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Received 22 August 2016; Accepted 23 October 2016

Academic Editor: Irini Doytchinova

Copyright © 2016 Lorentz Jäntschi et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multiple linear regression analysis is widely used to link an outcome with predictors for better understanding of the behaviour of
the outcome of interest. Usually, under the assumption that the errors follow a normal distribution, the coefficients of the model are
estimated byminimizing the sum of squared deviations. A new approach based onmaximum likelihood estimation is proposed for
finding the coefficients on linear models with two predictors without any constrictive assumptions on the distribution of the errors.
The algorithm was developed, implemented, and tested as proof-of-concept using fourteen sets of compounds by investigating
the link between activity/property (as outcome) and structural feature information incorporated by molecular descriptors (as
predictors). The results on real data demonstrated that in all investigated cases the power of the error is significantly different
by the convenient value of two when the Gauss-Laplace distribution was used to relax the constrictive assumption of the normal
distribution of the error. Therefore, the Gauss-Laplace distribution of the error could not be rejected while the hypothesis that the
power of the error from Gauss-Laplace distribution is normal distributed also failed to be rejected.

1. Introduction

The first report on multiple linear regression appears on 1885
[1] and was detailed in 1886 [2]. The classical treatments of
the multiple regressions were built on the product-moment
method implemented in 1846 [3] and later connected with
the optimal correlation [4].

In his first published paper, Fisher introduces the method
of likelihoodmaximization [5], later used in conjunctionwith
Pearson’s correlation [6]—a paper which started a contra-
dictory debate between the method of central moments and

the method of likelihood estimation [7] replied to in [8] and
finally linked with the partial correlation coefficients [9].

A multiple linear regression model involves more than
two variables, one (𝑦) being assumed dependent and the
others (𝑥1, 𝑥2, . . . , 𝑥𝑚) being assumed to be independent, and
is considered here as a continuation of a previous study [10].
Themost important assumption is that the data are paired; for
example, a natural association between the values of the vari-
ables exists.This kind of association is accomplishedwhen for
instance a multiple linear regression is constructed involving
a measured property/activity (𝑦) for a series of compounds
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for which other compounds measured properties/activities
or structure-based descriptors are available (𝑥1, 𝑥2, . . . , 𝑥𝑚),
the natural association being in this case the (chemical)
compound responsible for that property/activity/descriptor
value.

The least squares method is the standard approach for
regression analysis, the method being credited to Legen-
dre [11] (for a debate about the inventor, please see [12]),
which also (implicitly) assumes that the error is normally
distributed.

Iteratively applying local quadratic approximation to the
likelihood (through the Fisher information [13]), the least
squares method was used to fit a generalized linear model
as a way of unifying classical, logistic, and Poisson (linear)
regression in [14] by iteratively reweighing the least squares
method in the way to the maximum likelihood estimation of
the model parameters.

Generalized Gauss-Laplace distribution is the natural
extension [15] from Gauss’s [16] and Laplace’s [17] symmetric
distributions. It is a triparametric distribution (location,
scale, and shape) and parameter estimation via maximum
likelihood and themethod ofmoments have been reported in
[18], concluding that the estimates do not have a closed form
and must be obtained numerically.

Amore general result regarding the maximum likelihood
estimation can be found in [19] but unfortunately provides
only conditions inwhichmaximum likelihood estimate exists
and is unique without providing the reciprocal (namely, there
exist also other conditions than the one given, in which
maximum likelihood estimate exists and is unique). Even
more, for numerical estimates, it is hardly to discuss unicity.

The problem of estimating the parameters of a multiple
linear regression under assumption of generalized Gauss-
Laplace distribution of the error is a hard problem which can
be solved only numerically and it involves an optimization
problem with 𝑚 + 3 constrains, where 𝑚 is the number of
unknown (to be determined) coefficients of the multiple lin-
ear regression. In this paper a mathematical and a numerical
treatment of the problem is proposed.

In order to provide a proof of the facts for the proposed
method of relaxing the distribution of the error when linear
regression is used to link between chemical information and
biological measurements, ten previously reported datasets
were considered, all with significant role in human medicine
or ecology.

2. Mathematical Treatment

Onemay define the generalizedGauss-Laplace (GL) distribu-
tion as

GL (𝑥; 𝜇, 𝜎, 𝑞)
= 𝑞2𝜎

Γ1/2 (3/𝑞)
Γ3/2 (1/𝑞) exp(− 󵄨󵄨󵄨󵄨(𝑥 − 𝜇) /𝜎󵄨󵄨󵄨󵄨𝑞(Γ (1/𝑞) /Γ (3/𝑞))𝑞/2) , (1)

where Γ(⋅) is the Gamma function and 𝜇 (location), 𝜎 (scale),
and 𝑞 (shape) are the parameters of the distribution.

This definition will be used here for the Gauss-Laplace
distribution to relax the normal distributed constraint for the
distribution of the error (𝜀).
2.1. Statement of the Problem. Multiple linear regressions
under assumption of GL distribution (see (1), for the error𝜀; (𝑎𝑗)1≤𝑗≤𝑚, 𝜎 and 𝑞 are to be determined from sampled data)
are stated in the following equation:

MLRGL (𝜀; 𝜎, 𝑞) = GL (𝜀; (𝑎𝑗)1≤𝑗≤𝑚 , 𝜎, 𝑞) , (2)

where 𝜀 = 𝑦 − ∑1≤𝑗≤𝑚 𝑎𝑗𝑥𝑗 (and 𝜀̂ ≈ 0 and 𝜀 = 0).
The case with intercept (𝑦 ≈ 𝑦̂ = 𝑎0 + ∑1≤𝑗≤𝑚 𝑎𝑗𝑥𝑗)

is reduced to the case without intercept by increasing with
one the number of the independent variables (𝑎𝑚+1 ← 𝑎0;𝑥𝑚+1 ← 1; and 𝑚 ← 𝑚 + 1, when 𝑦 ≈ 𝑦̂ = ∑1≤𝑗≤𝑚+1 𝑎𝑗𝑥𝑗)
and therefore will not be mentioned further.The substitution
given as (2) transforms the distribution from univariate to
a multivariate one and can be mathematically characterized
by a series of properties, such as is given in [29] (results
applicable resizing 𝑥 from 0 and 𝑥0 ← 𝑦).

Let us take a sample of 𝑛 paired measurements (e.g.,(𝑦𝑖, (𝑥𝑗,𝑖)1≤𝑗≤𝑚)1≤𝑖≤𝑛, where 𝑛 is the number of paired mea-
surements and 𝑚 is the number of independent measures).
The likelihood for the sample is

LMLRGL (⋅) = 𝑛∑
𝑖=1

ln (MLRGL (⋅)) . (3)

Doing the substitution given in (2) and expressing in full
its parameters, the expression of the likelihood function from
(3) becomes

LMLRGL ((𝑎𝑗)1≤𝑗≤𝑚 , 𝜎, 𝑞)
= 𝑛 ⋅ ln( 𝑞2𝜎

Γ1/2 (3/𝑞)
Γ3/2 (1/𝑞))

− 𝜎𝑞 (Γ (1/𝑞)
Γ (3/𝑞))𝑞/2 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑖 − ∑
1≤𝑗≤𝑚

𝑎𝑗𝑥𝑗,𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑞

.
(4)

The likelihood is at maximum when all its partial deriva-
tives are zero:

0 = 𝜕𝜕𝑎1 LMLRGL ((𝑎𝑗)1≤𝑗≤𝑚 , 𝜎, 𝑞) = ⋅ ⋅ ⋅
= 𝜕𝜕𝑞LMLRGL ((𝑎𝑗)1≤𝑗≤𝑚 , 𝜎, 𝑞) .

(5)

2.2. Simplification of the Problem. The problem of finding the
maximumof the likelihood is a typical problem of finding the
extreme points, but not easy to be solved because it depends
on a large number of variables.The easiest way is to eliminate
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one variable, namely, 𝜎. The derivative of LMLRGL by 𝜎
provides the value of 𝜎:

𝑛 = 𝑞 ⋅ 𝑆
𝜎𝑞 ⋅ (Γ (1/𝑞) /Γ (3/𝑞))𝑞/2 ,

𝑆 (𝑞, (𝑎𝑗)1≤𝑗≤𝑚) = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑖 − ∑
1≤𝑗≤𝑚

𝑎𝑗𝑥𝑗,𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑞

.
(6)

Please note that 𝑆 = 𝑆(𝑞, (𝑎𝑗)1≤𝑗≤𝑚) does not depend on𝜎. Therefore, let LMLRGLS(𝑆, 𝑛, 𝑞) be the function having
this constraint. After some calculations, the expression of
LMLRGLS(𝑆, 𝑛, 𝑞) is

LMLRGL (𝑆, 𝑛, 𝑞) = 𝑛𝑞 (𝑞 ⋅ ln( 𝑛1/𝑞𝑞1−1/𝑞
2𝑆1/𝑞 ⋅ Γ (1/𝑞)) − 1) (7)

𝑆 = 𝑆 (𝑞, (𝑎𝑗)1≤𝑗≤𝑚)
= 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑖 −
𝑚∑
𝑗=1

𝑎𝑗𝑥𝑗,𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑞

= 𝑛∑
𝑖=1

𝑇 (𝑖, (𝑎𝑗)1≤𝑗≤𝑚)𝑞/2 ,
(8)

where 𝑇(𝑖, (𝑎𝑗)1≤𝑗≤𝑚) = (𝑦𝑖 − ∑1≤𝑗≤𝑚 𝑎𝑗𝑥𝑗,𝑖)2.
On the other hand, only 𝑆 depends on (𝑎𝑗)1≤𝑗≤𝑚, and

therefore when the derivative of 𝑆 relative to 𝑎1, . . . , 𝑎𝑚 is
zero, then also the derivative of the maximum likelihood
estimation function (either any of LMLRGL and LMLRGLS)
is zero. Doing the partial derivatives of 𝑆, with the above given
substitution (function 𝑇), the following equation is the result:
𝑛∑
𝑖=1

𝑦𝑖𝑥𝑢,𝑖𝑊 (𝑖, 𝑞) = 𝑚∑
𝑗=1

𝑎𝑗 ⋅ 𝑛∑
𝑖=1

𝑥𝑢,𝑖𝑥𝑗,𝑖𝑊 (𝑖, 𝑞) ;
for 1 ≤ 𝑢 ≤ 𝑚,

(9)

where 𝑊(𝑖, 𝑞) = (𝑦𝑖 − ∑1≤𝑗≤𝑚 𝑎𝑗𝑥𝑗,𝑖)𝑞−2.
At this point only the expression of the likelihood func-

tion (see (7) and (8)) must be included in the new statement
of the problem (see (9)) in order to keep in full the derivatives
constraints of the initial problem (see (4) and (5)). There
is no obvious further reduction of the problem. However,
revising the results obtained till this point, the cancelling of
the (likelihood function) derivative relative to 𝜎 was included
at the beginning of the simplification (see (6)) while the
cancelling of the (likelihood function) derivatives relative
to the regression coefficients 𝑎1, . . . , 𝑎𝑚 is equivalent to the
previous given equation for the regression coefficients (see
(9)). On the other hand, (7)–(9) facilitate an iterative solution
of the problem.

3. Fixed-Point Theory for Iterating
to the Optimal Solution

A convenient notation was used in (9) to suggest the further
treatment of the problem. Actually, Fisher and Mackenzie

proposed for the first time to use such numerical treatment
in statistics [30].This is based on the assumption that, near to
the optimal solution, an iterative evaluation of the coefficients
(here 𝑞 and (𝑎𝑗)1≤𝑗≤𝑚) conducted using their previous values
(hidden in (9) inside of the function 𝑊(𝑖, 𝑞)) leads to the
optimum. The optimum is obtained when no significant
change from one step to another is on their values, and, at
that time, the 𝑊(𝑖, 𝑞) function acts as the argument of a
contraction mapping [31].

There are some inconveniences for a smooth applica-
tion of the fixed-point theory. One of them is that the
obtaining of the maximum of the LMLRGLS function (see
(7), being obtained for known values of 𝑆 and 𝑛 (where(𝜕/𝜕𝑞)LMLRGLS(𝑆, 𝑛, 𝑞) vanishes)) is not a very simple prob-
lem; it is expected from its explicit expression to have more
than one local maximum. Fortunately, some clues exist, such
as the domain of 𝑞 (ranging from 0) and the expectance from
the power of the error (here let us say that it is expected to
have 𝑞 from 0.1 to 10 and is very unlikely but possible to have𝑞 from 0.01 to 100, but outside of this range also precision
of computations often fails). But the biggest inconvenience is
that (9) is not an equation, but a system of equations, and here
we may only provide different strategies of iteration, hoping
that at least one of them provides the contraction mapping.
Namely, we may

(i) start from some initial values of the regression coeffi-
cients ((𝑎𝑗,0)1≤𝑗≤𝑚) and for the power of the error 𝑞0;

(ii) use initial values to obtain the likelihood function
LMLRGLS (from (7)) as a function depending only
on 𝑞; it requires only the evaluation of 𝑆 (see (8));

(iii) find the maximum (let this be 𝜗) of LMLRGLS
function from (7) (where its derivative is 0 and the
point is a global extreme point);

(iv) prepare starting of a loop on 𝑘, by setting it to 0 (𝑘 ←0);
(v) it is possible, especially at the beginning of the

iteration (when 𝑘 = 0), that 𝜗 and 𝑞𝑘 be largely
different one to each other; a major change in 𝑞 will
accelerate the convergence but will also increase the
likelihood of divergence; therefore, use the new (𝜗)
and old (𝑞𝑘) value to indicate the gradient of the
change in 𝑞, such as 𝑞𝑘+1 ← 𝛿 ⋅ 𝑞𝑘 + (1 − 𝛿) ⋅ 𝜗, with
small 0 < 𝛿 < 1 to be determined;

(vi) do a loop (𝑘 ← 𝑘+1) using the new value of 𝑞 (namely,𝑞𝑘+1) to calculate the new values of the coefficients
((𝑎𝑗,𝑘+1)1≤𝑗≤𝑚 with (9)) and using the new values of the
coefficients calculate the new value of 𝑞 (turn back to
find the maximum from (7));

(vii) repeat until ((𝑎𝑗,𝑘+1)1≤𝑗≤𝑚) and (𝑞𝑘+1) have no changes
during iteration.

At arriving in the stationary point, all criteria for the
maximization of the likelihood are accomplished; namely,
the equations corresponding to all derivatives cancellation
are assured. The great advantage of this proposed method
is that it reduces the problem of finding the maximum of a
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Require: 1 ≤ 𝑚 ≤ 𝑛 {Regression multiplicity & Sample size}
Require: (𝑦𝑖, (𝑥𝑘,𝑖)1≤𝑘≤𝑚)1≤𝑖≤𝑛 {Data}
Require: 𝑞𝑗, (𝑎𝑘,𝑗)1≤𝑘≤𝑚 {Estimates previously obtained}

𝑆 ←󳨀 𝑛∑
𝑖=1

(𝑦𝑖 − 𝑚∑
𝑘=1

𝑎𝑘,𝑗𝑥𝑘,𝑖)
𝑞𝑗

Algorithm 1: Calculate “𝑆” at some step “𝑗” from (8).

Require: 1 < 𝑛 {Sample size}
Require: 𝑆 {Calculated with Algorithm 1}𝑞 ← 𝜗 from: {finding of the maxima of a univariate function}

0 = 𝜕𝜕𝜗 [ 𝑛𝜗 ⋅ (𝜗 ⋅ ln( 𝑛1/𝜗 ⋅ 𝜗1−1/𝜗2 ⋅ 𝑆1/𝜗 ⋅ Γ(1/𝜗)) − 1)]

Algorithm 2: Calculate “𝑞” at some step “𝑗” from (7).

function with 𝑚 + 3 variables to the finding of the maximum
of a function with one variable (𝑞), in a repeated process, of
course.

The disadvantage is that the evolution is through a con-
tracting functional of which contraction cannot be assured all
the time.This is the reasonwhy there are different strategies of
finding such kind of contracting functional (see example 6.1
in [32] for construction of a contracting functional from
resampling).

Some calculations are the same regardless the strategy
used and are given in the next as Algorithms 1–3.

One strategy is to use the equations from cancellation
of regression coefficients derivatives (see (9)) to iterate the
values of the coefficients, while another one is to treat (9) as a
system of equations and to solve it as a whole (Algorithm 4).

Another strategy that is required to be specified is that
if (7)–(9) is used to simply iterate for new values or if (9)
should be used in a loop to converge to new estimates for
the coefficients associated with the new 𝑞 (Algorithm 5).
The expected assumption is that the errors are normally
distributed (𝑞 = 2) and the optimal solution of (5) is near
to this.

The contingency of 2 × 2 strategies given above was tested
on sampled data (see Section 4), and the pair (Algorithms 4
and 5) turned out to be the only one providing a contraction
functional. Thus, for convenience, the working algorithm is
given in full (see Algorithm 6) and was used to obtain the
results given in the next section.

In order to assure the numerical stability of the calcula-
tions, Algorithm 6 was used with fixed and reasonable value𝜀 = 10−5, and in order to assure a smooth convergence, the
value of the new error’s power estimate (𝑞𝑗) was replaced by
an exponential smoothing (a technique commonly applied to
time series [33]), 𝑞𝑗 ← 0.1 ⋅ 𝑞𝑗 + 0.9 ⋅ 𝑞𝑗−1.

Therefore, in all scenarios, the initial (starting) values of
the estimates to be determined will be the one given by the

classical multiple linear regressionmodels as presented in the
following:

𝑞0 ←󳨀 2;
(𝑎𝑘,0)1≤𝑘≤𝑚 ←󳨀 MLR (𝑦, 𝑥1, . . . , 𝑥𝑘) ,

MLR (𝑦, 𝑥1, . . . , 𝑥𝑘) = (x𝑇x)−1 x𝑇y,
(10)

where MLR(𝑦, 𝑥1, . . . , 𝑥𝑘) uses the classical strategy of ordi-
nary least squares ((x𝑇x)−1x𝑇y) to find the parameters.

4. Case Study

Ten datasets of chemical compounds with different sample
size (Table 1) alongwith theirmeasured outcome activitywere
considered to illustrate Algorithms 1–6.

For all datasets, the experimental values of the depen-
dent variable (𝑦) and for the selected previously reported
independent variables (under the assumption of the normal
distribution of the error) on multiple linear regressions with
two (𝑚 = 2) independent variables are given in Table 2.

Different descriptors (independent variables) were used
to explain the activity/property of interest on models pre-
sented in Table 2. The names of these descriptors are

(i) TIE: state topological parameter [20];
(ii) TIC1: total information content index (neighborhood

symmetry of 1) [20];
(iii) IHDMkMg and IHDDFMg: MDF descriptors [21];
(iv) SAG: molecular surface area grid; 𝑓(0)𝑛: Fukui index

[22]
(v) TPSA(NO): topological polar surface area expressed

by nitrogen and oxygen contributions; Aeigm:
Dragon descriptor [23];

(vi) RDF035m: radial distribution function on a spherical
volume of a 3.5 Å radius weighted by atomic mass;
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Require: 1 ≤ 𝑚 ≤ 𝑛 {Regression multiplicity & Sample size}
Require: (𝑦𝑖, (𝑥𝑘,𝑖)1≤𝑘≤𝑚)1≤𝑖≤𝑛 {Data}
Require: 𝑞𝑗, (𝑎𝑘,𝑗)1≤𝑘≤𝑚 {Estimates previously obtained}

for 𝑖 = 1 to 𝑛 do

𝑊𝑖 ←󳨀 (𝑦𝑖 − 𝑚∑
𝑘=1

𝑎𝑘,𝑗𝑥𝑘,𝑖)
𝑞𝑗−2

end for

Algorithm 3: Calculate “(𝑊𝑖)1≤𝑖≤𝑛” at some step “𝑗” from (9).

Require: 1 ≤ 𝑚 ≤ 𝑛 {Regression multiplicity & Sample size}
Require: (𝑦𝑖, (𝑥𝑘,𝑖)1≤𝑘≤𝑚)1≤𝑖≤𝑛 {Data}
Require: (𝑊𝑖)1≤𝑖≤𝑛 {(𝑊𝑖)1≤𝑖≤𝑛 iterated at step 𝑗 by Algorithm 3}(𝑎𝑢,𝑗+1)1≤𝑢≤𝑚 ← (𝑎𝑢)1≤𝑢≤𝑚 {Solution of linear & homogeneous system Eq. (9)} from

{ 𝑛∑
𝑖=1

𝑦𝑖𝑥𝑢,𝑖𝑊𝑖,𝑗 = 𝑚∑
𝑘=1

𝛼𝑘 𝑛∑
𝑖=1

𝑥𝑘,𝑖𝑥𝑢,𝑖𝑊𝑖,𝑗}
1≤𝑢≤𝑚

Algorithm 4: Block solves providing “(𝑎𝑢,𝑗+1)1≤𝑢≤𝑚” at some step “𝑗” with (9).

Require: 1 ≤ 𝑚 ≤ 𝑛 {Regression multiplicity & Sample size}
Require: (𝑦𝑖, (𝑥𝑘,𝑖)1≤𝑘≤𝑚)1≤𝑖≤𝑛 {Data}
Require: 𝑞0, (𝑎𝑘,0)1≤𝑘≤𝑚 {Coefficients iterated at step 0}𝑗 ← 0

repeat𝑗 ← 0 + 1𝑆𝑗 ← Algorithm 1𝑞𝑗 ← Algorithm 2
repeat(𝑊𝑖)1≤𝑖≤𝑛 ← Algorithm 3(𝑎𝑢,𝑗+1)1≤𝑢≤𝑚 ← Algorithm 4
until ∑1≤𝑘≤𝑚 |𝑎𝑘,𝑗+1/𝑎𝑘,𝑗−1| < 𝜀

until |𝑞𝑗+1/𝑞𝑗−1| + ∑1≤𝑘≤𝑚 |𝑎𝑘,𝑗+1/𝑎𝑘,𝑗−1 − 1| < 𝜀
Algorithm 5: Double loop with (9) for (7) and (8).

Require: 1 ≤ 𝑚 ≤ 𝑛 {Regression multiplicity & Sample size}
Require: (𝑦𝑖, (𝑥𝑘,𝑖)1≤𝑘≤𝑚)1≤𝑖≤𝑛 {Data}

𝑞0 ←󳨀 2; (𝑎𝑘,0)1≤𝑘≤𝑚 ←󳨀 (𝑋𝑇𝑋)−1𝑋𝑇𝑦, 𝑗 ←󳨀 0
repeat

𝑆 ←󳨀 𝑛∑
𝑖=1

(𝑦𝑖 − 𝑚∑
𝑘=1

𝑎𝑘,𝑗𝑥𝑘,𝑖)
𝑞𝑗

𝑞𝑗 ←󳨀 𝜗 s.th. 0 = 𝜕𝜕𝜗 [𝑛 ⋅ (ln( 𝑛1/𝜗 ⋅ 𝜗1−1/𝜗2 ⋅ 𝑆1/𝜗 ⋅ Γ(1/𝜗)) − 𝜗)] & [𝑛 ⋅ (ln( 𝑛1/𝜗 ⋅ 𝜗1−1/𝜗2 ⋅ 𝑆1/𝜗 ⋅ Γ(1/𝜗)) − 𝜗)] = max.

repeat

(𝑊𝑖)1≤𝑖≤𝑛 ←󳨀 (𝑦𝑖 − 𝑚∑
𝑘=1

𝑎𝑘,𝑗−1𝑥𝑘,𝑖)
𝑞𝑗−2

(𝑎𝑢,𝑗+1)1≤𝑢≤𝑚 ←󳨀 { 𝑛∑
𝑖=1

𝑦𝑖𝑥𝑢,𝑖𝑊𝑖,𝑗 = 𝑚∑
𝑘=1

𝑎𝑘,𝑗 𝑛∑
𝑖=1

𝑥𝑘,𝑖𝑥𝑢,𝑖𝑊𝑖,𝑗}
1≤𝑢≤𝑚

until ∑1≤𝑘≤𝑚 |𝑎𝑘,𝑗+1/𝑎𝑘,𝑗−1| < 𝜀
until |𝑞𝑗+1/𝑞𝑗−1| + ∑1≤𝑘≤𝑚 |𝑎𝑘,𝑗+1/𝑎𝑘,𝑗−1 − 1| < 𝜀

Algorithm 6: Contraction functional for MLR-MLE-GL.
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Table 1: Datasets characteristics.

Set Sample size (𝑛) Class Property/activity Reference
1 132 Estrogens Estrogen binding affinity—log RBA [20]
2 37 Carboquinone derivatives Minimum effective dose (MED)—log(1/MED) [21]
3 33 Organic pollutants Oxidative degradation—log(𝑘󸀠) [22]
4 97 Benzotriazoles Fish toxicity—pEC50 [23]
5 136 Thiophene and imidazopyridine derivatives Inhibition of polo-like kinase 1—pIC50 [24]
6 14 Substituted phenylaminoethanones Average antimicrobial activity—pMICam [25]
7 110 Acetylcholinesterase inhibitors Inhibition activity—pIC50 [26]
8 107 Polychlorinated biphenyl ethers 298K supercooled liquid vapor pressures—log(𝑝𝐿) [27]
9 107 Polychlorinated biphenyl ethers Aqueous solubility—log(𝑆𝑤, 𝐿) [27]
10 47 Para-substituted aromatic sulphonamides Carbonic anhydrase II inhibitors—log(𝐾𝑖) [28]

Table 2: Reported bivariate models.

Set Model under assumption of normal errors Determination coefficient (𝑟2)
1 −4.284 − 0.0263 ⋅ TIE + 0.0368 ⋅ TIC1 0.3976
2 7.780 − 579 ⋅ IHDMkMg + 0.049 ⋅ IHDDFMg 0.7700
3 −2.703 + 0.00515 ⋅ SAG + 9.703 ⋅ 𝑓 (0)𝑛 0.6859
4 4.110 − 0.0172 ⋅ TPSA(NO) + 0.0097 ⋅ Aeigm 0.7161
5 2.5651 + 0.1899 ⋅ RDF035m + 2.9825 ⋅ Small-RSI-mol 0.5101
6 0.780 + 0.0339 ⋅ 0𝜒V + 0.004 ⋅ 𝜇 0.8357
7 5.446 + 0.716 ⋅ nR10 + 1.113 ⋅ N-070 0.6838
8 1.476 − 0.588 ⋅ NCl − 5.029 ⋅ 10−2 ⋅ 𝑉𝑠+ 0.9880
9 −4.080 − 0.880 ⋅ NCl + 5.996 ⋅ 𝜎2tot 0.9619
10 4.055 − 0.154 ⋅ 0𝜒V − 1.284 ⋅ FNSA1 0.7058

Table 3: Differences between values of coefficients obtained by classical linear regression approach compared to the proposed approach.

Set diff(𝑞) diff (𝑎0) diff (𝑎1) diff (𝑎2) diff(LMLRGL) diff(𝜎)
1 0.3400 −0.00073 −0.00315 0.24400 −0.30000 −0.00200
2 −0.4150 −0.00034 −16.30000 0.17400 −0.10100 −0.00020
3 −0.3830 −0.28700 0.00009 −0.04000 −0.06000 −0.00030
4 −0.1680 0.00006 0.00007 −0.01400 −0.05000 0.00000
5 0.9420 0.34500 −0.00880 −0.62400 −6.10000 −0.00850
6 0.5000 0.00027 0.00078 −0.02140 −0.09000 −0.00006
7 0.5210 −0.10300 0.03490 −0.01800 −1.10000 0.00030
8 −0.5690 0.00090 −0.00330 −0.01100 −0.42000 −0.00010
9 −0.4370 −0.27700 −0.00020 0.04000 −0.30000 −0.00020
10 −0.9370 0.01400 −0.00700 0.06000 −0.70600 0.49310
diff: difference between value obtained by classical approach and value obtained by the proposed approach.
𝑎0, 𝑎1, and 𝑎2: coefficients of the independent variables; 𝑞: power of the error (Algorithm 6 for the proposed approach).
𝜎: population standard deviation; LMLRGL: likelihood for multiple linear regressions under assumption of GL distribution.

small-RSI-mol: the smallest value of atomic steric
influence in a molecule [24];

(vii) 0𝜒V: Kier’s molecular connectivity index; 𝜇: dipole
moment [25];

(viii) nR10: number of 10-membered rings; N-070: number
of Ar-NH-Al fragments [26];

(ix) NCl: the number of the chlorine atoms on the two
phenyl rings; 𝑉𝑠+: the surface maxima values of the
electrostatic potential; and 𝜎2tot: total variance of the
electrostatic potential at a point 𝑟𝑖 [27];

(x) FNSA1: fractional partial positive surface area 1
PPSA1/TMAS; where PPSA = Partial Positive Surface
Area and TMSA = Total Molecular Surface Area.

All sets subjected to analysis converged maximizing the
likelihood and Table 3 provides the differences between val-
ues obtained by classical MLR approach and values obtained
by the proposed approach (MLR-MLE-GL).

The results presented in Table 3 reveal different estimates
for the coefficients in the assumption of the more general
generalized Gauss-Laplace distribution of the error. In 6 out
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Figure 1: Evolution of the power of the errors (𝑞) by optimization iteration: (a) set 1 (converged at 226); (b) set 6 (converged at 154); (c) set 8
(converged at 83); and (d) set 5 (converged at 784).

of 10 cases, the power of the error proved to be higher
comparedwith convenient value of 2, the highest values being
observed for set 10 (𝑞 = 2.937). Opposite, the power of the
error proved to be almost half of the expected value for set 5
(𝑞 = 1.058). The values of coefficients obtained by applying
theMLE and the proposed approach were close to each other
in two cases (set 4 and set 8).With one exception, represented
by set 2, the sum of the absolute differences of 𝑎0, 𝑎1, and𝑎2 was less than 1. The values obtained for the population
standard deviation by the two investigated methods proved
to be closest to each other, with highest difference of 0.49310
observed on set 10.

The power of the error follows different patterns accord-
ing to the model, decrease-fluctuation-plateau (set 1, Fig-
ure 1(a)), decrease-increase in steps-plateau (set 6, Fig-
ure 1(b)), increase-fluctuation-decrease in steps-plateau (set
8, Figure 1(c)), and decrease-fluctuation (set 5, Figure 1(d)).

A question (hypothesis) can be raised about the power
of the error: if its distribution can be assumed normal. This
hypothesis (the distribution of the power of the error can be
assumed to be normal) can be tested on the results even if the
sample is small (10 cases) to provide an answer. However, the
tendency to have a mean of two in convergence is clear (𝑞 =2.06 from the 10 cases) and the hypothesis of its normality
cannot be rejected (Anderson-Darling statistic measures that
only 14.72% (𝑝to-reject = 0.8528 > 0.05) of the random
samples are in better agreement with the normal distribution

while Kolmogorov-Smirnov statistic measures only 28.7%
(𝑝to-reject = 0.713 > 0.05)).
5. Conclusions

The proposed algorithm (Algorithm 6 in this paper) was
found to provide an appropriate contraction mapping to
be used for maximum likelihood estimation of the multi-
ple linear regression parameters in the generalized Gauss-
Laplace distribution assumption of themeasurement’s errors.
The analysis conducted on 10 samples demonstrated that, in
general, it is not appropriate to assume that the measurement
error is normally distributed, and when it is possible a
deeper treatment of the distribution of the error need to be
conducted. From a sample of 10 cases, the analysis of the
distribution of the error showed that the normal distribution
of the power of the error could not be rejected, being very
likely to have a mean equal to two.
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Orbites des Comètes, F. Didot, Paris, France, 1805.

[12] S. M. Stigler, “Gauss and the invention of least squares,” The
Annals of Statistics, vol. 9, no. 3, pp. 465–474, 1981.

[13] R. A. Fisher, “Theory of statistical estimation,” Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 22, no.
5, pp. 700–725, 1925.

[14] J. A. Nelder and R. W. Wedderburn, “Generalized linear
models,” Journal of the Royal Statistical Society. Series A, vol. 135,
no. 3, pp. 370–384, 1972.

[15] L. Jäntschi and S. D. Bolboacă, “Observation vs. observable:
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