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Abstract

Understanding the mechanisms by which sensory experiences are stored remains a compelling challenge for neuroscience.
Previous work has described how the activity of neurons in the sensory cortex allows rats to discriminate the physical
features of an object contacted with their whiskers. But to date there is no evidence about how neurons represent the
behavioural significance of tactile stimuli, or how they are encoded in memory. To investigate these issues, we recorded
single-unit firing and local field potentials from the CA1 region of hippocampus while rats performed a task in which tactile
stimuli specified reward location. On each trial the rat touched a textured plate with its whiskers, and then turned towards
the Left or Right water spout. Two textures were associated with each reward location. To determine the influence of the
rat’s position on sensory coding, we placed it on a second platform in the same room where it performed the identical
texture discrimination task. Over 25 percent of the sampled neurons encoded texture identity – their firing differed for two
stimuli associated with the same reward location – and over 50 percent of neurons encoded the reward location with which
the stimuli were associated. The neuronal population carried texture and reward location signals continuously, from the
moment of stimulus contact until the end of reward collection. The set of neurons discriminating between one texture pair
was found to be independent of, and partially overlapping, the set of neurons encoding the discrimination between a
different texture pair. In a given neuron, the presence of a tactile signal was uncorrelated with the presence, magnitude, or
timing of reward location signals. These experiments indicate that neurons in CA1 form a texture representation
independently of the action the stimulus is associated with and retain the stimulus representation through reward
collection.
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Introduction

Whisker-mediated tactile perception in rats has been the object

of intense investigation[1–9]. In spite of progress in understanding

the coding of physical features, little is known about how tactile

events are encoded in memory and how neurons represent the

meaning of tactile stimuli in the context of behavior.

To address these issues, we have investigated the CA1 region of

hippocampus. Hippocampus has been posited to be crucial for

bridging across events that are causally linked, but separated in

time[10,11]. Our hypothesis was that it would hold short-term

traces of salient sensory signals – those used to guide behavior –

until reward collection. Since hippocampus contains a prominent

representation of space[12,13], we could expect to uncover tactile

signals only after teasing them apart from those related to the

animal’s head and body movement through space. We isolated

tactile signals by presenting 3 or 4 textures, 2 of which were

associated with one reward location; because two stimuli were

always associated with the identical action and reward location,

any difference in activity must reflect the coding of touch rather

than some aspect of explicit behavior.

This approach allowed us to distinguish tactile signals and track

their evolution over the trial time course; we also tracked the

neuronal activity related to the animals’ actions. Finally, we

explored the interaction of different signals by asking to what

extent the population of neurons recruited in the representation of

touch overlapped, or was distinct from, the population of neurons

recruited in the representation of reward location.

Results

Touch-guided Behavior
This study set out to identify how neurons in rat hippocampus

represent tactile stimuli and the behavior associated with those

stimuli. Animals perched on one of two platforms from which they

could contact, with their whiskers, a plate mounted on a central

motor (Figure 1; Video S1). Textures are described in Materials

and Methods. They discriminated the surface of the plate and,

according to its identity, turned left or right to obtain a reward

(Figure 2).

Four rats (rats 1–4) were trained and tested on only one

platform (platform A), the one-platform task. Three textures were

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16462



used (T1–T3): two textures were associated with one reward

location and the remaining texture with the opposite reward

location. Associations between texture and reward location were

fixed for each animal but were varied across rats (Table S1). Two

rats (rats 5, 6) were trained and tested on platforms A and B, the

two-platform task. Four textures were used (T1–T4): two textures

were associated with each reward location. Training began on just

one platform (rat 5 – platform A; rat 6 – platform B). After

reaching a stable performance of at least 75 percent correct per

session, the animals were exposed to the second platform. The

same set of textures was presented on the two platforms (Figure 1);

the association between texture and reward location remained

constant in egocentric coordinates. Unexpectedly, neither rat

showed immediate transfer of knowledge from the first to the

second platform. About 3–5 days (about 400 trials) of additional

training were required for the animals to relearn the task. For the

duration of the experiment, they showed lower performance in the

second location (median performance across all recording sessions:

90.2 percent on first platform, 80.1 percent on second platform;

Wilcoxon sign rank test, p,0.00001). The lack of immediate

transfer suggests they formed two independent representations of

the task; at the second location, the texture-North/South

(allocentric) association competed with the texture-left/right

(egocentric) association, with the allocentric association initially

stronger than the egocentric one[14]. Physiological correlates of

this independence will be presented later.

Timing of Behavioral Events
The sequence of actions in well-trained rats was stereotypical

(Figure 2). We verified that the durations of the events (touch,

turn) leading to reward collection did not differ for the two

textures associated with the same reward location. They touched

the texture for just over 500 ms (median 530 ms, interquartile

range 375–766 ms). The turn duration (time elapsed between

withdrawal from the texture and triggering of the optical sensor

at the water spout) was about 800 ms (median 812 ms,

interquartile range 656–1032 ms). To analyze neuronal activity,

spike trains were aligned to the instant when the optical sensor at

the drinking well was interrupted, referred to as ‘‘reward onset’’

and set to 0 ms.

Neuronal Representation of Texture
The experiment was designed to make encoding of texture

identity explicit. Since the observed behavior did not differ for the

texture pair associated with one reward location, any differences in

neuronal response could be attributed to texture rather than the

trajectory or spatial coordinates of the animal’s head or body.

Although neuronal firing likely discriminated between textures

associated with disparate reward locations, we limited the texture

analysis to pairs of textures associated with the same reward

location in order to avoid any entanglement with reward location

signals.

We recorded 896 neurons in six rats (490 pyramidal cells and

396 interneurons; Figures S1–S2). All reported results are from

correct trials (however see Figure S3). To quantify texture coding,

we measured the information carried by neuronal firing rate in a

400 ms window that was advanced from 22,000 ms to

+2,000 ms, relative to reward onset, in 25 ms steps. In order to

estimate the significance of the texture coding in each neuron,

texture information was averaged over time and compared to the

average values of information obtained by shuffling texture labels

across trials (p,0.05 see Materials and Methods).

Figure 1. Experimental setup. Photograph of texture palpation taken under visible light. A-platform A, B-platform B, B’-rat position on platform B,
M-motor for automated presentation of textures, T-textured plate, F-foot rest, O-optical triggers for touch detection, L, R-left and right water spouts,
V-high-speed video camera. While the rat collected the reward, the motor rotated to put one of the four textures, in random order, in position for the
next trial. The motorized foot rest (F) was then extended to allow the rat to reach the texture. When the rat withdrew after texture palpation, the foot
rest was retracted to prevent the animal from returning to the texture. Optical triggers were positioned in front of the texture to detect touch and the
beginning of turn (i.e. the moment when the animal retracted from the texture). The animal’s choice was detected by another set of optical triggers
(not labeled) located immediately adjacent to the drinking wells.
doi:10.1371/journal.pone.0016462.g001
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To measure the overall strength of the texture signal in the total

population of neurons, we conducted the following test. We

examined each neuron for the presence of a significant texture

signal, as above, under each possible condition (that is, for all

reward locations). This provided an observed number of texture

signals within the data set. Then for each neuron, we shuffled the

texture labels and examined the neuron again for the presence of a

significant (p,0.05) texture signal. This provided the number of

texture signals that could be expected by chance, given that the

texture labels had been shuffled. We repeated the shuffling and

recounting procedure 200 times to produce a distribution of the

number of texture signals expected by chance. Finally, we

compared the actual number of texture signals (with texture labels

intact) to the distribution of numbers of texture signals expected by

chance. The result is given in Figure S4. By comparison to the

distribution of counts obtained after shuffling, it can be calculated

that the probability of the observed number of texture signals

occurring by chance is p,0.0000000005. Thus, the population on

the whole carried a strong texture message. On that basis, we

hereafter consider the signal in individual neurons.

In the one-platform task (rats 1–4), 15 out of 217 sampled

neurons (7 percent) carried a significant texture signal (median

value of peak information among informative signals: 0.16 bits,

interquartile range: 0.12–0.19 bits). Texture information appeared

when the animal began to touch the texture and in some neurons

persisted or reappeared later in the trial, for example at reward

Figure 2. Time course of behavior. (A) Images from overhead high-speed video illustrating the initial contact (left), palpation of the texture
(middle) and the instant of withdrawal (right), equivalent to the beginning of the turn. (B) On each trial the rat approached the plate, triggering an
optic sensory, and touched the texture with its whiskers (left). Once the animal identified the texture, it turned to the right or to the left drinking
spout (middle) where it collected the water reward (right). (C) Time course of behavior in a typical recording session. Upper plot: for all the trials,
horizontal red lines indicate the duration of touch time and blue lines indicate turn time. Trials are aligned on reward onset, 0 ms. Lower plot: By
summating over trials, we calculated the probability that the rat was engaged in touch (red) or turn (blue) at any given time.
doi:10.1371/journal.pone.0016462.g002
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onset. In the two-platform task (rats 5–6), 170 out of 679 sampled

neurons (25 percent) carried a significant texture signal (median

value of peak information among informative signals: 0.17 bits,

interquartile range: 0.13–0.23 bits), considering both platforms

together. On a given platform, over 13 percent of the sampled

neurons encoded texture identity. Figure 3 shows four examples.

The texture signal was associated with a significant modulation

of firing rate. Among putative pyramidal neurons that carried

significant quantities of texture information, in the 400-ms window

aligned with the peak texture signal the mean difference in firing

rates evoked by the two encoded textures was 2.6 spikes per

second, compared to a mean whole-session average firing rate of

2.5 spikes per second. Among putative interneurons, the same

measure yielded a firing rate difference 4.1 spikes per second,

compared to a mean whole-session average firing rate of 9.7 spikes

per second.

Neuronal Representation of Reward Location
During learning, dissimilar stimuli can become associated with

the same action. This was the case in our experiment where, for

example, in rats 1–2 disparate textures T1 and T3 both signified the

presence of the reward to the right. In the preceding section, we

showed that the firing of some neurons distinguished between

different textures even when those stimuli were associated with the

same reward location. Now we show that neurons also fired

differently according to reward location (or, equivalently, to features

bound to reward location such as the perceptual category of the

paired stimuli, or the body turn towards the reward location).

To quantify neuronal coding, we labeled each trial by reward

location, left or right. We then measured the information carried

by neuronal firing rate in a 400 ms window that was advanced in

25 ms steps (the statistical criteria used to judge the significance of

reward location information were similar to those used for texture

information; see Materials and Methods).

In the one-platform task, 167 of 217 neurons (77 percent)

carried a significant reward location signal. The median value of

peak information among informative neurons was 0.22 bits, with

an interquartile range of 0.12–0.42 bits. In the two-platform task,

402 out of 679 neurons (59 percent) carried a significant reward

location signal. 241 neurons represented reward location on only

Figure 3. Texture signals in the two-platform task. For each of four neurons (A–D), responses are shown for the only pair of stimuli for which
the value of texture information was statistically significant (p,0.05). The icon to the left of each plot shows the platform occupied by the rat and the
action (arrows: turn left or turn right) associated with the two textures. In each panel, the upper plot shows time-varying firing rate related to the two
textures. Shaded area corresponds to standard error of the mean. The lower plot shows the temporal profile of information about texture identity
carried by neuronal firing rate. Red, blue, and green dashed lines indicate the estimated start of time windows during which rats engaged in touch,
turn and reward collection.
doi:10.1371/journal.pone.0016462.g003
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one platform (Figure 4A) and 161 represented reward location on

both platforms (Figure 4B). The median value of peak information

among informative signals was 0.18 bits, with an interquartile

range of 0.12–0.31 bits.

The firing of one neuron on trials in which the rat turned to the

incorrect reward spout is given in Figure S3.

On average, reward location information appeared just after

texture information and may in some cases reflect the animal

passing into the neuron’s place field. In many cases, reward

location information persisted or reappeared later in the trial, for

example at the moment when the water reward was released. In

some neurons (see Table 1) reward location information appeared

Figure 4. Representation of reward location. (A) The icon on the left indicates a platform A position: corresponding neuronal data are in the left
panels of (B) and (C). The icon on the right indicates a platform B position: corresponding neuronal data are in the right panels of (B) and (C). (B)
Neuron representing reward location on platform A (left) but not on platform B (right). Upper plots – time-varying firing rates aligned on the moment
of reward delivery. Lower plots – temporal profiles of reward location information. In all response profiles, shaded area corresponds to standard error
of the mean. Red, blue, and green dashed lines indicate the estimated start of time windows during which rats engaged in touch, turn and reward
collection. (C) Neuron representing reward location on both platforms A and B, but with different strength and firing rates. The neurons illustrated in
(B) and (C) did not encode texture.
doi:10.1371/journal.pone.0016462.g004
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early in the trial, during the touch phase, and might reflect a

prospective place code[15,16].

Time Course of Texture and Reward Location Signals:
Relation to Behavior and Hippocampal State

The temporal profile of texture and reward location signals,

when aligned with measures of hippocampal state, can provide

insights into the mechanisms at work. From the neuronal activity

recorded during both the one-platform and two-platform tasks, we

averaged together the 210 statistically significant temporal profiles

of texture information, as well as the 730 statistically significant

temporal profiles of reward location information. (In the two-

platform task, a single neuron could contribute more than one

profile to the average.) Texture information (Figure 5A) increased

above baseline when touch probability reached about 20 percent

(compare to behavior time course in Figure 5B), about 1.7–1.8

seconds before reward onset. The average texture information in

the population of neurons then rose together with touch

probability. The largest signal occurred about 800 ms before

reward onset – at that point, the rats’ behavior switched from

touch to turn in the typical trial.

Reward location information departed from the baseline level

600–700 ms after the onset of texture information (Figure 5A).

This was 1.0–1.1 seconds before reward onset. As the probability

of the rat turning towards the water spout rose, reward location

information rose in parallel. The peak in reward location

information occurred during the 100 ms interval centered on

reward onset, about 800–900 ms after the peak in texture

information. For both texture and reward location signals, there

was a slight increase in strength 500–800 ms after reward onset.

A crucial finding is that the texture signal did not approach zero

even after contact with the texture ended: it was conserved as the

animal turned towards the reward location and even as the reward

was delivered. How did the hippocampal network maintain a

memory trace for the contacted texture once the sensory system no

longer provided such input? Individual neurons carried texture

information only in short bursts, with an average total duration

between 400 and 500 ms (Figure 3). This suggests that information

was maintained by network dynamics rather than by continuous

single-neuron memory traces (also see Figure S5).

The behavior was accompanied by transitions in brain state,

revealed by the spectrogram of the CA1 local field potential

(Figure 5C). During approach to and contact with the texture,

there was a significant increase in power in the theta and beta

range (7–12 Hz and 15–20 Hz, respectively) relative to the

intertrial period (p,0.0005, permutation test, Bonferroni-correct-

ed). The increase was probably related to increased motor

activity[17]. During reward collection, there was a sharp drop in

theta power (p,0.0001), and an increase in the beta and lower

gamma range (20–35 Hz; p,0.005). Theta power remained very

low throughout the period of reward collection (Figure S6). We

observed very few ripple events during performance of the task

(Figure S7).

What Is the Nature of the Texture Representation in CA1?
In the hippocampus, responses to visual, olfactory, auditory

stimuli and objects are modulated by the location of the rat[18–

21]. From this, our expectation was that the representation of

texture by individual neurons would vary according to the context

in which the stimulus was encountered.

Texture sensation begins when the animal palpates a surface to

generate a texture-specific pattern of whisker motion[1,2,22].

Whisker motion is converted to spike trains by receptor neurons

and transmitted along the sensory pathway to the primary sensory

cortex. In sensory cortex, texture coarseness is positively correlated

with neuronal firing rate[1,3,4]. We asked whether CA1 neurons

encode textures as physical features or as context-embedded

events. If coding were related to the physical features of textures,

two findings would emerge. First, the neuronal population on the

whole would show a systematic input/output relationship, giving a

stronger response for some stimuli than for others. Second,

individual neurons would fire in a consistent manner for a given

stimulus, independently of the location of the animal. We tested

the first prediction by identifying the texture that evoked the peak

firing rate for all 147 neurons that discriminated between a single

texture pair in the two platform task. The number of neurons that

preferred each of the textures was: T1, 45 neurons; T2, 37

neurons; T3, 22 neurons; T4, 43 neurons. This distribution

indicates no systematic relationship between stimuli and peak

firing rate.

We tested the second prediction by determining whether texture

signals ‘‘followed’’ single neurons as stable attributes. The most

direct evidence against this notion is that in the two-platform task,

147 neurons (those referred to above) encoded texture on just one

platform: they failed to distinguish between the same textures

when the rat was positioned on the opposite platform. Moreover,

among 21 neurons that encoded a single texture pair on each

platform, only 6 demonstrated consistent ‘‘texture tuning’’; the

remaining 15 either discriminated between the same texture pair

on both platforms but switched preference within the pair, or else

discriminated between different texture pairs on the two platforms.

In conclusion, texture in hippocampus was represented in

conjunction with the context, with no relationship to the physical

features of the stimuli. Moreover, texture representations ‘‘re-

mapped’’ when the animal performed the task in different

locations, as has previously been demonstrated for the represen-

tation of space[23] and objects[21]. These observations differ from

the coding scheme uncovered in human temporal lobe neu-

Table 1. Numbers of neurons that carry significant amount of
information about the texture (T) and reward location (RL) in
all possible combinations separately for putative interneurons
and pyramidal cells during each phase of the task together
with the 99,9 percent confidence intervals (in brackets)
expected from independent representations of texture and
reward location.

RL-T- RL+ T- RL-T+ RL+ T+

Touch
(Pyramidal
Cells)

825 (819:831) 51 (45:57) 85 (79:91) 6 (0:12)

Touch
(Interneurons)

690 (684:693) 43 (40:49) 86 (83:92) 6 (0:9)

Turn
(Pyramidal
Cells)

642 (630:653) 236 (225:248) 65 (54:77) 24 (12:35)

Turn
(Interneurons)

528 (520:543) 205 (190:213) 73 (58:81) 19 (11:34)

Reward
(Pyramidal
Cells)

585 (560:591) 286 (280:311) 56 (50:81) 40 (15:46)

Reward
(Interneurons)

531 (512:537) 210 (204:229) 55 (49:74) 29 (10:35)

Note that in no case the real number of neurons lay outside the confidence
interval range.
doi:10.1371/journal.pone.0016462.t001
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rons[24], where neurons can represent objects across different

contexts.

Relationships among the Signals Present in CA1
Were texture and reward location represented independently or

did neurons have an affinity to one or the other modality? To

answer this, we counted the numbers of neurons that carried each

of the four possible signal combinations: texture and reward

location, only texture (Figure S8), only reward location, and

neither. The presence of a signal was based upon the average

information carried across all phases of the task. The black bars in

Figure 6a give the counts of such neurons. The white bars give the

counts of neurons that would be expected to carry the

corresponding signals according to a permutation test that assumes

independence of texture and reward location signals. The true

distribution perfectly matches the simulated one. The equivalence

between the two distributions signifies that the presence of one

signal does not influence the likelihood of carrying the other signal.

Figure 5. Relation between texture and reward signals, behavior, and local field potential oscillations. (A) Average temporal profile of
texture and reward location information among all neurons with statistically significant signals. Horizontal red dotted line denotes average quantity
of texture information in the interval 2–3 seconds prior to texture contact. Shaded area is standard error of the mean. (B) Probability distribution of
touch and turn epochs in behavior, aligned to reward onset, reproduced from Figure 2C. (C) Event related spectral perturbation of local field
potential. Color bar represents change in power in dB relative to the interval 2–3 seconds prior to texture contact.
doi:10.1371/journal.pone.0016462.g005
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We also spliced the behaviour into three discrete phases (touch:

21500 to 2800 ms; turn: 2800 to 0 ms; reward: 0 to 1000 ms)

and again counted the numbers of neurons that carried each of the

four possible signal combinations (Table 1). The data set was

divided into pyramidal cells and interneurons. In both types of

neuron, texture and reward location signals were independent in

each single phase of the behaviour. The importance of this

observation is that the population simultaneously, not just

sequentially, carried multiple signals independently.

After finding that the presence of texture and reward signals was

independent, we investigated their relationship in magnitude and

in time. Among the neurons that carried information about both

texture and reward location on the same platform, we asked

whether the peak strength of one signal predicted the peak

strength of the other. We didn’t find any correlation between the

two values (Spearman Rho = 0.1; p = 0.2) (Figure 6B). Next, we

measured the temporal delay between the two peaks in

information (Figure 6C, upper panel). Within single neurons the

texture peak on average occurred earlier than reward location

peak, as expected from the overall time courses of the two signals

(Figure 5A). When the peak times of texture and reward location

signals were compared across randomly selected pairs of neurons

(Figure 6C, lower panel), the mean and spread of the distribution

is unchanged. This means that the two signals were no more

correlated in time, in single neurons, than could be expected by

chance. Both the magnitude and the timing results suggest that,

even among the neurons that carried both texture and reward

location signals, there was no substantial relationship between

Figure 6. Relationship between texture signals and reward location signals. (A) Test to determine whether the presence of one type of
signal predicted the presence of the other type. Black bars indicate the numbers of signals about neither texture information nor reward location
information (RL+, T-), just one of the two (RL+, T- or RL+, T-), or both (T+, RL+). Data from the two platforms were treated separately. The white bars
indicate the count of signals that would be expected to carry given combinations of signals if texture and reward location were encoded
independently, with 95 percent confidence intervals included. The simulated and observed distributions are identical. (B) Test to determine whether
the strength of one type of signal predicted the strength of the other type. The analysis was applied to those neurons that carried significant
quantities of both texture and reward location information (T+, RL+) on the same platform. There was no significant correlation between the two
(Spearman Rho = 0.1, p = 0.2). (C-D) Test to determine whether the time of occurrence of one type of signal predicted the time of occurrence of the
other type. The upper panel shows the time of peak texture information - time of peak reward location information among neurons that carried both
signals (T+, RL+) on the same platform. The lower panel shows the same analysis, but time differences were measured between rather than within
neurons, in 1,000 random combinations. The two distributions are equivalent, suggesting that within individual neurons there was no causal
relationship between the appearance of the reward location signal and the appearance of the texture signal.
doi:10.1371/journal.pone.0016462.g006
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them. For the two-platform experiment, we could additionally ask

to what extent the presence of a texture signal at one location in

the arena influenced the likelihood of texture signals at other

locations. The result is that texture signals, in different locations,

were independent events with no influence on each other (Figure

S9).

These findings all lead to the idea that tactile stimuli and the

reward location associated with them are represented indepen-

dently in the CA1 region of hippocampus. The results are best

explained by a model where the recruitment of neurons for the

representation of one event occurs independently of the recruit-

ment of neurons for the representation of a second event, whether

the two events are sequential or simultaneous (Figure 7).

Discussion

Representation of Touch in the Hippocampus
This work provides a characterization of tactile encoding in rat

hippocampus. Unlike the texture representation in barrel cortex,

the representation in hippocampus does not reflect the physical

properties of the stimulus; there was no tendency for coarser

textures to evoke a greater firing rate. The texture representation

was modulated by the animal’s location – neurons that

discriminated between a texture pair in one position frequently

failed to discriminate between the same texture pair in a different

position. In conclusion, neurons did not encode textured stimuli as

physical objects along the dimension of coarseness, but as

meaningful events in conjunction with the location in which they

appeared.

Stimulus-related firing has been previously described in

hippocampus in the olfactory[25–27], auditory[20], and visual[28]

modalities as well as in spontaneous object recognition[21]. In one

publication[29] neurons in awake, behaving rats also were

interpreted as encoding tactile signals, but the two touch inputs

in question (contact with widely versus narrowly spaced lateral

walls) were associated two different reward locations. Neurons

considered to be tactile might have fired differently only according

to the behaviour (turn right versus turn left) that the rats expressed

when they contacted tactile stimuli. In contrast, in our work signals

were taken to be tactile only when neurons fired differently for two

different textures associated with the same reward location.

Persistence of texture signals: Bridging the temporal
gap?

Separating tactile from reward location signals allowed us to

track both signals over time. Neuronal information about the

palpated texture did not disappear when the whiskers broke off

contact with discriminandum as occurs in early stages of sensory

processing, but persisted and even showed a slight increase in

strength one-half second after reward onset (Figure 5). The

average time courses in Fig. 5A were generated from single-neuron

profiles of many different shapes. These included single peaks

(early, late, or intermediate) and multiple peaks. No neuron

maintained information continuously throughout the whole trial.

The transient nature of the information in single neurons, in

contrast to the continuous signal seen in the population average,

brings to mind an intriguing model of short term information

storage: the signals may be ‘‘handed off’’ locally in CA1 from

neuron to neuron from the time of first stimulus contact until some

time after reward consumption (Figure S5). On the other hand,

non-local mechanisms could account for the memory trace; signals

might be stored outside the hippocampus, for example in

prefrontal cortex[30–33] or in entorhinal cortex[34], and updated

constantly via direct connection. In alternative, increased low

gamma activity (20–35 Hz) during reward collection (Figure 5C)

might reflect increased functional connectivity between CA3 and

CA1 fields of hippocampus[35]; it is possible that texture signals

were preserved in the recurrent network in CA3 and were

retrieved when the animal received the reward. A continuous

representation of texture, in the absence of the stimulus itself,

might rely on mechanisms similar to those underlying the

internally generated representation of space when rats run on a

wheel during the delay period of a continuous alternation task[36].

What might be the function of the persistence and recurrence of

texture information? We suggest it reflects a mechanism whereby

Figure 7. Independence of populations recruited to encode different events. When the hippocampus receives input specifying the
occurrence of event A (magenta arrow), one subset of neurons is recruited to encode that event (magenta-tinted neurons). On the occurrence of
event B (green arrow) another subset of neurons is recruited (green-tinted neurons). Because separate events are represented in an independent,
partially overlapping manner, some neurons will be recruited to represent neither event, some neurons just one of the two events, and some neurons
both events (note neuron with mixed color). A and B may be two events of the same modality in different contexts, such as the encoding of texture
on two different platforms. Alternatively, A and B may be two events of different modality that occur in the same context, perhaps even occurring at
the same time, such as the encoding of texture and reward location on the same platform.
doi:10.1371/journal.pone.0016462.g007
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an early input is ‘‘stretched’’ in time to be made contiguous with a

later input, ultimately allowing the rules of synaptic plasticity to

bind the events together[37]. In our experiments, texture, reward

location, and reward acquisition could become associated so that

the presence of one cue draws up the recall of the others.

Allocation of independent subsets of neurons into the
representation of events: Snapshot memory?

Our findings contain elements consistent with the theoretical

frameworks proposed to explain the specificity of hippocampal

firing for places and for objects. According to relational

theory[11,25,38], hippocampal neurons represent events in their

context, for example an object encountered in relation to the

location of that object. The linkages between objects and context

could form a neuronal basis of episodic memory[38–41].

Cognitive map theory based upon the hallmark ‘‘place cells’’[42],

postulates that hippocampus is crucial in the formation of a

navigational map of the environment. In an extension of the

theory, neuronal activity within its place field is modulated by the

presence of objects or altered cues in the arena[18,23,43]. In our

experiments, the conjunctions between texture and reward

location signals are consistent with relational theory, while the

strong influence of the animal’s location on neuronal firing is

consistent with cognitive map theory. A new insight is the concept

of independence – the likelihood of the conjunctions of features

(i.e. texture and reward location) was equal to the product of the

prior likelihoods of representing either feature separately. From

the point of view of the population, in each context the set of

neurons engaged to represent a given feature was independent of

the set of neurons engaged to represent a different feature;

moreover, the set of neurons engaged to represent a given feature

in one context was independent of the set of neurons engaged to

represent the same feature in a different context (Figures 6, and

Figure S9). The most plausible interpretation, as illustrated in

Figure 7, corresponds to snapshot-like representations of objects

and the context which surrounds them, an interpretation that

resembles some notions of episodic memory[39].

The coding properties of neurons did not ‘‘follow’’ them across

contexts. If a neuron’s intrinsic properties do not determine

whether it will be engaged to participate in the representation of a

given event, what process selects neurons? One possible mecha-

nism underlying this phenomenon is that the responding

population is initially selected based on random synaptic

connectivity, which gives certain neurons a larger initial input[44].

Alternatively it may depend only on the transient state of the

neuron (random fluctuations of the membrane potential, levels of

calcium, etc.) at the initial occurrence of the sensory event. A

scheme of this sort for memory storage was proposed by David

Marr[45] as a simple memory system, which he identified with

archicortex in general and hippocampus in particular.

Materials and Methods

Ethics Statement
All experiments were conducted in accordance with National

Institutes of Health, international, and institutional standards for

the care and use of animals in research and were approved by the

Bioethics Committee of the International School for Advanced

Studies (permit n.5575-III/14) and were supervised by a

consulting veterinarian.

Subjects
Six Wistar rats weighing about 350 g were housed individually

and maintained on a 14/10 light/dark cycle. Water was given

during training as a reward and was also available ad lib for 1 h

after training.

Apparatus
The arena was situated in a Faraday room and was illuminated

by light-emitting diodes discharging at infrared wavelength

(880 nm). There were four acrylic glass discriminanda (Figure

S10). All textures had the same size, shape and odor. Potential

olfactory cues were removed by washing the textures at least once

every session. Several different exemplars of the same textures

were used to make sure that rats did not use specific cues attached

to one particular object. In addition, a previous study demon-

strated that during incorrect trials whisker-mediated neuronal

signals were altered[46] which allowed us to conclude that this

behavior is whisker dependent.

Texture discrimination on one platform
First, the rats learned to discriminate between two textures

associated with opposite reward locations. For a given texture, the

rat was given a water reward (0.1 ml) only at one of the drinking

spouts; at the incorrect spout it received no water. When it reached

stable performance (on average 2–3 weeks), one of the textures was

substituted with a new discriminandum and training continued

until the performance became stable again (2–4 days). As a next

step the three textures were presented together: now, two textures

were associated with one reward location and the third was

associated with the opposite location. The texture-reward location

associations were fixed across all sessions (Table S1). This training

on average took 6 weeks.

Texture discrimination on two platforms
Rats 5–6 were trained on this task. At the outset, they were

trained on platform A (rat 5) or B (rat 6) until they learned the

correct action for all four textures; this took 7–8 weeks. Next, they

were trained on the opposite platform; the association between

each texture and its required action was held constant in self-

centered coordinates. Before and after the training session, the

room was illuminated by visible light so that rats could be aware of

the two distinct platforms and the spatial relation between them.

The platforms differed not only in the position within the room but

also by their floor texture.

Surgery and recording
Rats were anaesthetized with a mixture of Zoletil (30 mg per kg)

and Xylazine (5 mg per kg) delivered i.p. A craniotomy was then

made above left dorsal hippocampus, centered 3.0 mm posterior to

bregma and 2.5 mm lateral to the midline. A microdrive loaded with

6 (rats 1–4) or 12 (rats 5–6) tetrodes (25 micron wire Pl/Ir wire) was

implanted over the craniotomy. Tetrodes were moved individually

until they reached CA1. A neuron could be recorded across multiple,

contiguous sessions if its spike waveform and functional properties

were perfectly stable over time. In those cases, the data across

sessions were merged and counted as just one data point.

Data analysis
Our main hypothesis was that the firing of hippocampal

neurons represented various components of the touch-guided

behavior – specifically, the stimulus identity and the explicit

actions (places) associated with that stimulus. Therefore, we

needed to estimate the quantity and statistical significance of the

signal carried by the firing rate modulation of individual neurons

on single-trials. For this purpose, we employed Shannon’s Mutual

Information[47], hereafter referred to simply as ‘‘information’’.

Hippocampal Representation of Touch in Rats
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Information Measures
The information that any signal X conveys about a second

variable Y can be described as:

l X ; Yð Þ~
X
y[Y

X
x[X

p x,yð Þlog
p x,yð Þ

p1 xð Þp2 yð Þ

� �
ð1Þ

In our case, X refers to the parameter that defines a single trial

(texture or reward location) and Y refers to neuronal spike count in

a specific temporal window. This quantifies the reduction of

uncertainty about the trial parameter (X) gained by a single-trial

observation of the spike count (Y). The probabilities in the above

formulas are not known a priori and must be estimated empirically

from a limited number, N, of trials. Limited sampling of response

probabilities can lead to an upward bias in the estimate of mutual

information[48,49]. An approximate expression for the bias has

been formulated[48] and can be subtracted from direct informa-

tion estimates (Eq. 1), provided that N is at least two to four times

greater than the number of different values that X can assume[50].

In our data, N was at least 12 and X could assume 2 values.

Texture and reward location information carried by the
temporal profile of response

We measured the information carried by spike counts in a

400 ms window sliding in steps of 25 ms along the whole duration

of the trial, from 2 seconds before the animal received water

reward to 2 seconds after. The 400 ms integration window was

selected as the one providing the most significant average

information values for both reward location and texture

information. The analysis provided a temporal profile of

information whose overall strength could be verified by the

statistical test below.

Statistical tests for the identification of a texture signal
Texture information quantified how reliably a neuron’s firing

rate could distinguish between the two stimuli associated with the

same reward location. In every 400 ms window, the set of firing

rates across trials provided one value of information, and shifting

the window in 25 ms steps gave 145 sequential information values.

To measure the significance of a neuron’s signal, we used a

procedure based on comparison of the observed quantity of

information, averaged across 4 seconds, to a distribution of

simulated values. Each simulated value was obtained by

scrambling across trials the texture labels for the texture pair

associated with the same reward location, computing the temporal

profile of information, and then finding its average value. This is

an estimate of the average information expected if texture had no

systematic influence on neuronal firing. The true value of average

information was judged to be significant if it passed a threshold of

p,0.05.

Statistical tests for the identification of a reward location
signal

Reward location information quantified how reliably a neuron’s

firing rate could distinguish between the two behaviors expressed

on a single platform – turn left versus turn right. To measure the

significance of a neuron’s signal, we used a two-step procedure.

The first step was similar to the texture information measure

except that trials were pooled based on the side of the reward, so

that on every trial the response was labeled left or right, with

texture identity dropped. The true value of average information

was judged to be significant if it passed a threshold of p,0.05. A

second step was added to guard against potentially spurious

reward location signals. Suppose that a neuron gave a large

response to T1 (right) but no response at all to T2 (left), T3 (left),

and T4 (right). The strong T1 response would make the neuron

appear to fire more for the right reward location. This might lead

to a significant value of reward location information, which should

be considered false because presentation of the second texture of

that pair (T4) evoked no corresponding reward location signal. To

exclude any such cases, the reward location information procedure

was repeated with all permutations of texture pairs. In the example

above, simulated reward location groupings would be T1–T2

versus T3–T4, and T1–T3 versus T2–T4. The neuron was

considered significant if it carried significant signal (p,0.05) for all

of the four conditions.

To determine whether neurons carried significant texture or

reward location signals during specific phases of the task, we

divided the trials into three discrete phases (Touch: 21500 to

2800 ms; Turn: 2800 to 0 ms; Reward: 0 to 1000 ms) and

followed the procedures given above for restricted time windows.

Independence between texture signals and reward
location signals

We used three tests to determine whether neurons encoded

sensory information in a manner that was correlated with, or

independent of, spatial information. The first measured whether

the presence or absence of one type of signal predicted the

presence or absence of the other type. The second measured

whether the magnitude of one type of signal predicted the

magnitude of the other type. The third measured whether the time

of occurrence of one signal predicted the time of occurrence of the

other signal.

The first test consisted of several steps: (i) We constructed a

matrix in which each row referred to one neuron. In the first

column, an entry of 1 or 0 indicated that a given neuron did, or

did not, carry a significant texture signal for any of the 2 possible

reward locations on a given platform. In the second column, an

entry of 1 or 0 indicated that a given neuron did, or did not, carry

a significant reward location signal on the same platform. Data

from the two platforms were treated separately. There were 1575

rows (679 neurons, 2 platforms from the 2 platform task and 217

neurons from the one platform task) and 2 columns (texture and

reward location). (ii) We counted the number of neurons that

carried neither texture nor reward location signals [RL-, T-], the

number that carried one but not the other [RL+, T-] or [RL-,

T+], and the number that carried both texture and reward

location signals [RL+, T+]. (iii) To interpret the population

distribution, we scrambled the entries within each column of the

matrix, thus making a given neuron’s texture and reward location

signals independent of each other, without altering the total

number of texture and reward location signals in the neuronal

population. (iv) After the shuffle, we again counted the number of

neurons that carried each of the possible combinations of texture

and reward location signals. Steps (iii) and (iv) were repeated 1,000

times and the mean number of neurons carrying a specified

combination of signals was calculated, along with 95 percent

confidence intervals.

The second and third tests were applied only to those neurons

that carried a significant quantity of both types of signal, judged by

the average value across the entire trial. To look for a potential

correlation in signal strength, we measured the texture and the

reward location information in a sliding 400 ms window and

registered the peak values of each signal, regardless of when either

signal occurred. To look for a potential correlation in timing, we
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calculated the time difference, delta-t, of occurrence of the peaks of

the two signals and plotted all values (Figure 6c, upper panel).

Then we calculated the time difference in the peak of texture and

reward location signals, but taking each signal from a different

neuron. The shuffling procedure was repeated 1,000 times and all

values were plotted (Figure 6c, lower panel).

Histology
The animals were anesthetized and transcardially perfused with

10 percent formalin. Brains were sectioned in the coronal plane

and stained with cresyl violet. Electrode tracks were localized on

the serial sections.

Supporting Information

Table S1 Experimental conditions.

(DOC)

Video S1

(AVI)

Figure S1 Spike sorting and histology. (A) Waveforms of

seven single units isolated from one tetrode. This recording is

typical of those in which more than 5 neurons were isolated.

Vertical scale bars represent 150 microvolts. (B) Scatter plot of

waveform energy from two channels of the tetrode demonstrating

separation of units; grey dots are events unaccounted for by any

cluster. (C) Histological section. Red dashed oval indicates

electrode track within CA1 subfield of hippocampus.

(TIF)

Figure S2 Separation between pyramidal cells and
interneuron’s. Three criteria were used to separate pyramidal

cells: mean firing rate[51,52], spike duration[53], and the

autocorrelation function[54]. Firing rate was measured over the

whole session. Spike duration was initially measured from peak-to-

valley[3] and at 25% of maximum spike amplitude[54]; the former

measure proved to be more reliable and was used in all sessions.

The autocorrelation-derived index assessed the ratio of the

difference between the number of spikes that occurred in a 2–

5 ms post-spike window versus a 20–80 ms post-spike divided by

the sum of the two. Spike duration and the autocorrelation-derived

index yielded bimodal distributions. Based on firing rate, spike

duration, and the autocorrelation-derived index, the complete set

of neurons were clustered into 2 classes using a K-Means

algorithm. Spike duration was longer in pyramidal cells

(0.4460.004 ms) compared to interneurons (0.2560.0062 ms),

consistent with[53] (interneurons’ spike duration ,0.3 ms,

pyramidal cells’ spike duration .0.3 ms)3. Putative pyramidal

cells and putative interneurons had distinct autocorrelation

profiles. Interneurons had significantly higher firing rate than

pyramidal cells (13.0660.68, and 2.6360.16 spikes/s, respective-

ly, Wilcoxon rank sum test p,0.000001). The firing rate of our

pyramidal cells appears to be slightly higher than previously

reported (e.g. 1.460.16 in[54]). We assume it is due to the fact that

our apparatus was small and the majority of the recording was

done during the task, so the probability of the discharge of a place

cell would be higher compared to the standard task in which a rat

runs in a larger maze.

(TIF)

Figure S3 Firing of reward location neurons during
incorrect trials. In our experiments, the number of error trials

was low. For this reason, we were not able to obtain clear or stable

statistical results on error trials. Nevertheless, in a few cases, there

was a sufficient number of error trials, and with the same temporal

rhythm, to allow spike times to be reliably aligned to behavior. For

the neuron illustrated here, when the rat turned to the Left reward

location in error (C, left column) the response profile closely

resembled that present when the rat turned Left reward location

on correct trials (B, left column). This indicates that the neuron’s

firing was correlated with the behavior of the rat. It does not

specify, of course, which aspect of the behavior the neuron tracked

– the perceived stimulus category, motor action, or the place. (A)

Icon indicating the position of the animal in the behavioral setup.

(B) Firing during correct trials, (C) firing during incorrect trials.

(TIF)

Figure S4 Texture neurons meta-analysis. To estimate the

probability of finding the number of neurons with the significance

threshold of p,0.05 we have performed a meta-analysis of the

data. The distribution in blue represents the number of neurons

which is expected to surpass our threshold of significance

(scrambled) in averaged across all four reward location and the

red bar indicates the real number of texture neurons on average

associated with any given reward location in the real data. The p

value of 0.0000000002 (z-test) indicates that it was highly unlikely

to find such number of neurons that carry significant amount of

texture information by chance.

(TIF)

Figure S5 Information about texture is distributed
across neurons over time. Information profiles of 4

simultaneously recorded neurons. Only traces of information

associated with right turn on platform B are shown. Note that

simultaneously recorded neurons carried information about

texture at different points in time. Such a distribution of

information was typical and led to Figure 5a when all traces were

averaged.

(TIF)

Figure S6 Reward-aligned local field potentials in a
single trial. (A) Raw local field potential voltage trace (black) and

5–12 Hz (theta) filtered voltage trace (red). Red, blue, and green

vertical dashed lines indicate the estimated start of time windows

during which rats engaged in touch, turn and reward collection.

(B) 18–35 Hz (beta and low gamma) band pass-filtered voltage

trace. (C) 120–240 Hz band pass-filtered local voltage trace.

(TIF)

Figure S7 Ripple events. (A) Raw (unfiltered) local field

potential voltage trace aligned on the maximum of the ripple

event. (B) 120–240 Hz band pass filtered local field potential of the

same voltage trace. (C) Raster plot of 23 simultaneously recorded

neurons aligned on the ripple event. Red – pyramidal cells, blue –

interneurons. (D) Relationship between ripple events (red X) and

trials. Each blue rectangle represents a 4-second trial centered on

the moment of reward onset. Ripples occurred most commonly

when the rat took an extended pause within the session. (E)

Cumulative probability of observing a ripple event as a function of

distance in time from the closest reward delivery event. (F)

Probability of observing a ripple event from the closest in time

reward delivery event. Plots (E) and (F) indicate that the

occurrence of a ripple event during the behavioral task was

extremely rare. No cells were found to be active only during sharp

waves (defined according to[55]). The cell whose activity was most

attributable to sharp waves fired just 7% of its spikes during the

waves.

(TIF)
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Figure S8 Representation of texture without reward
location. Presence of a texture signal does not require the

presence of a reward location signal. (A) The firing rates profiles

associated with the animal’s selection of the left and right reward

locations were overlapping at all times on platform A. (B) Firing

rate profiles associated with the left reward location on platform A

are separated according to the texture present on each trial; now

stimulus-specific activity can be discerned. (C) Temporal profile of

information about reward location carried by neuronal firing rate;

values were close to zero (black). In contrast, large quantities of

texture information (blue) were present both during contact time

and during reward collection.

(TIF)

Figure S9 Independence of populations recruited to
encode texture in different locations. In the two-platform

task, neurons were tested for the presence of texture information

on four occasions (the left and right texture pairs on platform A,

and the left and right texture pairs on platform B). We asked

whether the presence or absence of information about texture

within one pair influenced the probability that a neuron would

carry information about texture within any other texture pairs.

Black bars indicate the numbers of neurons that carried a given

number of texture signals, from 0 to 4. Of all 170 ‘‘texture

neurons’’, the majority (147) distinguished between only one

texture pair on only one platform (for example, those neurons

illustrated in Figure 3). Just 24 of 170 carried signals for more than

one texture pair. The white bars indicate the count of neurons that

would be expected to carry a given number of texture signals if

encoding of each texture pair were independent, with 95%

confidence intervals included. The simulated and observed

distributions are closely matched. We speculate that the indepen-

dence of the tactile representations on the two platforms was an

outcome of the rats’ interpretation of the platforms as two

independent contexts; they needed to be retrained on the second

platform and showed consistently lower performance there (see

Touch-guided Behavior). We suggest that the hippocampal

representation of salient events underwent a reset each time the rat

was moved between platforms.

(TIF)

Figure S10 Tactile stimuli. Photographs of rough tactile

discrimanda, textures 2–4 (T2–T4). T1 was a smooth plate. Scale

bar is 10 mm.

(TIF)
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