometry findings represented by
previous items (1) and (4). The understanding of items (3)
and (4) boggles the mind to explain how bolus transit and
muscular contraction are disconnected.

7. Conclusions

MII made great contributions for the understanding of
esophageal physiology; however, direct clinical applications
are few.

MII-pH was expected to identify patients with normal
acid reflux and abnormal nonacidic reflux. Unfortunately,
these patients are rarely found off therapy, that is, nonacidic
reflux parallels acid reflux [95]; and the significance of
isolated nonacidic reflux is unclear [1]. Repeating words
by Sifrim and Zerbib [96]: “Combined pH-impedance has
little added value in patients ‘off ’ therapy and virtually no
outcome data exist to determine the optimal pH-impedance
parameters.”
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The significance of bolus transit is elusive. MII-
manometry findings that contradicts manometry lacks better
understanding and clinical implication.

Future technologies may fill these clinical expectancies.
Molecular imprinting technology with biosensors to detect
bile [97], an implantable, wireless, and batteryless impedance
sensor capsule that infers impedance based on a direct
measurement of capacitance and receives energy from an
external source [98], and intraluminal miniultrasound [99]
are examples in development.
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