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ABSTRACT Distinct microbial communities inhabit individuals as part of the human
skin microbiome and are continually shed to the surrounding environment. Micro-
bial communities from 17 skin sites of 10 sexually active cohabiting couples (20 indi-
viduals) were sampled to test whether cohabitation impacts an individual’s skin mi-
crobiome, leading to shared skin microbiota among partner pairs. Amplified 16S
rRNA genes of bacteria and archaea from a total of 340 skin swabs were analyzed
by high-throughput sequencing, and the results demonstrated that cohabitation was
significantly associated with microbial community composition, although this associ-
ation was greatly exceeded by characteristics of body location and individuality.
Random forest modeling demonstrated that the partners could be predicted 86% of
the time (P � 0.001) based on their skin microbiome profiles, which was always
greater than combinations of incorrectly matched partners. Cohabiting couples had
the most similar overall microbial skin communities on their feet, according to Bray-
Curtis distances. In contrast, thigh microbial communities were strongly associated
with biological sex rather than cohabiting partner. Additional factors that were asso-
ciated with the skin microbiome of specific body locations included the use of skin
care products, pet ownership, allergies, and alcohol consumption. These baseline
data identified links between the skin microbiome and daily interactions among co-
habiting individuals, adding to known factors that shape the human microbiome
and, by extension, its relation to human health.

IMPORTANCE Our work characterizes the influence of cohabitation as a factor influ-
encing the composition of the skin microbiome. Although the body site and sam-
pled individual were stronger influences than other factors collected as metadata in
this study, we show that modeling of detected microbial taxa can help with correct
identifications of cohabiting partners based on skin microbiome profiles using ma-
chine learning approaches. These results show that a cohabiting partner can signifi-
cantly influence our microbiota. Follow-up studies will be important for investigating
the implications of shared microbiota on dermatological health and the contribu-
tions of cohabiting parents to the microbiome profiles of their infants.

KEYWORDS cohabitation, high-throughput sequencing, human skin, microbiome,
random forest modeling

Skin is the largest organ of the body, forming a critical protective barrier between an
organism and its environment. The average human is covered by 1.5 to 2.0 m2 of

skin, varying from 2 to 3 mm in depth (1). Skin is divided into three tissue layers:
epidermis, dermis, and hypodermis. The epidermis is of particular interest because it is
the exposed layer that contains a diverse microbial community of largely beneficial and
benign microorganisms (2) while protecting the body from transient microorganisms
with the potential to cause disease. This outer layer is relatively hostile to microbes
because it is constantly shedding, associated with antimicrobial compounds, and low in
moisture, yet with high acidity, hydrophobicity, and salinity (3). Despite these relatively
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harsh conditions, between one million and one billion microorganisms inhabit each
square centimeter of skin (4, 5).

Microbial surveys demonstrate that human skin is inhabited by a diverse community
of bacteria, archaea, fungi, protozoans, and arthropods (4, 6–8). In general, four
bacterial phyla dominate the skin: Proteobacteria, Actinobacteria, Firmicutes, and Bac-
teroidetes (2, 9). In one survey of skin microbiota, Propionibacteria, Corynebacteria, and
Staphylococcus spp. comprised more than 62% of sequences detected at 20 body sites (10).
Moist, oily, and dry regions were each associated with different levels of microbial species
diversity, which was lowest in oily regions that were associated with the sebaceous glands
(10).

Human skin microbiota is strongly defined by body region and individuality (7). The
main factors affecting the skin microbiota are skin location, biological sex, geographical
location, ethnicity, skin depth, antibiotics, cosmetics, age, and health (11). Hygiene
practices also influence the skin microbiome, including the use of lotions, antibiotics,
soaps, and cosmetics (12, 13). Three-dimensional (3D) molecular cartography maps of
human skin demonstrated that the molecular composition of human skin is defined by
the microorganisms present, molecules from hygiene products, and local skin anatom-
ical structure (1).

Although cohabitation may impact an individual’s skin microbiome, no study has yet
explored the relationship between the skin microbial communities from a wide range
of skin locations of intimate cohabiting couples. A previous human study determined
that the palms of hands, oral cavity, and gut microbiomes were more similar within
families (14). Moreover, humans and animals share a microbial community that is
affected even by a short absence of several days (15). A study on the effects of antibiotic
use on cohabiting individuals found household-specific microbial communities, al-
though there was no significant difference between the number of shared taxa (16). To
the best of our knowledge, there are no other studies on cohabitation that determined
which skin regions are the most related between partners.

The objectives of this investigation were to characterize the distribution of bacteria
and archaea on the skin of intimate cohabiting heterosexual couples and determine
whether cohabitation leads to a detectable impact on the microbiome of partnered
individuals compared to the influences of factors related to individuality and lifestyle.
Although we confirm that the two dominant factors that influence the skin microbiome
are individuality and body location, cohabitation was significantly associated with
microbial community composition. Using random forest modeling, we found that the
skin microbiome profiles of cohabiting couples can be correctly matched with signifi-
cantly higher probability than by chance alone, especially based on data from foot
swab samples. Thus, our results show that several factors are stronger than cohabita-
tion in their associations with human skin microbiome variability, yet the imprint of one
individual on a cohabiting partner can nonetheless be detected by microbiome analysis
and machine learning approaches.

RESULTS AND DISCUSSION
Moisture level and individuality strongly influence microbial diversity. We

analyzed the diversity of bacteria and archaea on 330 skin samples obtained from 17
skin regions of 10 sexually active cohabiting couples, which yielded 8,753,153 reads. A
total of 4,639 unique operational taxonomic units (OTUs) were obtained from 1,746,690
sequences, rarefied to 5,293 reads per sample. Five no-template PCR controls and the
sterile swab sample all contained fewer reads than the rarefied sequence count and
produced no visible bands on an agarose gel following PCR amplification. Across all
samples, the most abundant phyla were Actinobacteria, Firmicutes, and Proteobacteria,
which is consistent with findings from previous human skin microbiome studies (2, 5,
9). These three phyla constituted 94.9% � 5.2% of all reads (Fig. 1A), whereas the
remaining sequences were affiliated with 38 phyla. Bacteroidetes was the only other
phylum present above a relative abundance of 1%. Archaea comprised only 66 of the
16S rRNA gene sequences (0.004%), yet this may be an underrepresentation of their
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FIG 1 Microbial diversity of the 10 body locations sampled. (A) Pie charts illustrating the relative abundance of microbial families present at �1%
and the phyla to which they belong, organized by each of the 10 body locations sampled. (B) PCoA plot calculated using the Bray-Curtis
dissimilarity metric. The 330 samples from all body locations are included and are denoted by body location.
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actual abundance because of known primer mismatches to archaeal 16S rRNA genes
(17). The most abundant OTU was the common skin bacterium Staphylococcus epider-
midis (18), which constituted 14.5% � 15.4% of all sequences. There were 11 OTUs that
were present above 1% relative abundance across the complete data set, repre-
senting 54.3% � 23.1% of all sequences.

Known moisture levels of each body location were strongly associated with the
observed variation in skin microbial communities (Fig. 1B). Grouping of samples from
these three moisture levels was statistically significant (F2,327 � 18.8 by permutational
analysis of variance [PERMANOVA]; P � 0.001). Significant variations in the abundance
of Staphylococcus, Corynebacterium, and Propionibacterium were observed among mois-
ture levels (Fig. 1A), as were alpha diversity differences (see Fig. S1 and Table S1 in the
supplemental material). Similar shifts in abundance, such as high levels of Propionibac-
terium on facial skin sites, have been noted previously (6, 10). The Shannon index
demonstrated that dry palm samples were significantly more diverse (P � 0.003 by
nonparametric two-sample t test) than samples from both moist and oily regions, which
had similar average Shannon diversity values. Palms and feet were the most diverse
sites sampled and had significantly higher numbers of OTUs, likely due to their direct
and frequent contact with microbiota from the environment.

Strong individuality was reflected by 16S rRNA gene profiles and supports previous
research that suggested that individuality shapes the skin microbiome (7). When each
body location was analyzed separately, the left and right replicates of each body
location from an individual were associated with highly similar microbial profiles in the
majority of cases (Fig. 2). When comparing Bray-Curtis distances, a sample had the
lowest distance to another sample from the same participant 57.9% of the time.
Within-individual closest matches (“individuality”) were highest for the thigh (89.7%)
and eyelid (77.5%) sites (Fig. 3A) and were statistically significant (F19,310 � 3.65 by
PERMANOVA; P � 0.001) when all samples were analyzed. Furthermore, when focusing
on individual body locations with a minimum of two samples per participant, the F ratio
increased (F19,20 � 3.12 to 13.69 by PERMANOVA; P � 0.001) and “Participant number”
was the metadata category that explained the most variation for each body location,
except for the outer nose (Fig. 4). The weakest individuality and strongest individuality
were exhibited by the outer nose and thigh, respectively. We hypothesize that the thigh
exhibited high individuality because it is a skin region that is not frequently in contact
with the external environment, compared to other regions such as the hands. Further-
more, the left and right thighs are in more frequent contact with each other than other
body regions, such as the left and right outer nose. Areas of the face with stronger
individuality, such as the eyelids, may experience fewer perturbations from hand

FIG 2 Ordinations (PCoA) generated by using the Bray-Curtis dissimilarity metric for each of the 10 body locations sampled. Lines connect samples from a
participant. Female samples are denoted by circular points, whereas male partners are represented by triangles. Where a single sample per person was collected
for specific body locations (i.e., back, navel, torso), no lines connect the participant samples. Samples from different couples are indicated by the different colors.

Ross et al.

July/August 2017 Volume 2 Issue 4 e00043-17 msystems.asm.org 4

msystems.asm.org


contact than the nose, especially for participants who wore glasses. Participants who
did not wear glasses had modestly more eyelid microbial community similarity to their
hands than those with glasses, according to Bray-Curtis distances (0.64 versus 0.59; P �

0.12); however, this was not statistically significant given the small sample size. We
hypothesize that the outer nose may also express the lowest individuality due to the
low level of diversity observed, which was lower than any other body region. Such low
diversity may impact the ability to discern an individual due to fewer OTUs that are
unique. Furthermore, a previous study of the face microbiome determined that micro-
bial communities of this body region are strongly influenced by measured sebum and
moisture levels in specific locations (19), which could result in similar communities

FIG 3 Samples were matched with another sample in the data set that possessed the most similar
microbial community. Matches were analyzed to determine the percentage of samples belonging to self,
partner, or another participant. (A) Proportion of samples that had the lowest Bray-Curtis distance with
either another sample from within an individual, from within a cohabiting couple, or to any of the other
participants. (B) Proportion of samples that had the lowest Bray-Curtis distance with nonself samples. (C)
Proportion of samples that had the lowest Bray-Curtis distance with nonself, opposite-sex samples. The
dotted line represents the threshold that would be expected by random chance from the 20 participants.
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FIG 4 Heatmap summarizing the significant (P � 0.05) metadata factors that were collected from a participant survey.
Categories with higher F values by PERMANOVA have higher variation in community dissimilarity within 10 body
locations. White regions of the heatmap represent nonsignificant results. Body locations and metadata categories were
arranged into dendrograms using the Bray-Curtis dissimilarity metric. Back, navel, and torso sites were associated with
single samples, which likely contributed to fewer significant F values compared to other locations that were sampled on
each side of the body.
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between different individuals with similar secretion levels, which were not measured in
this current study.

Biological sex can be determined from thigh skin microbiome samples. Female
skin microbial communities were significantly more diverse than males, according to
the Shannon index (4.59 versus 3.98; P � 0.001; Table S1), which is consistent with a
previous study (9), and may be due to physiological differences such as lower pH (20).
Using samples from all body locations, biological sex could be determined 80.0% of the
time, which is greater than expected by chance. However, when biological sex was
classified for each body location, the thigh could be correctly classified 100% of the
time. One can therefore determine biological sex consistently based on the thigh
region, but cannot classify sex with the same certainty using any other skin region. This
finding was corroborated by ordinations based on Bray-Curtis distances (Fig. S2), was
statistically significant (F1,328 � 8.0 by PERMANOVA; P � 0.001), and was further
supported by using indicator species analysis because the thigh region had the most
indicator OTUs (Table S2).

Male participants had a significantly larger proportion of sequences affiliated
with the Actinobacteria phylum (50.8% � 25.5% versus 38.2% � 20.9%; P � 0.001),
whereas female participants had significantly more Proteobacteria (18.1% � 15.9%
versus 11.7% � 17.3%; P � 0.001) detected on their skin (Fig. S3). Several OTUs were
more abundant on either male or female skin (Table 1). The majority of these
bacteria are human skin commensals, whereas Alloiococcus in males is associated
with the ear canal and associated infections (21, 22). In contrast, women had
11.1-fold more Lactobacillus, which is an organism that dominates the vaginal
microbiome (23). There were no core OTUs present in one sex that were not core
OTUs in the other sex (Table S3).

Cohabiting partners can be predicted on the basis of skin microbiome profiles.
By analyzing all samples together, random forest modeling found that couples’ samples
could be matched correctly 86% � 6.1% of the time, which is 6.5-fold greater than
chance and always had a lower error rate than the 1,000 randomized groupings of
samples from couple participants (P� 0.001; Fig. 5A). Couple H05 had distinct microbial
communities with more indicator OTUs than the other couples (Table S4). When the 34
samples from couple H05 were removed from the random forest modeling, there was
no significant difference in the model’s ability to classify the remaining nine couples
(P � 0.68). This result indicates that an outlier did not significantly influence the
analysis. When the same 1,000 randomized groupings of samples from all couple
participants were analyzed using PERMANOVA, the incorrect partner F values were
significantly lower than the correct couple pairs (P � 0.006; Fig. 5B). When the
PERMANOVA analysis was divided by body location, partners possessed the most
similar microbial communities on their feet, eyelids, and back compared to incorrect
couple pairings (Fig. S4).

To further assess the similarity between couples’ samples, a Bray-Curtis distance
matrix was created to determine the number of times the sample with the lowest

TABLE 1 Microorganisms disproportionately abundant on each biological sexa

More abundant on men More abundant on women

OTU taxonomic affiliation Increase in abundance (%) OTU taxonomic affiliation Increase in abundance (%)

Alloiococcus 344.0 Lactobacillus 1,111.4
Dermabacter 271.2 Lactobacillus iners 440.0
Brevibacterium 164.5 Lautropia 408.8
Moraxella 149.9 Streptococcus luteciae 332.7
Faecalibacterium prausnitzii 128.7 Caulobacteraceae 273.3
Abiotrophia 112.4 Planococcaceae 273.3
Neisseria 109.1 Sphingomonas 191.3
Escherichia coli 73.1 Cloacibacterium 180.9
Veillonella dispar 73.0 Paracoccus 174.4
Corynebacterium 70.5 Streptococcus 169.8
aOTUs that were present on a minimum of 30% of samples of that sex are shown.
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distance, and therefore the most similar microbial community, belonged to the same
individual, their partner, or another participant (Fig. 3). When only the closest nonself
samples were tested, several body locations had microbial communities that were
closest to their partner. For example, 35% of couples’ foot samples were closest to
those of their partner, which is ~7-fold higher than expected by chance (Fig. 3B). The
torso (21%), navel (20%), and eyelid (17.5%) were also closer to their partner more
frequently than expected by chance.

Although the closest nonself samples matched their partner more often than
expected by chance, the majority of the samples matched one of the other 18
participants in the study. We hypothesize that this may be partially attributed to shared
factors between these participants, such as biological sex. Indeed, the majority of
nonself samples that did not match to a partner matched with a participant of the same
sex (62.4%; P � 0.005). Partners can therefore be correctly paired by random forest
modeling better than using the closest matching sample method in part because
random forest modeling is restricted to couples of different sexes. The closest nonself,
opposite-sex matches were also analyzed to correct for the influence of biological sex.
Although there was little difference in the majority of body locations, the thigh and
torso samples matched partners correctly more frequently only when considering
opposite-sex individuals (Fig. 3C).

Investigating associations of samples with other samples from self, partners, and
others was also performed at a 99% sequence identity threshold to determine whether
a data set with higher resolution was better able to match self or partners. The 99%
identity data set showed a significant improvement in linking samples to other samples
from the same individual using Bray-Curtis distances (78% versus 69%; P � 0.003) but
only modestly increased average partner identification, albeit insignificantly (23.1%
versus 20.3%; P � 0.09). This result was corroborated by random forest modeling. The
models were worse at classifying partners (80% � 5% versus the original 86% � 6%;
Fig. S5), which was partially due to an increased inability to classify couple 10 (data not
shown), who had been living together for the least amount of time compared to the
other participants. However, although random forest modeling was worse at classifying
the true partners, it was also worse at classifying the incorrectly paired partners
(Fig. S5), indicating no difference in overall classification ability.

An indicator species analysis was also performed to characterize couples based on
highly abundant organisms that were unique to them (Table S4). Only 3 of the 10
couples had at least one indicator OTU. One of these couples had seven indicator

FIG 5 Bar plots of the data set with the correct couple composition compared to randomly assorted
incorrect pairings. Distribution of the estimated supervised learning error rates (A) and PERMANOVA
F values of 1,000 unique artificially shuffled partner pairings (B). The dotted lines represent the position of
the result from the correctly matched couples’ data set (P � 0.001 and P � 0.006).
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species. This couple had several unique factors that were not observed in any of the
other participants. The couple reported more time outdoors, a higher exercise fre-
quency, flaky skin, and a different racial heritage than the other participants. Future skin
microbiome studies would need to be conducted to assess the effects of race, exercise
frequency, and time spent outdoors. The couple did not have a clinical diagnosis of any
skin ailments that may cause flaky skin, such as psoriasis. Specific body locations had
a higher number of indicators per couple. Additionally, analyzing indicators by each
individual body location resulted in a higher number of indicators for each couple.

We hypothesize that the mode of transmission of the microbiota between partners
is through a combination of the built environment and direct contact. Humans shed
over one million biological particles per hour (24), changing the composition of the
surfaces they touch and the rooms they occupy (25, 26). Indeed, microbiome individ-
uality enabled hand microbial communities to be linked to computer keyboards based
on physical contact (27). Forensic studies have shown that humans can be correctly
matched, based on microbiome profiles, to the fabrics they grasp (28) and personal
objects, such as cell phones and shoes (29). It is therefore plausible that partner
shedding and direct contact affects the other inhabitants of an individual’s primary
residence. Sharing of microbiota was most apparent by sampling feet, which can be
explained by feet being in direct contact with home surfaces. Indeed, homes have been
shown to have microbiota that are signatures of their inhabitants (14, 15). Daily direct
contact between cohabiting individuals would further increase microbiota sharing.

Future skin microbiome studies should include same-sex couples to answer intrigu-
ing questions about how intimately living with a member of the same sex affects the
microbiome. For example, skin regions that are heavily influenced by biological sex,
such as the thigh (Fig. S2), or hands (9), may be more effective at classifying same-sex
couples because biological sex would no longer be a confounding factor. We predict
that homosexual couples would be matched more successfully than heterosexual
couples because they would share more similar skin microbiota both from sharing a
location and biological sex.

Hygiene, pets, and allergies correlate with the microbiota of body sites. Life-
style choices for each participant, such as time spent outdoors, pet ownership, and
alcohol consumption were analyzed to determine whether these factors exhibited any
significant effect on skin microbiota (Table S5). Although the sample size was small (17
body locations; 20 participants), several factors were nonetheless significant after using
Bonferroni’s correction (Table S1). The following lifestyle choices may warrant future
experimentation with a larger sample size to further elucidate their impact on skin
communities.

Participants who consumed multiple servings of alcohol per day had significantly
less-diverse communities, based on the Shannon index, than those who consumed one
serving per month (Table S1). This result was corroborated by PERMANOVA data, which
identified alcohol consumption as a metadata category contributing to explained
variation (Fig. 4). An indicator of the highest consumption rate of alcohol was Brevibac-
terium (indicator value of 0.70; mean of 129 versus a mean of 2 in the lower consump-
tion groups). This organism possesses an alcohol dehydrogenase (30), and given that
ethanol is secreted through the sweat glands (31), it is possible that higher rates of
alcohol consumption could feasibly impact members of the skin microbiota. However,
it should be noted that many organisms possess this enzyme, and additional studies are
needed to properly determine the effect alcohol has on skin microbiota.

Spending more time outdoors and owning pets were associated with higher levels
of microbial skin community diversity (Table S1). On the basis of Shannon indices,
participants who spent more than 4 h per day outside had more-diverse communities
than people who were outside for less than an hour per day. Pet ownership also had
a significant effect (increase) on the measured microbial diversity of thigh and nostril
skin samples, which is in accordance with previous research that demonstrated that
homes with dogs had higher levels of diversity (14, 32). These studies have stated that
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diversity is increased both by dog-associated taxa and their need to be outdoors daily.
The nostrils are hypothesized to have experienced a shift in microbiota due to inhaling
biological particles shed from the animals.

Use of a large number of skin products was correlated with higher diversity, but
this may be linked to other sex-associated factors. In particular, facial regions such
as the eyelids had higher diversity for participants who applied facial cleansers,
moisturizers, or cosmetics, which were predominantly female participants. Body
regions whose microbiota varied by biological sex, such as the thighs due to the
influence from the vaginal microbiome, therefore also appeared to be strongly
correlated with sex-specific hygiene products, such as facial cleansers, although
these products would not have an effect on the microbial community of body
regions they do not directly contact. A study that mapped the 3D molecular
cartography of human skin noted that skin composition was influenced by hygiene
product application (1). Our study further indicates that this lasting impact on the
skin environment may increase the diversity level of facial skin.

The inner nostril was included as a skin region because it contains sebaceous
and sweat glands, as well as a keratinized epidermal layer that is more similar to
skin than the nasal cavity (33). Participants with higher numbers of allergies had
significantly more-diverse nostril and outer nose communities (Table S5). Individ-
uals with dairy, wheat, and strawberry allergies exhibited higher diversity, whereas
those with dust allergies had lower diversity. Asthma sufferers have been reported
to have higher microbial diversity of the lung microbiome (34–36). It is therefore
possible that increased diversity at the entrance to the respiratory tract may
influence other ailments, such as allergies. Allergies did not appear to have an effect
on any other body locations.

Study limitations. A limitation of the study was a limited sample size of 20
individuals. The goal of the current study was to sample from a wide range of body
locations in order to identify the regions that are most useful for linking couples via
their skin microbial profiles. This was conducted instead of sampling a low number of
sites from many individuals to avoid missing key trends in the microbiota across the
body. For example, if we had only sampled the thighs of many couples, we would not
have been able to elucidate any cohabitation effect on the skin microbiome. Now that
trends from each body location have been observed, future studies can focus on
sampling a broader range of participants while reducing the number of samples
required per participant, especially because individuality was pronounced.

Additionally, this study sequenced the V3-V4 region of the 16S rRNA gene. Research
in this area has been progressing rapidly and has resulted in numerous research articles
and reviews discussing the inherent biases in each primer region (37–40). It is possible
that relative abundances of certain organisms, such as Staphylococcus and Propionibac-
terium, would be altered if a different region had been used for this study, such as the
V1-V3 region (39). Indeed, mismatches of only a few base pairs can result in poor
amplification of taxa that are abundant on skin, as was the case with Propionibacterium
in a previous study (41). It has therefore been suggested by Zeeuwen and colleagues
that a skin microbiome-specific primer set should be designed that is optimized for
bacteria found on human skin, which does not necessarily need to exclude the V4
primer region (42). Further validation would include sequencing a defined mock
community with staggered concentrations to monitor any potential biases that may
occur within the selected primer region or two-step amplification protocol.

There was also limited ethnic diversity; nearly all participants were of Caucasian
heritage. The cohabiting couple of non-Caucasian descent had more indicators than
the other couples. It is unknown the degree to which racial heritage attributed to this
change in microbial diversity compared to other factors, such as reported skin condi-
tions, time spent outdoors, and activity levels. Additional studies will include a higher
diversity of participants to determine the effects that racial heritage and related social
changes may have on the skin microbiome. Indeed, other microbiome studies have
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concluded that race was a significant factor governing the microbiome of the vagina
(23, 43) and gut (44).

Conclusion. This study was the first to analyze the distribution of microorganisms
on cohabiting couples by sampling a wide range of skin regions. Although body
location and individuality had the most substantial influences on the skin microbiome
of sampled cohabiting couples, machine learning approaches were nonetheless able to
classify samples from cohabiting couples in �86% of test cases. Couples were most similar
based on foot microbiota, likely reflecting the collection and distribution of dust from floors
to all occupants of a home. In contrast, the inner thigh region was the best indicator of
individuality and biological sex. Possessing pets, consuming smaller quantities of alcohol,
and exercising more were associated with higher levels of microbial diversity.

MATERIALS AND METHODS
Ethics. This study has been approved by the Office of Research Ethics at the University of Waterloo

(ORE no. 20993). The following procedures were conducted in accordance with the approved documen-
tation. Written consent was received from all individuals and cannot be linked to completed surveys or
samples. All participants remain anonymous.

Sample collection. A total of 17 body regions of 10 cohabiting and sexually active couples living in
southwestern Ontario in Canada were sampled to determine the distribution of their microbial commu-
nities (Fig. 1). All participants reported being healthy heterosexual adults between the ages of 20 to
49 years and had lived together for periods ranging from 4 months to 14 years. For consistency, the study
included mostly Caucasian subjects (18 subjects), although one East Asian participant and one Asian
participant were also included. The upper eyelids, outer nostrils, inner nostrils, armpits, torso, back, navel,
inner thighs, bottom of feet, and palms of hands were sampled by the participants themselves using
sterile foam swabs. While applying moderate pressure, skin was swabbed five times in a forwards and
backwards motion. The swab was then rotated and repeated in adjacent areas at the same body site for
a total of 20 strokes per swab. Sample swabs were returned to their initial plastic storage container and
frozen at �20°C until DNA extraction. All participants provided comprehensive metadata for analysis (see
Table S5 in the supplemental material). These data were collected to test whether lifestyle choices also
affected the skin microbiome and to determine whether any of the participants had any confounding
factors that may impact the results. Although all categories were analyzed to determine whether any
lifestyle choices had an effect, only significant factors are discussed.

DNA extraction and amplification. Genomic DNA was extracted using the PowerSoil-htp 96-well
DNA isolation kit (Mo Bio Laboratories) according to a previously published protocol (45). The bead-
beating manufacturer’s protocol was used at the speed setting of 20 for 10 min on a Mixer Mill MM400
plate shaker (Retsch) with a plate adapter set (Mo Bio Laboratories). A final 75-�l volume of DNA was
eluted and stored at �20°C in the EDTA-free elution solution supplied in the kit.

A 464-bp fragment of the V3-V4 region of the 16S rRNA gene was amplified by using the universal
prokaryotic primers Pro341Fi (5=-CCTACGGGNBGCASCAG-3=) and Pro805Ri (5=-GACTACNVGGGTATCTAA
TCC-3=) (46). The V3-V4 region has been used in multiple skin microbiome studies (25, 47–49) and has
been experimentally shown to produce the closest sequence agreement to known low-diversity mock
community samples (40). However, previous studies have commented on the potential for bias between
this region and the V1-V3 region, particularly with Propionibacterium and Staphylococcus (37–39). The
primers were modified to include adapters for binding the flow cell (Illumina), a 6-base barcode for
multiplexing, and complementary forward and reverse regions required for Illumina primers, as de-
scribed previously (50). Two rounds of PCR were conducted targeting the same 16S rRNA gene region.
The first round was conducted for 25 cycles without the Illumina adapters, followed by a second round
of 15 cycles in order to attach the adapters. We have found that this procedure improves yield and
specificity for low-biomass samples from a wide range of skin and surface swab DNA extracts. Two
rounds of amplification did not result in a difference in community composition according to a
preliminary subset of four samples that were sequenced using both protocols with one round and two
rounds of amplification (data not shown). The first PCR amplification mix contained 2.5 �l of 10�
ThermoPol Taq buffer (New England Biolabs), 1.5 �l of 10 mg ml�1 bovine serum albumin (BSA), 0.05 �l
of 100 mM total deoxynucleoside triphosphates (dNTPs) (New England Biolabs), 0.05 �l of each 100 �M
forward and reverse primer (Integrated DNA Technologies), 0.125 �l of 5 U �l�1 Taq polymerase (New
England Biolabs), 1 to 10 ng of template DNA (3 �l for the majority of samples), and nuclease-free
PCR-grade H2O to a 25-�l total reaction volume. The reaction was run on either the T100 thermal cycler
(Bio-Rad) or the C1000 thermal cycler (Bio-Rad) at 95°C for 30 s (initial denaturation) and 25 cycles, with
1 cycle consisting of 95°C for 15 s (denaturation), 55°C for 30 s (annealing), 68°C for 60 s (extension), and
a final extension of 68°C for 10 min.

The second PCR amplification mix contained 2.5 �l of 10� ThermoPol Taq buffer, 1.5 �l of 10 mg
ml�1 BSA, 0.05 �l of 100 mM total dNTPs, 0.05 �l of 100 �M forward primer, 1 �l of 5 �M reverse primer,
0.125 �l of 5 U �l�1 Taq polymerase, 1 �l of product from the first PCR, and 18.8 �l of nuclease-free
PCR-grade H2O to a total reaction mixture volume of 25 �l. The reaction was run on the T100 thermal
cycler or the CFX96 real-time system at 95°C for 30 s and 15 cycles, with 1 cycle consisting of 95°C for
15 s, 55°C for 30 s, 68°C for 60 s, and a final extension of 68°C for 10 min. One sterile swab control per
kit and one negative template control per 96-well plate were included to monitor potential contami-
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nation. Each reaction was performed in triplicate to eliminate any potential PCR bias (51). All PCR
amplifications were prepared in a PCR hood that was UV treated for 15 min. All triplicate PCR
amplifications were pooled and stored at �20°C until further use.

Illumina library preparation. Pooled samples were quantified using the AlphaView band analysis
tool (ProteinSimple). Relative concentrations of each product were determined, and each 96-well plate
was pooled using an equal quantity of PCR product. The pools were purified using the manufacturer’s
protocol for the Wizard SV gel and PCR cleanup system (Promega) and stored in nuclease-free H2O at
�20°C until library quantification.

The purified pools were quantified using the Qubit 2.0 fluorometer (Life Technologies) with the
Qubit dsDNA (double-stranded DNA) HS (high-sensitivity) assay kit (Invitrogen) and diluted to 6 nM.
The 6 nM pools were merged into a single 100-�l pool, ensuring that each sample had an equivalent
amount of PCR product in the final pool. The correct DNA concentration was determined using
Qubit, the qPCR (quantitative PCR) PerfeCTa NGS (next-generation sequencing) library quantification
kit for Illumina sequencing platforms (Quanta Biosciences), and gel quantification. The concentra-
tions calculated from all quantification methods were compared to ensure consistent concentration
readings and were subsequently stored at �20°C until sequencing occurred. The library was
quantified the day of sequencing using a Qubit fluorometer to ensure that freezing had not altered
the DNA concentration.

Illumina sequencing. High-throughput sequencing on a MiSeq instrument (Illumina) was used to
analyze the amplified V3-V4 region of the 16S rRNA gene. The MiSeq reagent v2 kit-500 cycles (Illumina)
was used according to the manufacturer’s protocol to prepare the final quantified pool for sequencing.
A 10% PhiX control was included to increase sample diversity. In brief, the library and the PhiX control
were denatured with 0.2 N NaOH and diluted to 8 pM, before being merged 10:1. The pooled library/PhiX
solution was loaded onto the MiSeq reagent v2 cartridge (Illumina) and sequenced.

Assembly of sequence data. The following bioinformatic pipeline was composed entirely of
open-source software and was managed by AXIOME (automation, extension, and integration of microbial
ecology) version 1.5 (52). The generated paired-end sequences were assembled with PANDAseq version
2.8 (53) using the default parameters of a quality threshold of 0.9, a minimum sequence overlap of 1 bp,
and a minimum read length of 32 bp. The assembled sequences were analyzed by QIIME (quantitative
insights into microbial ecology) version 1.9.0 (54). The sequences were then clustered de novo with
UPARSE (55) at 97% and 99% sequence identity, which also removed chimeras and sequences that
appeared only once in the data set (55). The clustered sequences were then aligned with PyNAST version
1.2.2 (56). RDP version 8.1 (57) was used to assign all taxonomy with a minimum confidence of 80%, using
the most recent Greengenes database version 13.8 (58).

Samples with fewer than 5,293 reads were removed. These samples did not have a visible band
on the agarose gel but had been included in case there was sufficient DNA for downstream analyses.
All of the no-template controls (NTCs) and sterile swab controls contained less than half the number
of reads as this cutoff. This resulted in the removal of the following 10 samples in the human data
set: three armpit and foot samples, as well as one sample each from back, thigh, hand, and torso.
Rarefication was used to control for uneven sequencing depth by equalizing the number of reads
per sample (Table S3).

Statistical analyses. All analyses were generated using a Bray-Curtis distance matrix when applica-
ble. Sample alpha diversity was measured using the Shannon index and the total number of observed
OTUs. Nonparametric two-sample t tests were calculated to determine the significance of each of the 79
metadata categories (Table S5) using the multiple_rarefaction.py, alpha_diversity.py, collate_alpha.py,
and compare_alpha_diversity.py commands in QIIME. Multiple rarefactions were conducted with a
minimum size of 100 reads and a maximum size of 5,290 reads, increasing in intervals of 100 sequences
after creating 10 rarefactions for a total of 530 rarefactions. Bonferroni’s correction was used to avoid
false significance from a data set of 330 samples.

Sample beta diversity was measured using ordinations and permutational analysis of variance
(PERMANOVA). Principal-coordinate analysis (PCoA) ordinations were used to visualize the microbial
variation between the samples. Ordinations were created with the phyloseq (version 1.14.0) and ggplot2
(version 2.1.0) packages in RStudio (59). PERMANOVA calculates the percent variation explained by each
metadata category and was run using the adonis function from the vegan package (version 2.4-0) in R
with 1,000 permutations.

Indicator species were classified to determine which organisms were highly abundant across various
metadata categories. Core species, classified as OTUs that have at least one sequence per sample in a
particular category, were also determined to identify organisms that were ubiquitous on all skin samples.
The Dufrene-Legendre indicator species analysis was conducted to determine whether specific OTUs
were indicative of a specific metadata category (60). An indicator was defined as having a significant
P value (�0.05) and an indicator value threshold of 0.7 with a minimum mean abundance of 10 reads.

Random forest modeling was used to determine the accuracy with which samples can be correctly
classified to couples. The supervised_learning.py command in QIIME was used with the options of
creating 1,000 trees and 10-fold cross validation. All possible incorrect couple pairings, where all couples
were matched with a nonpartner participant of the opposite sex, were generated using the module
itertools.permutations as a custom script in Python.

Data availability. The sequence data associated with this article are available in the Sequence Read
Archive (SRA) under BioProject accession number PRJNA345497.
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