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Control strategies of 3-cell Central 
Pattern Generator via global stimuli
Álvaro Lozano1, Marcos Rodríguez1 & Roberto Barrio2

The study of the synchronization patterns of small neuron networks that control several biological 
processes has become an interesting growing discipline. Some of these synchronization patterns of 
individual neurons are related to some undesirable neurological diseases, and they are believed to 
play a crucial role in the emergence of pathological rhythmic brain activity in different diseases, like 
Parkinson’s disease. We show how, with a suitable combination of short and weak global inhibitory and 
excitatory stimuli over the whole network, we can switch between different stable bursting patterns 
in small neuron networks (in our case a 3-neuron network). We develop a systematic study showing 
and explaining the effects of applying the pulses at different moments. Moreover, we compare the 
technique on a completely symmetric network and on a slightly perturbed one (a much more realistic 
situation). The present approach of using global stimuli may allow to avoid undesirable synchronization 
patterns with nonaggressive stimuli.

The production of coordinated and rhythmic behaviors in organisms, such as chewing, respiration, walking, 
crawling and swimming, is a fundamental question in the study of motor control and neuroscience. Many of 
these behaviors are driven by central pattern generators (CPGs), which are groups of neurons (small biological 
neuron networks) whose interactions can produce rhythmic patterns1–5 (like in locomotive patterns6–8 or in the 
direct-reverse flow of the circulatory system in leeches9,10) even in isolation from motor and sensory feedback 
from limbs and other muscle targets.

Although anatomical details of CPGs are only known in a few cases, they have been shown to originate from 
the spinal cords of various vertebrates and to depend on relatively small and autonomous neuron networks. The 
classical view of CPGs, as specific networks of neurons dedicated to this function alone, has been supported by 
numerous data mostly obtained from central nervous systems of invertebrates. In these cases, it is possible to 
identify many of the key neuronal elements composing a pattern generator, leading to an easier analysis. Besides, 
it is possible to record and to biophysically analyze these neurons and their synaptic interactions. For instance, 
swimming in the medicinal leech, Hirudo medicinalis, is driven by a CPG composed of a set of eight pairs of cells 
and one unpaired cell per ganglion11,12. The CPG for heartbeat in leeches consists of seven identified pairs of seg-
mental heart interneurons and one unidentified pair13.

A key point in live organisms is that they must adapt their behavior to meet the needs of their internal and 
external environments. Individuals vary in their responses to stroke and trauma, hindering predictions of results. 
An explanation might be that neuron circuits contain hidden variability that becomes relevant only when those 
individuals are challenged by injury14. CPGs, as part of the neuronal circuitry of an organism, can be modulated 
or controlled (neuromodulation) to adapt to the environment and to the organism’s needs.

Mathematical modeling is essential to analyze CPGs and, although the real circuitry involved in a particular 
CPG is far from being known, these models generate meaningful hypotheses about the network function. A deep 
study of simplified models arises as a natural first step in one of the main challenges of the new century—compre-
hending brain activity. Unraveling the mechanisms of such an incredibly complex conglomerate requires to fully 
understand the dynamics of its basic elements—neurons and small neuron circuits or motifs. Such motifs share 
same characteristics detected in oscillator networks15–17. Therefore, mathematical studies of reduced CPG models 
produce useful insights, shedding light onto some operational principles of biological CPG networks.

The study of synchronization patterns in CPGs has become an interesting growing discipline since it provides 
details of the different tasks a CPG may control. We remark that several of these synchronization patterns of indi-
vidual neurons are related to some undesirable neurological diseases, and it is believed to play a crucial role in the 
emergence of pathological rhythmic brain activity in different diseases, like Parkinson’s disease, essential tremor, 
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and epilepsy18. The theoretical study of the synchronization patterns associated to these diseases, and how to 
control them, is a mayor goal in neuroscience. For instance, the development of techniques for suppression of the 
undesired neural synchrony constitutes an important clinical problem. Technically, this problem can be solved by 
implanting microelectrodes into the impaired part of the brain with subsequent electric stimulation18. A recently 
studied technique is Deep Brain Stimulation (DBS)19. The DBS technique, based on a global stimulation of the 
neuronal circuit, has the main objective of reestablishing desynchronization of the network (or another synchro-
nization pattern) via a pulse train, whose parameters are selected by the neurosurgeon to decrease the disease 
symptoms. The results of that study confirm what is expected from the Gate Control Theory20, the synchroniza-
tion of neuronal activity obstructs information flow in brain structures, whereas, the desynchronization allows 
the flow. Therefore, the development and study of mathematical models is crucial, and simulation of models of 
CPGs could provide new treatments and therapies.

In mathematical control of ordinary differential systems several approaches have been proposed21 using dif-
ferent optimization techniques. An active area in dynamical systems is the control of chaotic systems22 by means 
of the stabilization of some particular unstable periodic orbits which foliate the chaotic invariant set (the E. Ott,  
C. Grebogi and J. A. Yorke approach23), or by an appropriate continuous controlling signal injected into the sys-
tem (the Pyragas method24). These approaches are not suitable for biological networks since it is not always pos-
sible to change some parameters since they are fixed by the living environment and its is necessary to isolate the 
Poincaré section to locate unstable periodic orbits and to compute the precise perturbations necessary to attain 
stability. Another control method consists of varying one parameter (external electrical current, a parameter that 
really can be tuned) of a single neuron of the model25. However, since that parameter corresponds to an external 
electrical current and the neurons of the CPG are supposed to be extremely close, it seems unrealistic to suppose 
that the current does not affect the remaining neurons. In our case, we try to find ways to control the CPG using 
short and weak global pulses. That is, we show how, with a suitable combination of global inhibitory and excit-
atory stimuli of the complete network, we can switch between different stable bursting patterns in small CPG 
neuron networks. This approach may open new ways of controlling undesirable synchronicity patterns in CPGs.

Results
The Mathematical Neuronal Model.  The basic neuron circuit we are going to consider is a model rep-
resented by a three node network (Fig. 1a). This model is the main building block that makes up more complex 
CPG circuits (we note that many anatomically and physiologically diverse CPG circuits involve a three-cell motif, 
including the spiny lobster pyloric network, the Tritonia swim circuit, and the Lymnaea respiratory CPGs).

The nodes of the network represent neurons which can present two different states, active (bursting or spik-
ing) or inactive (quiescence). The edges of the network represent the synaptic connections between neurons. The 
synaptic connection is directed from the axon of a pre-synaptic neuron to the dendrite of a post-synaptic one. 
Therefore, we consider two different edges between each pair of neurons representing this biological circuit. In 
our case each node of the network will model a leech interheart neuron26,27, an inhibitory neuron model derived 
from the Hodgkin-Huxley formalism28:
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where the dynamics of the gating variables are determined by the experimentally calibrated Boltzmann functions:

Figure 1.  (a) Scheme of the 3-cell network with inhibitory synapses. (b) Definition of the delays between 
neurons with blue neuron as the reference burster.
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(see ref. 27 and references therein for an exhaustive description of the model and the Methods section for the 
values of the parameters used in our simulations).

There are two main parameters controlling the activity in the model of each individual burster: the external 
current Iapp that affects the fast voltage dynamics, and the parameter VK

shift
2

, which is the deviation from the exper-
imentally averaged value, V =  − 0.018 V, corresponding to the half-activated gating channel for the slow potas-
sium current. Both Iapp and VK

shift
2

 are independent bifurcation parameters. Their variations make the neuron 
dynamics evolve and switch between tonic spiking, bursting and quiescence. In terms of dynamical system theory, 
these regimes are associated, respectively, with stable one- and two-time scale periodic orbits (that can become 
chaotic at bifurcations) and equilibrium states in the phase space of the model. Figure 2a represents the 
V I( , )K

shift
app2

-biparametric sweep of the isolated neuron model obtained with the spike-counting method29. Its 
core is the number of spikes between contiguous quiescent periods for the given parameter values. The spike 
number is encoded according to the colorbar on the right. This method allows us to identify stability windows 
with constant spike numbers, as well as to detect the borders where the spike number changes. We can see these 
structures separated by spike-adding bifurcations30,31 in Fig. 2 with clearly demarcated regions corresponding to 
bursting, tonic spiking and quiescence states. The sweep diagram is overlaid with several key curves (obtained by 
the parameter continuation package MatCont32) that correspond to bifurcation transitions between different 
activity states27. These are the saddle-node bifurcation of equilibria between hyperpolarized quiescence and  
bursting (SNeq), saddle-node bifurcation of limit cycles on the tonic-spiking and bursting boundary (SNlc) and the 
Andronov-Hopf bifurcation on the boundary between depolarized quiescence and tonic spiking (AH).  
The combined bifurcation diagram serves as a “road map” for individual ingredients (isolated neurons) used  
to build a suitable model of a multifunctional CPG circuit25. Once we have the global picture we magnify a region 
of bursting behaviour (Fig.  2b), centered at the selected parameter values for our leech neurons: 

= − . .V I( , ) ( 0 021, 0 006)K
shift

app2
. Around these values the neuron is a burster with 21 spikes per period (Fig. 2c). 

Note that small perturbations of the parameter values move the neuron to a quiescence state or change the num-
ber of spikes (the vertical line in Fig. 2b).

The three neurons of the network are reciprocally coupled via the Isyn term, which models fast and weak chem-
ical synapses using the fast threshold modulation scheme:

= − + − − Θ −I g V E V( )[1 exp( 1000( ))] , (3)syn syn post syn pre syn
1

where Vpost and Vpre are the voltages of the post- and pre-synaptic cells. Following refs 25,26,33, the study of the 
model can be done by analyzing fixed points of the Poincaré return maps to obtain the phase lags between the 
bursting periods of the neurons. Taking the blue neuron as the reference burster, we define the phase delays 
sequence d d{ , }n n

21 31  as described in Fig. 1b. We normalize these values dividing them by the period P (lapse 

Figure 2.  (a) V I( , )K
shift

app2
-biparametric sweep using the spike-counting method (color-coded bar on the right for 

spike range) with superimposed bifurcation lines, for Andronov-Hopf and saddle-node bifurcations, demarcating 
the regions of bursting, tonic-spiking and quiescent activity in individual neurons. (b) Magnification of the 
selected region. Increasing the Iapp current (upwards arrow) inhibits the neuron and vice versa. (c) Time series of 
the voltage variable of the reference burster and a plot of the periodic orbit.
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between bursts) of the blue neuron and we consider the normalized value modulo 1 (phase lags denoted by ϕ21 
and ϕ31 resp.). Thus, we have a discrete dynamical system on a torus26 and so, for any initial state of the network, 
we can compute the corresponding sequence of phase lags on the phase torus, that we represent in a 2D plot.

A stable pattern of the network will produce a constant sequence of lags, that is, a fixed point in the phase 
torus. In Fig. 3a we have marked 5 stable points, corresponding to the main 5 stable patterns this network can 
achieve. The points Blue P1 =  (0.45, 0.45), Red P2 =  (0.54, 0) and Green P3 =  (0, 0.54) correspond to the situation 
where two neurons are fully synchronized. The other neuron, called the pace-maker, has a lag of 0.54 with respect 
to the group of two and gives the color to the point in our representation. The points Yellow P4 =  (0.66, 0.33) and 
Orange P5 =  (0.33, 0.66) correspond, respectively, to a counter-clockwise and a clockwise traveling wave on the 
network of Fig. 1a where each neuron starts its duty cycle after the previously excited neuron with a lag of 0.33. Near 
point (0, 0) new stable patterns can appear, where the 3 neurons are bursting almost at the same time25. Each line 
of the plot represents an integration of the model starting from different initial lags. The lines have been colored 
according to the stable state the network reaches. Figure 3b is a 3-dimensional representation of the phase torus26. 
Note that varying the parameters of the system the network experiments different bifurcations that change the 
number and type of patterns34.

Control strategies via global stimuli.  As previously shown, a CPG exhibits different stable bursting 
patterns (multistability) which may correspond to biological functions such as locomotive patterns6–8 or the 
direct-reverse flow of the circulatory system in leeches9,10. Therefore, jumping from one stable pattern to another 
in order to change the biological response is an intrinsic mechanism of the animal. The natural question that 
arises is whether we can force those changes by applying external stimuli to the network.

The authors of some recent papers (see ref. 25 and references therein) propose to force those changes by 
varying the parameter Iapp for a single neuron of the model or, more generally, varying that parameter simulta-
neously in different neurons with different currents. However, since that parameter corresponds to an external 
electrical current and the neurons of the CPG are supposed to be extremely close, it seems unrealistic the use of 
such technique.

We propose the strategy of applying the same external current to all neurons of the CPG during the same time. 
More precisely, we propose to apply an inhibitory pulse followed by a excitatory one. Along this paper, the control 

Figure 3.  Phase torus. (a) Planar (2D) representation of the phase torus where x-axis represents the lag of 
the red neuron with respect to the blue neuron and y-axis the lag of the green one with respect to the blue one. 
Stable fixed points are marked. (b) 3D representation of the phase torus.

Figure 4.  Control technique. (a) In the timeseries of voltages, black arrows represent the inhibitory and 
excitatory pulses applied to the network. (b) The modification of the stable periodic solution of the system  
(each individual neuron) due to the impulses. The standard behaviour of a detached neuron is depicted in black  
(cf. Fig. 2c). The global attractor (equilibrium point) of the inhibited system is marked with a black star, and the 
periodic orbit associated to the excited system is drawn in violet.
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technique is composed of two opposite pulses, although the cases of two inhibitory or two excitatory pulses are 
also shown. This approach is more realistic since an external current should affect in a similar way all the neurons 
of a CPG inside of a living being, as in the Deep Brain Stimulation (DBS)19 technique.

Figure 4a shows a CPG bursting according to a stable pattern (Orange fixed point P5 =  (0.33, 0.66) in phase 
space Fig. 3). At a certain instant we apply the first pulse (of length much shorter than the period) and after it the 
second pulse is applied. We can observe that, after those stimuli, the CPG is no longer bursting according to a 
stable pattern. Moreover, the number of spikes in the bursting activity is altered giving shorter and/or longer duty 
cycles. During the first inhibitory pulse, which acts as a temporal change of parameters up in the vertical straight 
line in Fig. 2b, the attracting periodic orbit (in black in Fig. 4b) is destroyed and only the global attractor of qui-
escence (equilibrium point) remains in the system (blue region in Fig. 2b, and black star in Fig. 4b). Then, during 
this pulse, all the orbits change their course to temporarily go towards the black star. Obviously, inactive neurons 
are the least affected by this pulse. Afterwards, the system evolves again with the black periodic orbit. While the 
inhibitory pulse is applied active neurons can be completely inhibited or just perturbed a bit. This effect depends 
on the length of the pulse and the position of the neuron in the nominal orbit. Later, during the excitatory pulse 
the black periodic orbit is replaced by the violet one (Fig. 4b), moving the parameters down in Fig. 2b. As we 
can see in Fig. 2b, this excitation increases the number of spikes and the length of the activity cycle. The neurons 
excited during the inactivity cycle immediately jumps into activity. This effect is clear in Fig. 4a, where both red 
and green neurons get activated by the excitatory pulse. In the case of the green neuron the combination of both 
pulses reduces dramatically its duty cycle. Neurons during the activity cycle get their number of spikes modified 
evolving like the violet orbit as long as the excitatory pulse is present. Finally, this pulse disappears leaving the 
system back to the nominal black attracting orbit. The perturbed CPG must evolve some time to reach the new 
synchronization pattern, but the spiking pattern of each neuron is quickly recovered. Obviously, these changes 
depend on the instant when the pulses are applied.

Now we study in detail the control process. In Fig. 5a we represent the possible changes from the Orange 
stable fixed point (0.33, 0.66) to the rest of stable fixed points of the phase torus. The fixed point (0, 0) marked 
with a skull corresponds to the full synchronization of the three neurons. This pattern exists only because we are 
considering parameters to be equal among the three neurons. On the other hand, some authors hypothesize that 
synchronization is related to different pathologies such as Parkinson’s disease or epilepsy, leading to efforts to sup-
press synchronization on mathematical models of neuron networks19,35. In fact, they suggest that synchronization 
events obstruct information flow in a neuron network, and a external stimulus can re-establish desynchronization 
of the network19. We first consider equal neurons, but later we will allow small differences among them. From our 
starting pattern (Orange point), we intend to switch to any other pattern with the control technique.

Figure 5b shows a biparametric sweep of different instants of application of the two pulses control technique 
showing the final stable states the network can reach using the same color codes as Fig. 5a. The black color denotes 
non-convergence in the time of simulation or convergence to a point close to the fixed point (0, 0) (the skull 
point). Both pulses last 9% of the period length P. Considering time 0 when blue neuron starts bursting, and its 
period P as the unit, the abscissas represent the instant when the inhibitory pulse starts, and ordinates are the 
lapse between inhibitory and excitatory pulses. As we can see, there are combinations of pulses to jump to any 
possible stable fixed point. However, the yellow area in the plot is quite small and noisy, which makes difficult to 
aim to it. Note the 3-strip structure in both pulses due to the traveling-wave pattern of the 3-cell network of the 
starting point (Orange). This fact happens for all the simulations starting from a traveling-wave pattern.

In order to solve these problems we shorten the length of the pulses down to 1% of the period. Figure 6a shows 
the result of this strategy. It is clear that the plot is less noisy, but the yellow color has almost disappeared (just a 
couple of pixels). Besides, the non convergence zone is smaller compared with Fig. 5b, what means, of course, that 
larger pulses destabilizes more the systems creating larger transients in some regions or, in worst cases, full syn-
chronous bursting. Finally, we adopt an “in between” strategy, using pulses of length 5% of the period. The result 

Figure 5.  Control starting from the Orange fixed point P5 with pulses of length 9% of the period.  
(a) Possible changes of state. (b) Biparametric sweep of different instants of application of the two pulses 
showing the final stable states the network can reach.
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is presented in Fig. 6b. In this plot we show that the non convergent area is still small, and the yellow color appears 
in a less noisy area. Moreover, we have marked three small squares where all the colors coexist in a clearly defined 
area. There are other regions where it is possible to switch to most of the synchronization patterns, but the regions 
are more disordered and less sharp than the marked ones. In Fig. 6c we show a magnification of the leftmost 
square, where the five colors appear in sharp striplike patterns. Thus, it is possible to easily select a combination 
of pulse lengths that switches the network to the desired state. In other words, a suitable control strategy with 
reasonable short pulses allows to go to any synchronization pattern in this 3-cell CPG model. This is an interest-
ing result since it opens new lines of global control of the network via short and weak currents in all the network 
avoiding unrealistic approaches (ad hoc currents for each neuron). To complete the analysis, we show in plot (d) 
the case of two inhibitory pulses and in plot (e) the case of two excitatory pulses of length 5% of the period. Note 
that case (d) is quite similar to case (a), whereas case (e) barely allows to go to a “traveling-wave” pattern (P4,5).

Figure 6.  Biparametric sweep of different instants of application of the two pulses starting from the Orange 
fixed point P5 with: (a) inhibitory +  excitatory pulses of length 1% (short pulse); (b,c) inhibitory +  excitatory 
pulses of length 5% (medium pulse) of the period; (d) inhibitory +  inhibitory pulses of length 5% (medium 
pulse); (e) and excitatory +  excitatory pulses of length 5% (medium pulse).



www.nature.com/scientificreports/

7Scientific Reports | 6:23622 | DOI: 10.1038/srep23622

Above, we have described the control strategies to jump from the Orange stable point P5 (see Fig. 5a). Due to 
the symmetry of the network, jumping from the Yellow point P4 is essentially the same as the already described 
situation. The other possible situation is to start from a pattern where two of the three neurons are synchronized, 
that is, to start from Blue P1, Red P2 or Green P3 points of Fig. 5a. Without loss of generality, let us describe the 
case of the Green point P3 shown in Fig. 7. Note the 2-strip structure due to the synchronicity pattern in two 
groups of the 3-cell network at the starting point (Green). Applying pulses lasting 9% of the period reveals that 
the only possible effects of this control strategy are either staying at the same point or falling into the full synchro-
nization pattern (0, 0) (see left column plots of Fig. 7). But this is not a realistic situation since we are considering 
networks with perfectly equal neurons. Similar plots appear when shortening the length of the pulses.

In order to obtain useful control strategies, we take into account that real neurons may not have exactly equal 
intrinsic parameters as the ones used in the mathematical model (1). If we increase the parameter VK

shift
2

 of the 
model by 1‱ of its value for the green neuron, and by 2‱ for the red one, we can observe that it is possible to 

Figure 7.  (Left column) Three equal neuron network and (right column) slightly modified neuron network 
simulations. Biparametric sweep of different instants of application of the two pulses of 9% of the period 
starting from the Green fixed point P3 with: (a,b) inhibitory +  excitatory pulses; (c,d) inhibitory +  inhibitory 
pulses; and (e,f) and excitatory +  excitatory pulses.
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jump from the Green fixed point to the Blue one (see right column of Fig. 7). Furthermore, there are tiny orange 
and yellow spots in the case of using opposite pulses, allowing us to return to the rich previous situation of the 
Orange state of Figs 5 and 6. So, allowing small differences among neurons (which is indeed a more realistic situ-
ation) we show how a small CPG can be effectively controlled to switch from any stable pattern to the desired one. 
The use of two inhibitory or excitatory pulses looks very similar to the case of opposite pulses, but the yellow area 
is slightly bigger, making aim to it easier. This is a preliminary work that opens control strategies for small CPGs, 
but more detailed analysis and theoretical studies are part of our open problems.

Our remaining question is related to the origin of the change in behavior observed in Fig. 7 with small alter-
ations in neurons. In Fig. 8 we plot two magnifications of the neighbourhood of the complete synchronization 
state (0, 0) (skull point) in the phase torus. Since the first pulse inhibits the neurons, lags between them decrease, 
moving the state of the network towards (0, 0) in the phase torus. In Fig. 8a we show the case of perfectly equal 
neurons. In this situation, close to the origin there are several equilibrium points in the black region (full syn-
chrony pattern). Neither the control technique nor the evolution of the system itself can push the network towards 
another pattern. On the other hand, in Fig. 8b, where we show the case of slightly perturbed neurons, the black 
region has completely disappeared and there are “tracks” towards all the basins of attractions of the P1−5 fixed 
points. Moreover, the fact that the black basin containing the (0, 0) becomes now part of the blue basin, explains 
the very same phenomenon shown in Fig. 7. Therefore, the “realistic case” of slightly different neurons (or the 
presence of some “noise”) makes more robust the network allowing more options to control the CPG by means 
of two weak and short global pulses.

Discussion
The discovery of the fact that several synchronization patterns of individual neurons are related to some serious 
neurological diseases (like Parkinson’s disease) was a remarkable advance and motivated numerous studies in 
techniques to avoid them. We show how, with a suitable combination of global inhibitory and/or excitatory stim-
uli of a neuron network, we can switch between different stable bursting patterns in small CPG neuron networks 
(in our case a 3-cell network). Other authors have used the approach of per-neuron stimulus, but since the dis-
tances within the CPG are tiny, this approach seems to be unrealistic. Our approach is based in global stimuli, a 
more realistic one, using two weak short pulses (inhibitory and/or excitatory), and so it avoids “dangerous” strong 
perturbations. We explain how a global stimulus modifies the intrinsic dynamics of each neuron (Fig. 4). We also 
examine how the instant where the pulses are applied at, determines the final state of the network (Figs 5–7). 
Remarkably, we exhibit error-resistant pulse combinations to switch between stable states, that is, small perturba-
tions on when any of the pulses are applied does not alter the desired change. We also consider slightly different 
neurons in the same network obtaining more complete and accurate results, avoiding the full synchronization 
pattern. Moreover, we explain how these small differences, or noisy environments, explain the better performance 
of the control strategy.

It should be interesting for future research to explore other kind of stimuli and control techniques. For exam-
ple, chemical modifications of some parameters, introducing smooth changes in the system instead of the discon-
tinuities used in previous research. Besides, we expect that some of these ideas may be useful in larger networks, 
but in that case a previous development of new mathematical techniques to locate and represent the different 
synchronization patterns is required.

Methods
The numerical integration of the differential equations of the mathematical model, to generate the data of each 
line of the phase torus, has been done using a embedded Runge-Kutta scheme of order 5 (dopri5(4) RK method) 
with dense output36 (to compute Poincaré sections) and variable-stepsize. Since the computation of each line is 
independent from any other, the global computation is completely parallelizable. We remark that we can take 

Figure 8.  Neighbourhood of the complete synchronization state (0, 0) in the phase torus for (a) perfectly equal 
neurons and, (b) slightly perturbed neurons, increasing the parameter VK

shift
2

 by 1‱ of its value for the green 
neuron, and by 2‱ for the red one. It is remarkable the absence of black basins.
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advantage of the latest computation devices such as multi-core CPUs, GPGPUs, Many Integrated Core coproc-
essors, etcetera. For computing the plots we have used a NVIDIA Tesla C2075 GPU-card, generating the data 
around 90 times faster than using a single core37.

The set of parameters used in the integration of the model (Eq. 1) is: Θ = − .0 03syn , Esyn =  −0.0625, 
ENa =  0.045, = − .E 0 07K2

, EL =  − 0.046, Iapp =  0.006, = − .V 0 021K
shift

2
, gNa =  160.0, = .g 30 0K2

, gL =  8.0, C =  0.5, 
τNa =  0.0405, τ = .0 9K2

. The value gsyn =  0.0007 is used for control results in the section that introduces the control 
strategies via global stimuli, and gsyn =  0.0004 for smooth visualization of phase space of the network in the section 
that describes the Mathematical Neuronal Model.
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