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A B S T R A C T   

Breast cancer (BC) is a malignant tumor that seriously endangers health in women. BC, like other cancers, is 
accompanied by metabolic reprogramming. Among energy metabolism-related pathways, BC exhibits enhanced 
glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), glutamate metabolism, and fatty 
acid metabolism activities. These pathways facilitate the proliferation, growth and migration of BC cells. The 
progression of BC is closely related to the alterations in the activity or expression level of several metabolic 
enzymes, which are regulated by the intrinsic factors such as the key signaling and transcription factors. The 
metabolic reprogramming in the progression of BC is attributed to the aberrant expression of the signaling and 
transcription factors associated with the energy metabolism pathways. Understanding the metabolic mechanisms 
underlying the development of BC will provide a druggable potential for BC treatment and drug discovery.   

Introduction 

Breast cancer (BC) is a leading cause of cancer-related deaths in 
women worldwide. Gene expression profiling brings a considerable 
impact on our understanding of the biologic heterogeneity of BC and 
enables us to extensively characterize 4 molecular subtypes of BC 
(luminal A, luminal B, HER2, and triple-negative BC (TNBC)) [1]. BC 
incidence varies widely from 27/100,0002 (Central-East Asia and Af-
rica) to 85–94/100,0002 (Australia, North America, and Western 
Europe) [2]. Both genetic and metabolic features were characterized in 
BC, and enzyme-associated energy metabolism participated in the tumor 
cell progression, with the regulation of multiple signaling pathways [3]. 
Under the combined action of energy metabolism-related genes, 
signaling pathways, and transcription factors, the tumor exhibits sig-
nificant metabolic shifting. This results in the unique metabolic profiling 
of cancer, which is considered to be a hallmark for tumor development 
[4,5]. Tumor cells overly depend on glucose and glutamate to provide 
sufficient energy for cell proliferation and invasion. Aberrant expression 
of energy metabolism-related enzymes regulated by primary signaling 
pathways, such as the phosphoinositide 3- kinase (PI3K)/protein kinase 
B (AKT) signaling and AMPK pathway [6], or transcription factors, 
including c-MYC, p53, and hypoxia-inducible factor (HIF) [7], 

predominantly results in metabolic reprogramming in BC. 
This review addresses the metabolic reprogramming of energy 

pathways, the crosstalk of major signaling pathways, and the potential 
therapeutic target related to transcription factors in BC. A better un-
derstanding of the metabolic switching in BC may provide a favorable 
basis for exploring the new anticancer therapeutics. 

The reprogramming of multiple energy metabolism pathways 

Glycolysis 

Glycolysis is the major energy producing process in BC. The cancer 
cells showed a sufficiently prevalent that elevated uptake of glucose 
based on 8F-fluorodeoxyglucose, the cancer diagnosis, and monitoring 
tool of the therapeutic response [8]. Importantly, the enhanced glycol-
ysis and reduced oxidative phosphorylation (OXPHOS) were confirmed 
in cancer cells by Otto Warburg [9]. Under hypoxic condition in BC, the 
stabilization of HIF 1 and 2 is increased, which in turn upregulate the 
expression of several other components of distinct signaling pathways, 
including several key glycolytic enzymes and glucose transporters 
(GLUTs) [10]. Glucose uptake is facilitated by GLUTs family by allowing 
the energy independent transport of glucose across the hydrophobic cell 
membrane down its concentration gradient, among which 14 members 
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were identified in mammalian. The expression of GLUTs showed a 
diverse level in different BC cell lines, in which GLUT1 levels were 
higher in basal-like BC cells and T47D cells, whereas the levels of 
GLUT3/4 were higher in luminal BC cells [11]. GLUT1 is frequently 
upregulated in the development of BC (Fig. 1) [12,13], which has also 
confirmed to result in the tumorigenesis of BC [11]. In addition, as a 
potential biomarker and therapeutic target in BC, GLUT1 overexpression 
showed a strong association with high histological grade, a negative 
estrogen receptor (ER) status, and a poor overall survival [14]. 

Glycolysis refers to the process by which cells break down glucose in 
the cytoplasm and finally generate pyruvate, which is accompanied by 
the generation of a small amount of ATP. The anaerobic glycolysis refers 
to the process of converting glucose to lactate that generates only 2 ATPs 
per molecule of glucose, much less than 36 ATPs upon complete 
oxidation of one glucose molecule [15,16], which suggesting that inef-
ficient ATP production is a problem only when resources are scarce. This 
may be a possible explanation why anaerobic glycolysis is finally 
selected in proliferating cells. 

During the breakdown of glucose in glycolysis, hexokinase 2 (HK2), 

phosphofructokinase 1 (PFK1), and pyruvate kinase (PK) are key rate- 
limiting enzymes (Fig. 1). The process in which glucose was converted 
to glucose-6-phosphate (G6P), which is catalyzed by HK, is the first 
committed step in glucose metabolism with the production of ATP to 
meet the energy needs of cancer cells. HK2 is required for initiation and 
maintenance of BC [17]. Raya showed that 79% of the BC were 
HK2-positive using immunohistochemistry analysis [18]. High expres-
sion of HK2 was also identified in human BC tissues, and its expression 
was further confirmed to be associated with pathological stage of the 
tumors, the high mortality of the patients, [17] and poor patient survival 
[19]. In tumor tissues of BC mouse models, the co-expression of acti-
vated Neu and Cre in the mammary gland contributed to increased HK2 
expression and the development of mammary gland tumors with com-
plete penetrance [17], suggesting that HK2 is required for ErbB2-driven 
mammary gland tumorigenesis in vivo. Similarly, the elevated expres-
sion of HK2 also contributed to the tumor metastasis. In mouse models of 
BC metastasis, HK2 increased the level and stability of Snail and pro-
moted Snail-mediated epithelial-mesenchymal transition and metastasis 
[20]. However, HK2 deficiency not only reversed the BC metastasis 

Fig. 1. Overview of the energy metabolic reprogramming in BC. The energy metabolic pathways, including the glycolysis, serine synthesis, glutamine metabolism, 
PPP, TCA cycle, fatty acids synthesis, and oxidation enhanced in BC, provide the sufficient capacity to maintain cell growth. GLUT1, glucose transporter 1; HK, 
hexokinase; PFK, phosphofructokinase; PK, pyruvate kinase; TCA, tricarboxylic acid cycle; α-KG, a-ketoglutarate; α-KGDH, α-ketoglutarate dehydrogenase complex; 
SDH, succinate dehydrogenase; FH, fumarase; LDHA, lactate dehydrogenase A; PPP, pentose phosphate pathway; G6PD, glucose-6-phosphate dehydrogenase; 6PGD, 
6-phosphogluconate dehydrogenase; GLS, glutaminase; PHGDH, phosphoglycerate dehydrogenase; PSAT1, phosphoserine aminotransferase1; PSPH, phosphoserine 
phosphatase; PDK, pyruvate dehydrogenase kinase; PDH, pyruvate dehydrogenase; CPT1, carnitine palmitoyl transferase1; FASN, fatty acid synthase; 3-PHP, 3- 
phosphate hydroxypyruvate; 3-PS, 3-phosphatidylserine; ASCT, alanine-serine-cysteine-preferring transporter. 
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described above but also reversed tumorigenesis in vitro and in vivo of BC 
[17,20]. In addition, HK2 activity was also confirmed to contribute to 
therapy resistance, including a role for HK2 in radio-and chemo--
resistance in BC. Lentivirus-mediated shRNA knockdown of HK2 
expression effectively improved the radio sensitivity of BC by triggering 
apoptosis [21], which may be achieved by HK2 combined with mito-
chondria to inhibit the interaction the proapoptotic factors 
voltage-dependent anion channel (VDAC) and Bax [22]. HK2 physically 
interacts with mTOR and inhibits its activity, thereby augmenting 
autophagy that confers resistance to MCF-7 cells toward tamoxifen, 
suggesting that HK2 poses as therapeutic target for impairing tamoxifen 
resistance in BC [23]. 

PFK1 catalyzes the conversion of fructose 6-phosphate to fructose- 
1,6- bisphosphate. There are three isoforms of human PFK-1, 
including PFKL (liver), PFKM (muscle), and PFKP (platelet). Study 
showed that PFKL isoform expression was directly and strongly associ-
ated with aggressiveness and glycolytic efficiency in BC cell lines, 
including MCF10A, MCF-7, and MDA-mb-231 [24] and human BC tis-
sues [25], suggesting that glycolytic efficiency in BC depends primarily 
on the preferential expression of three PFK isoforms. In BC patients, 
PFK-1 expression was higher in BC tissues than in paracancer tissues, 
and PFKP is the principal isoform (~60–70%), followed by PFKM and 
PFKL. However, PFKL isoform is converted to PFKP with the enrichment 
of glycolytic activity [25]. PFKP is gaining attention for its significant 
role in BC progression. Highly expression of PFKP was observed in es-
trogen receptor‑negative and human epidermal growth factor receptor 
(EGFR) 2‑negative BC cell lines [26] and human BC tissues [25]. The 
knockdown of PFKP significantly attenuated the proliferation and 
invasiveness in MCF7, SK‑BR‑3, and MDA‑MB‑231 BC cells [26], and 
the role of PFKP in promoting tumor progressive oncology was specu-
lated to be clearly related to transforming growth factor‑β1 and MYC 
proto‑oncogene [26]. Not only the foregoing, but the high expression of 
PFKP associated with the increased PFKP S386 phosphorylation was 
identified in Wnt signaling‑induced BC development in a 
β‑catenin‑independent manner [27] or the activation of Krüppel-like 
factor in BC cells [28]. The prognostic value of PFKP was also further 
confirmed, which result showed that elevated PFKP levels are associated 
with basal cells/triple negative subtypes [29] and might serve as a 
prognostic indicator [29,30]. PFK2 (PFKFB3) is also a key regulator of 
glycolysis and plays an indispensable regulatory role in BC glycolysis 
and malignant progression [31]. A highly expressed level of PFKFB3 was 
observed, and this high level of expression was involved in the poor 
overall survival of patients with BC [32]. Increased expression of 
PFKFB3 expedited glucose uptake and glycolysis in cancer cells due to 
the progesterone and estradiol receptors bind to response elements in 
the promoter region of PFKFB3 [33,34]. The inhibition of PFKFB3 
impeded the growth of BC cells by suppressing the glycolytic flux [35] 
and suppressed the protein level of vascular endothelial growth factor α 
(VEGFα) [32]. Importantly, phosphorylation of PFKFB3 at Ser478 
enhanced the stability of PFKFB3 via the ubiquitin-proteasome pathway, 
which finally heightened the glycolysis and BC cell growth [36]. In 
conclusion, PFK continues to hold great promise as an important ther-
apeutic target, either as a single agent or in combination with current 
interventions for BC. 

PK catalyzes phosphoenolpyruvate (PEP) to pyruvate with concom-
itant production of ATP. It contains four isoforms, PKM1, PKM2, PKL, 
and PKR. Among which, PKM2 is the major isoform expressed in tumor 
cells [37]. High expression of PKM2 was confirmed in BC tissues [38] 
and cells (Fig. 1) [39–41], including MCF-7 and MDA-MB-231 lines. 
Studies showed that the role of PKM2 in promoting tumor is closely 
related to the increased phosphorylation of signaling pathway. Firstly, 
PKM2 directly phosphorylated c-MYC at Ser62 to increase the levels of 
survivin [42] and EGFR [43] and finally activated their downstream 
signaling in TNBC cells. Secondly, PKM2 overexpression activated the 1 
AKT substrate 1 (AKT1S1), an inhibitor of the mammalian target of 
rapamycin complex 1 (mTORC1). The activation of the mTORC1 

signaling contributes to the acceleration of oncogenic growth and 
autophagy inhibition in cancer cells [44]. In addition, a positive corre-
lation between PKM2 and VEGF-C expression was identified. The levels 
of VEGF-C mRNA and protein were downregulated, after PKM2 mRNA 
expression was knocked down, and the cell proliferation was inhibited 
[41]. Not only that, but knockdown of PKM2 in TNBC cells significantly 
suppressed the activity of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) through reducing the phosphorylation of p65 at 
serine 536 and also decreased the expression of NF-κB target genes [40]. 
A novel downstream target of PKM2 was also identified in BC cells lines, 
the mammalian sterile 20-like kinase 1, whose nuclear translocation can 
be promoted via enhancing caspase-3-dependent cleavage by knock-
down of PKM2 and finally contributed to apoptosis [45]. Moreover, 
PKM2 promotes stemness of BC cell through the Wnt/β-catenin pathway 
[38]. In addition to the role of PKM2 in regulating growth of BC cells, it 
can regulate glucose metabolism under the mediation of miRNAlet-7a 
through a feedback loop manner. The let-7a-5p functionally targeted 
signal transducer and activator of transcription 3 (Stat3), and Stat3 
promoted upregulation of heterogeneous nuclear ribonucleoprotein 
(hnRNP)-A1 expression. The hnRNP-A1 promoted PKM2 expression; 
however, it also blocked the biogenesis of let-7a-5p to counteract its 
ability to downregulate the Stat3/hnRNP-A1/PKM2 signaling pathway, 
which regulates the aerobic glycolysis effect of BC cells [39]. The results 
showed that the potential role of PKM2 as a target for BC in therapeutic 
intervention, but high PKM2 expression indicated worse overall survival 
and progression-free survival in BC patients, which predicted a poorer 
prognosis of it [38,41,46]. 

Lactate dehydrogenase (LDH) solves the problem that pyruvate 
accumulation in the cell [47] through catalyzing the step of aerobic 
glycolysis converting pyruvate to lactate in the cytoplasm. LDHA and 
LDHB are two kinds of isoforms of LDH. The expression of LDHA in BC 
tissues was significantly higher than that in adjacent tissues [48,49], and 
a 10-fold lactate was generated in 4T1 murine BC cell lines [50]. 
However, the LDHB was specifically expressed only in normal and 
endocrine-resistant BC cells [51]. The high expression of LDHA and 
serum LDH status were closely related to brain metastasis free survival 
and may be a predictor for TNBC brain metastasis [49]. Patients, whose 
expression of LDHA and AMPK both showed positive in BC tissues, 
suggested a shorter overall survival and disease-free survival [52]. In the 
glucose metabolism, high glucose content induced the expression of 
microrchidia family CW-type zinc finger 2 (MORC2) by activating 
c-MYC, which subsequently promoted MORC2 to form a complex with 
c-MYC to increase LDHA transcription [53], leading to the BC cell 
migration. Study showed that both LDHA or LDHB knockdown inhibited 
the cell motility in MCF7 and MDA-MB-231 BC cell lines by reducing the 
phosphorylation level of ERK1/2 [51], and exogenous lactate supple-
mentation also increased the phosphorylation level of ERK1/2, reduced 
E-cadherin expression [48], and finally enhanced the cell motility. More 
interestingly is that stable LDHA silencing alone in human MDA-MB-231 
BC cell line with high concentrations of LDHB using lentivirus V-165 
cannot change the lactic acid production, glycolytic activity, and the 
survival [54], indicating that multiple isoforms such as LDHA/B are 
likely compensatory elements to maintain the production of lactic acid 
through glycolysis in tumor cells. In addition, LDHA also regulated the 
tumor microenvironment by modulating immune response via 
HIF-signaling in 4T1 murine BC cells [55]. The glycolysis can be 
inhibited by suppressing expression of LDHA using trastuzumab, 
resulting in tumor growth inhibition [56]. More importantly, combining 
trastuzumab with glycolysis inhibition resulted in more efficient inhi-
bition of glycolysis, and finally both synergistically inhibited 
trastuzumab-sensitive and trastuzumab-resistant BC in vitro and in vivo. 
The result showed that rewired glucose metabolism can also mediate 
resistance to trastuzumab. 
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Amino acid metabolism 

Glucose and glutamine are the most important energetic substrate for 
the cells, in which glutamine is an essential substrate for energy source 
in highly proliferative cancer cells. High glutamine activity was identi-
fied in HER2-type BC [57], suggesting that glutamine dependence 
increased in proliferative subtypes of BC [57,58]. Study has reported 
that glutamine metabolism genes were significantly upregulated in both 
epithelial and stromal cells from BC tissues, which implicates the role of 
glutamine metabolism in BC growth and metastasis [59]. As a member 
of amino acid transporters of approximately 430 membrane-bound so-
lute carrier (SLC) transporters [60], alanine‑serine-cysteine-preferring 
transporter 2 (ASCT2; SLC1A5) undertakes the function that mediates 
the uptake of neutral amino acids including glutamine [61]. Inhibition 
of ASCT2-mediated transport effectively decreased the glutamine up-
take in human BC cell lines by suppressing the mTORC1 signaling 
pathway, which consequently attenuated the BC cell growth and cell 
cycle progression [62]. More importantly, the high expression of ASCT2 
and glutamine metabolism-related genes, the glutamine–ammonia 
ligase (GLUL) and glutaminase (GLS) (Fig. 1), was significantly associ-
ated with certain oncogenic transcription factors, including c-MYC, RAS, 
and ATF4 [62,63] in BC cell lines. Studies have shown that AFT4, as a 
novel regulator, which coordinates with N-MYC to directly activate 
ASCT2 expression in cancer cell [64,65], further enhancing the role of 
c-MYC in transcriptionally regulation of glutamine metabolism. It is thus 
an effective therapeutic strategy that the inhibition of ASCT2-mediated 
glutamine uptake against human BC [66]. Notably, the cys-
tine/glutamate antiporter (xCT), for example the SLC7A11, which me-
diates the exchange of the imported cystine with the exported 
glutamate, plays a vital role in the synthesis of glutathione in order to 
neutralize reaction oxygen species (ROS) [67]. The reduction of 
SLC7A11 protein expression may promote the decrease in cystine 
transport capacity, resulting in decreased reduced glutathione (GSH) 
synthesis, which finally significantly increased the intracellular ROS in 
BC cells [67]; however, this process reversed as a consequent of xCT 
upregulation [68]. The reduction of SLC7A11 protein expression has 
been confirmed based on ionizing radiation therapy and contributes to 
the death of BC cells [67]. Glutamine deprivation caused the varying 
degrees of decrease (61%− 89%) in cell growth in MCF-7, MDA-MB-231, 
and BT-20 BC tumorigenic cell lines [69]. And, glutamine deprivation 
led to oxidative stress, where superoxide levels were significantly 
increased in the MCF-7 and MDA-MB-231 cell lines. Miyamoto et al. 
[70] demonstrated that a reduction of the GSH caused by glutamine 
deprivation contributed to the accumulation of ROS, and the mechanism 
was believed to be related to the xCT expression. As the key enzymes in 
regulating tumor progression, the GLS included two isoenzymes for the 
regulation of glutamine metabolism, the GLS and GLS2, which catalyzes 
glutamine to glutamate. In BC, high-grade highly proliferative tumors, 
for instance the TNBC, showed the higher levels of glutamate and GLS 
together with low level of glutamine than low-grade tumors and normal 
breast epithelium [71,72]. The highest stromal expression levels of GLS 
were observed, revealing the high glutamine activity in HER2- type BC 
[57]. High expression level of GLS was significantly related to the high 
expression of MYC [62]. In terms of BC patient outcome, GLS mRNA 
expression predicts poor patient survival, and high GLS2 mRNA 
expression predicts better patient survival [73]. 

Glycine and serine are well-known and classic metabolites of 
glycolysis that are produced from the intermediate 3-phosphoglycerate. 
Various serine-/glycine-metabolism–associated proteins expression, 
including phosphoglycerate dehydrogenase (PHGDH), phosphoserine 
aminotransferase 1 (PSAT1), and 1–3-phosphoserine phosphatase 
(PSPH) are increased in TNBC (Fig. 1) [74]. Study has confirmed that 
serine consumption supported the cancer proliferation in TNBC cells 
[75]. The protein level of PHGDH was increased in 70% of ER-negative 
BC, and high expression of it significantly increased the serine synthesis 
flux in BC cells [76]. More interestingly, PHGDH inhibition cannot alter 

intracellular serine levels but reduce the levels of α-ketoglutarate. 
Conversely, in high expression of PHGDH BC cells, the serine synthesis 
pathway promoted nearly 50% of glutamate-derived α-ketoglutarate 
into the TCA cycle [76], which is important in PHGDH-amplified cell 
proliferation for BC cells. This result is the cause that why suppression of 
PHGDH on BC cell proliferation cannot be rescued by supplementation 
of extracellular serine. Inhibition of PHGDH using RNA interference, 
CRISPR/Cas9 knockout, or small-molecule PHGDH inhibitors largely 
abolished the BC cell proliferation and tumorigenesis by attenuating 
serine synthesis progress [77]. As for the PSAT1, its expression signifi-
cantly increased along with the clinical grade of TNBC [78], and 
inhibiting the expression of PSAT1 in TNBC cell lines effectively sup-
pressed the motility and migration. And, low PSAT1 prevented de novo 
serine biosynthesis and sensitizes luminal BC cells to serine and glycine 
starvation in vitro and in vivo [79]. In high isocitrate dehydrogenase 
(IDH) 2 BC cell lines, PHGDH and PSAT1 catalyzed 20%− 30% of 
glutamate into α-ketoglutarate, which resulted in increased TCA cycle 
activity and mitochondrial respiration [80]. However, PHGDH or PSAT1 
knockout both attenuated the entry of glutamine-derived carbons into 
α-ketoglutarate. In conclusion, the serine pathway appears to be more 
important than the glycine pathway for BC cell proliferation and 
migration, the TNBC in particular, which indirectly suggests that the 
serine pathway can be a potential target for BC therapy. 

Arginine is closely related to the BC progression. BC patients showed 
a decrease in arginine content compared with healthy people in the 
serum [81–83]. And, different molecular BC types showed a unique 
arginine concentration, in which the arginine content in plasma of TNBC 
was the lowest compared with other molecular subtypes [84], suggest-
ing that it could be a potential discriminant and predictor for BC pro-
gression. Arginine is a substrate for NO synthesis, and the ratio of 
arginine: NO can also be used as an early salivary diagnosis of BC [85]. 
Supplementation of L-arginine inhibited the BC growth and prolonged 
the survival times of 4 T1 tumor bearing mice by enhancing innate and 
adaptive immune responses mediated through suppression of 
myeloid-derived suppressor cells [86]. 

The electron transport chain/oxidative phosphorylation 

Under hypoxia and nutrient-deprived conditions, the Warburg effect 
showed that cancer cells experienced a shift from OXPHOS to glycolysis. 
the enhanced and decreased OXPHOS activity is confirmed in BC cells. 
Cellular metabolism reprogramming is closely related to reactive oxygen 
species (ROS) production in cancer cells. Electrons derived from 
different metabolic processes are channeled into the mitochondrial 
electron transport chain (ETC) to fuel the OXPHOS process [87]. In this 
process, the electrons can escape from ETC and be captured by O2, 
resulting in excessive ROS and ROS-induced DNA damage [88]. Low 
OXPHOS activity may be attributed to mitochondrial DNA (mtDNA) 
mutation or less mtDNA content coding for the subunits of OXPHOS 
protein complexes I to V [89]. In mammals, complexes I and III have 
been identified as the most relevant sites of ROS production within the 
ETC [87]. The downregulated activity of complex I in BC cell lines 
showed a decrease in ROS level, which resulted in increased cell meta-
static properties [90]. In addition, mitochondrial OXPHOS-related pro-
teins, the cytochrome c oxidase subunit 7a-related polypeptide 
(COX7RP), were found to be overexpressed in BC and displayed a cor-
relation with poor survival of patients [91]. It regulated the steady-state 
levels of TCA cycle intermediates, including fumaric acid and succinic 
acid in hypoxia, which could be induced by upregulated production of 
succinic acid and malic acid from glutamine metabolism [92]. Hence, 
most tumors, including TNBC, tend to utilize glycolysis to meet bio-
energetic demands and rigidly control the level of ROS by down-
regulating OXPHOS. Consistently, metabolomics analysis showed that 
hypoxia upregulated glucose uptake and glycolysis, thus inhibiting the 
conversion rate of glucose to the TCA cycle for OXPHOS in MDA-MB-231 
BC cell lines [93]. However, ROS and OXPHOS are still controversial in 
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BC, whose regulatory mechanisms still need to be further explored. 
In fact, a hybrid metabolic phenotype is characterized by high ac-

tivity of glycolysis/OXPHOS, which is regulated by high levels of HIF-1/ 
AMPK in TNBC cells [94]. One current proposal is that the metabolic 
phenotype conferred a strong metabolic reprogramming in TNBC cells to 
complete the switch between glycolysis and OXPHOS as a compensatory 
strategy in response to metabolic targeting drugs or an altered tumor 
environment [95]. Cells with this metabolic phenotype displayed 
maximum proliferation and clonogenicity relative to cells with either 
phenotype. Thus, dual targeting of glycolysis and mitochondrial bio-
energetics or antioxidant pathways would be more helpful in reducing 
cellular bioenergetics and promoting BC cell death. 

Tricarboxylic acid cycle 

Tricarboxylic acid cycle (TCA) cycle possesses a variety of progresses 
occurring in the mitochondria that starts with the oxidation of acetyl- 
CoA and generates the carbon dioxide and ATP to maintain the cell 
survival. However, the hyperactivation of TCA cycle could produce 
excess ROS, which was believed to be toxic to cells. The metabolic 
reprogramming of energy pathways in cancer cells was partly because of 
the defect in the mitochondria TCA cycle and/or mitochondria functions 
resulting from the mutations of TCA cycle enzymes [96]. 

Pyruvate dehydrogenase complex (PDH) catalyzes the oxidative 
decarboxylation of pyruvate into acetyl-CoA and therefore controls the 
flow of metabolites from glycolysis to the TCA cycle and the subsequent 
generation of ATP by mitochondrial metabolism (Fig. 1). In oxidized 
ATM kinase activation (ATM) TNBC stem cells, the upregulated 
expression of GLUT1, PKM2, and PDHA enhanced the uptake of glucose, 
increased the pyruvate production, which facilitated glycolytic flux to 
mitochondrial pyruvate and citrate, thus resulting in accumulation of 
cytoplasmic acetyl-CoA [97]. Study reported that the deficient PDHX 
was observed in human breast tumor samples, and it was significantly 
related to the reduced patient survival [98]. The decreased PDH-E1β 
subunit of the PDH complex inhibited the activity of PDH due to the 
prolonged hypoxia. On the one hand, the reduced expression of 
PDH-E1β was sustained to maintain a highly activity of glycolysis 
metabolism despite of the oxygen restoration [99]. On the other hand, 
inhibition of PDH decreased the mitochondrial oxidase and contributed 
to the BC cell proliferation [98]. 

The biallelic inactivation of fumarate hydratase (FH) was observed in 
BC patients [100]. Insufficient FH and succinate dehydrogenase (SDH) 
in cancer cell impaired glutathione production and increased ROS level 
[101]. In hypoxia-induced human breast tumorigenic cells, on the one 
hand, the expression of HIF-1α transcriptionally downregulated the 
expression of mitochondrial phosphoenolpyruvate carboxykinase 
(PCK2), which lead to the attenuation of TCA cycle and the accumula-
tion of fumarate [102]. On the other hand, excessive fumarate resulted 
in glutathione succination, a decrease in NADPH/NADP+ levels, and an 
increase in ROS levels [102]. Both factors fundamentally contributed to 
the growth of BC cells. However, FH may not be a major predisposing 
gene for familial BC [103]. 

High expression of SDHA in HER-2 BC and low or negative expres-
sion in the luminal A subtype was identified, respectively [104]. Stromal 
SDHB expression rate was highest in HER-2 subtype and lowest in TNBC. 
Only 3% BC showed the loss expression of SDHA or SDHB [104]. In 
MDA-MB-231, MCF-7, and 4T1 BC cells, the anti-inflammatory 
tumor-associated macrophages secreted the cytokine TGF-β, inhibited 
the protein level of the transcription factor, and consequently down-
regulated that of the SDH, which finally promoted the tumorigenesis 
[105]. The reduced SDH was confirmed to promote the epithelial to 
mesenchymal transition [106]. 

The dihydrolipoamide S-succinyltransferase (DLST) is the E2 trans-
ferase of α-ketoglutarate dehydrogenase complex (α-KGDH) that cata-
lyzes the irreversible conversion of α-ketoglutarate to succinyl-CoA 
[107]. High expression of DLST predicted a poor overall and 

recurrence-free survival in TNBC patients [108]. Suppression of the TCA 
cycle through DLST depletion decreased the growth and induced death 
in subsets of human TNBC cell lines [108]. Inhibition of α-KGDH using 
its inhibitor, (S)− 2-[(2,6-dichlorobenzoyl) amino] succinic acid, 
significantly counteracted the BC-associated lung metastasis [109]. 

Pentose phosphate pathway (PPP) 

The PPP is a major pathway of glucose catabolism except for 
glycolysis, where NADPH is produced as a reducing agent for biosyn-
thesis. The expression of PPP-related enzymes increased in many human 
cancer cells [110,111]. Among which, glucose-6-phosphate dehydro-
genase (G6PD), 6-phosphogluconolactonase (6PGL), 6-phosphogluco-
nate dehydrogenase (6PGD), and nuclear factor erythroid 2-related 
factor 2 (NRF2) showed a different expression in human BC tissues ac-
cording to the molecular BC types. G6PD and 6PGL expression increased 
in human BC tissue compared with the normal adjacent tissue, and G6PD 
showed the highest expression in HER-2 type [112]. The expression of 
6PGD was higher in HER-2 and basal-like subtypes than in the luminal 
type [112]. However, the expression of NRF2 decreased in all tumor 
compared with normal tissues. Study showed that inhibition of G6PD 
attenuated the tumor cell proliferation, cell survival, and increased 
oxidative stress as the results of augmenting the glycolytic flux, reducing 
lipid synthesis, and increasing glutamine uptake in MCF7 cells [113]. 
And, overexpression of NRF2 upregulated expression of G6PD in MCF-7 
and MDA-MB-231 cells through the elevated expression of Notch 1, 
which promoted the BC cell migration [114]. However, depletion of 
NRF2 significantly increased the basal levels of ROS in metastatic 66cl4 
cell lines from the murine 4T1 mammary tumor model and reduced the 
formation of BC primary tumor and lung metastasis [115]. On the one 
hand, the antioxidants provided protection against oxidative DNA 
damage and E2-induced mammary carcinogenesis in part through NRF2 
induction in BC [116–118]. On the other hand, the activity of NRF2 is 
the key to chemotherapy resistance in MCF7 BC cells [119]. The 
chemotherapeutic agents, such as luteolin, enhanced the chemo-
sensitivity through downregulating the NRF2 expression [120], sug-
gesting that a low NRF2 signature may be key to cellular sensitivity to 
both chemical carcinogenic stimuli and the cytotoxicity of commonly 
used chemotherapeutic drugs in established BC [121]. 

In addition, the transcriptional and translational levels and enzyme 
activity of 6PGD are aberrantly activated in BC tissues and cell lines. 
Moreover, inhibition of 6PGD significantly activated AMPK and its 
downstream substrate acetyl‑CoA carboxylase 1 (ACC1), leading to the 
decrease in activity of ACC1 and lipid biosynthesis, which suppressed 
the cancer cell growth and survival [122]. Though the inhibition of 
6PGD decreased the glucose consumption and increased the glutamine 
consumption, the ROS level was not changed in BC cell model [123]. 
These results suggested that G6PD and 6PGD could be the potential 
therapeutic strategies in BC. 

Fatty acids metabolism 

Aside from the glucose and amino acids, the fatty acids are another 
efficient way to gain energy in cancer progression. Fatty acids meta-
bolism plays a vital role in glucose metabolism and is a metabolic 
phenotype in BC tumors. Fatty acid synthesis and oxidation are gener-
ally viewed as counterparts in metabolic reprogramming of tumor cells. 

The oncogenic signaling enhanced the fatty acid synthesis in tumor 
cells. Unlike the normal cells, the tumor cells increased the de novo fatty 
acid synthesis to satisfy their needs for energy and intermediates under 
conditions of metabolic stress [124]. Fatty acid synthase (FASN) uses 
acetyl-CoA to generate fatty acids, and its expression was significantly 
higher in human BC cells compared with normal cells (Fig. 1) 
[125–127]. In human BC MDA-MB-231 and MCF-7 cells, suppression of 
FASN using its natural inhibitor induced cancer cell apoptosis [126]. 
The loss of FASN inhibited the glycolysis activity through 
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downregulating PI3K/AKT signaling pathway [128], suggesting that 
FASN is a feasible biomarker and an ideal target for chemosensitization 
[129] in human BC. The first-in-human dose-escalation study with the 
oral FASN inhibitor TVB-2640 demonstrated the potential for FASN as a 
therapeutic target [130]. Genetic or pharmacological inhibition of FASN 
impeded the HER2+ breast tumor growth in the brain [131], demon-
strating that fatty acid synthesis is required for BC brain metastasis. The 
result suggested that BC growing at this site must rely on the de novo 
fatty acid synthesis to support the requirement for lipids. However, 
during the acquisition of resistance to HER2 inhibition, metabolic 
rewiring of BC cells favors reliance on exogenous fatty acids uptake over 
de novo fatty acid synthesis. Among the above mechanisms, the regu-
lation of CD36 is indispensable. As a fatty acid transporter, CD36 was 
upregulated in BC cells with acquired resistance to the HER2 inhibitor 
lapatinib, and exogenous FA uptake and metabolic plasticity increased 
[132]. Inhibition CD36 suppressed the growth of lapatinib-resistant 
cells, attenuated tumorigenesis, [132] and also impaired metastasis in 
BC-derived tumors [133], suggesting that CD36 serve as a potential 
therapeutic target for BC metastases. Leucine deprivation significantly 
inhibited the expression of FASN in vitro and in vivo, and this was closely 
related to the sterol regulatory element-binding protein 1C (SREBP1C) 
[134]. The SREBP is an independent prognostic marker in BC, whose 
expression is highly positively correlated with tumor differentiation, 
tumor-node-metastasis stage, and lymph node metastasis [135]. The 
O-GlcNAcylation upregulated the expression of SREPB1 in an 
AMPK-independent manner, which finally increased the FASN expres-
sion in MDA-MB-231 and MCF-7 BC cell lines [136]. 

The first committed step of the fatty acid oxidation begins with long- 
chain acetyl-CoAs, which is transported to mitochondria by carnitine 
palmitoyltransferase 1 (CPT1) (Fig. 1). In BC tumor and cell lines, the 
expression of CPT1A increased in ER-positive compared with ER- 
negative [137] via upregulating expression of ERRα and peroxisome 
proliferator activated receptor gamma coactivator 1 (PGC-1) β by acti-
vation of AMPK [138], finally countering the effect of AKT inhibition. 
CPT1A overexpression significantly attenuated the proliferation in 
MDA-MB231 BC cells when compared with basal expression control. 
MYC overexpression promoted the upregulation of CPT expression, 
suggesting the enhanced fatty acid oxidation and increased ATP content 
in human BC cell lines [139]. The high level of ATP activated the Src 
oncoprotein by autophosphorylation at Y419. However, the progress 
was reversed by knocking down of CPT [140]. The transforming growth 
factor β1 (TGF‑β1) also induced an increase in ATP levels with decreased 
FASN and increased CPT in epithelial‑mesenchymal transition MCF‑7 
cells via the p‑AMPK pathway [141]. Moreover, inhibition of CPT2 
using RNAi knockdown or a small molecule inhibitor in MYC-high 
expression TNBC cell lines suppressed the proliferation and growth of 
cells [139]. 

Crosstalk of major signaling pathways in BC 

AMPK pathway 

AMPK is a crucial regulator in cancer metabolism. It is involved in 
cellular energy metabolism and protects cells from environmental stress, 
such as cells are hypoxic or nutrient deficient. The activation of AMPK 
can effectively reduce apoptosis and inhibit the tumor growth [142, 
143]. AMPK can conserve ATPs mechanisms by activating the catabolic 
pathways that produce ATP or inhibiting ATP-consuming processes, 
such as the lipid biosynthesis and mTORC1-dependent protein biosyn-
thesis [144,145]. 

AMPK has been suggested to increase GLUT1 expression through 
various mechanisms [146]. AMPK increased glucose uptake by upre-
gulating the expression of GLUT1 and stimulated aerobic glycolysis, thus 
increasing lactate production [147]. The downregulated NRF2 expres-
sion in MCF-7 and MDA-MB-231 BC cells inhibited the expression of 
AMPK, which finally attenuated the glycolysis by downregulating the 
glycolytic enzymes, including HK2, PFKFB3, PKM2, and LDHA [148]. 

Metformin inhibited BC cell growth by reducing Wnt/β‑catenin 
signaling in an AMPK-activated manner in MCF‑7 and MDA‑MB‑231 
cell lines [142]. The combination of metformin with navitoclax or 
venetoclax efficiently also inhibited tumor growth, conferred survival 
benefits, and induced tumor infiltration by immune cells through acti-
vating AMPK in BC cell lines [143]. Palma et al. demonstrated that 
AMPK defensed the detrimental effects of mitochondrial complex I in-
hibition through a manner dependent on pyruvate availability in a 
human BC cell line [149]. AMPK alleviated the energetic stress associ-
ated with BC progression by activating glycolysis, which contributed 
metformin switch carbohydrate metabolism to ketogenesis, and it 
exerted the anticancer activity [149]. Moreover, the increased expres-
sion and activity of AMPK induced cell death in MDA-MB-231 cells 
decreased the expression of G6PD and increased the expression of p-ACC 
and CPT1A (Fig. 2). Thus, the PPP was inhibited and fatty acid oxidation 
was enhanced, which reprogrammed glycolipid metabolism and 
destroyed the redox balance [150]. 

As a tumor suppressor in a broad spectrum of human cancers, liver 
kinase B1 (LKB1) can dependent phosphorylated AMPK in BC cells 
(Fig. 2), attenuated the endoplasmic reticulum (ER) stress, and partici-
pated in the progress that inhibited BC cell growth with the treatment of 
adiponectin [151]. And, in turn, LKB1 also promoted the inhibition of 
cancer cell apoptosis and the activation of autophagy through sup-
pressing the AMPK pathway [152]. In ER-positive BC cells, the chronic 
tamoxifen treatment activated the expression of AMPK. The AMPK 
activation promoted activation of AKT, while inhibition of AKT feedback 
suppressed the expression AMPK. AMPK additionally increased CPT1, 
which finally lead to the increase in fatty acid oxidation [138]. The 
molecular mechanism of sorafenib’s antitumoral activity in BC is 
impairment of glucose metabolism by sustained activation of AMPK 
[147]. Collectively, these results provide further evidence that AMPK is 
most likely to regulate BC progression and can be utilized as a promising 
target therapy in the near future. 

PI3K/AKT/mTOR signaling pathway 

The PI3K/AKT/mTOR complex is a signaling pathway with a major 
role in essential cellular activities, including the cell metabolism, cell 
growth, cell proliferation, apoptosis, and angiogenesis [153]. The acti-
vation of PI3K/AKT/mTOR signaling induced the energy metabolism 
reprogramming in cancer cell (Fig. 2). The energy metabolism pathway 
in BC progression is related to the PI3K/AKT/mTOR signaling pathway, 
glycolysis in particular [6]. 

The glycolysis and expression of lipid synthesis genes were upregu-
lated with the activation of AKT/mTORC2 pathway in BC cell lines 
[154]. The key enzymes of energy metabolism pathways, including 
G6PD, PFKB, HK2, LDHA, and GLUT1, whose expression increased with 
the upregulated level of p-AKT. PI3K-dependent AKT activation has a 
direct relationship with PFK2 phosphorylation [155,156]. The activa-
tion of AKT in a PI3K-dependent manner increased the glycolytic ac-
tivity by phosphorylating PFK2 and producing fructose-2, 
6-bisphosphate, which in turn activated the PFK1. The switch that 
glucose metabolism toward glycolytic flux in BC cells was regulated by 
PI3K signaling-mediated activity of HK and GLUT1 [157]. The trans-
location of GLUT1 from the intracellular membrane pool to the plasma 
membrane was also depended on the PI3K signaling [158]. Jia et al. 
[159] showed that the inactivation of AKT/mTOR pathway using a 
bioactive inhibitor in MCF-7 and MDA-MB-231 BC cell lines blocked the 
cell glycolysis through suppressing glucose uptake, reducing the pro-
duction of lactic acid, and decreasing the levels of glycolysis-related 
proteins, including the PKM2, GLUT1, and LDHA. This regulatory 
mechanism induced by inactivated AKT/mTOR pathway is also largely 
related to the activation of AMPK (Fig. 2) [160]. Conversely, the anti-
tumor efficacy of palbociclib in retinoblastoma protein (Rb)-positive 
TNBC cells, the PI3K/mTOR signaling significantly inhibited the 
Rb/E2F/myc axis and reduced the glucose metabolism by 
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downregulating the expression of GLUT1 [161]. Moreover, the lipid 
metabolism gene, fat mass, and the obesity-associated gene (FTO) were 
significantly increased in MCF-7 and MDA-MB-231 cells, lead to the 
upregulation of HK and PK, and finally enhanced the glycolysis. The 
potential mechanism behind these effects may be attributed to the 
activation of PI3K/AKT signaling pathway by increasing the expression 
of FTO [162]. Wang also demonstrated that beta-naphthoflavone, an 
agonist of aryl hydrocarbon receptor, contributed to the inactivation of 
cyclin D1/D3 and CDK4 by suppressing PI3K/AKT signaling and 
inducing G0/G1 cell cycle arrest and senescence, which could be a po-
tential anticancer drug for ER-positive MCF-7 BC cells [163]. A 
deuterated analog was equally effective as a standard TNBC therapy 
(paclitaxel) in downregulating cyclin D1 in TNBC cell lines [164]. In 
addition, the inhibition of HK2 in tamoxifen-resistant human BC cell 
lines decreased the cell growth by suppressing Akt/mTOR/HIF-1α axis 
activity [165]. And study further showed that the inhibition of mTOR 
activity or increase in AMPK activity reduced the lactate accumulation 
and cell survival, the results provided evidence that development of 
tamoxifen resistance may be driven by HIF-1α hyperactivation by 
modulating Akt/mTOR and/or AMPK signaling pathways in BC cells 
[165]. In addition, the reactivation of mTOR signaling in 
lapatinib-resistant BC cells restored the expression of ERRα, and the 
re-expression of ERRα triggered metabolic adaptations favoring mito-
chondrial energy metabolism through increased glutamine metabolism 
[166]. In conclusion, the PI3K/AKT/mTOR signaling pathway is a vital 
anticancer target for BC, and the downregulation of the pathway may 

inhibit the BC proliferation and migration. 
In fact, BC progression is regulated by multiple signaling pathways 

and mechanisms. The various key signaling molecules of Wnt signaling 
are upregulated in BC, and they are involved mainly in the processes of 
BC proliferation and metastasis [167]. Among which, Wnt/β-catenin, 
Wnt-planar cell polarity, (PCP) and Wnt-Ca2+ signaling are three 
well-established pathways participated in regulating immune microen-
vironment regulation, stemness maintenance, therapeutic resistance, 
and phenotype shaping in BC [167]. For instance, Wnt3A upregulated 
PFKP expression in a β‑catenin‑independent manner, resulting in 
increased PFK enzyme activity in various cancers, including BC [27]. 
And the regulatory mechanism of Wnt signaling pathway is inseparable 
from the crosstalk of AMPK signaling pathways in BC progression [142]. 
In addition, signal transducer and activator of transcription (STAT) 
signaling is an early tumor diagnostic marker and is known to promote 
BC malignancy. The STAT3 gene, a key member of the STAT family, can 
form a feedback loop to participate in tumor metabolic reprogramming 
by regulating PKM2 activity and glucose metabolism in BC cells [39]. 
Moreover, overexpressed and constitutively activated STAT signaling in 
BC can cooperate with multiple signaling pathways and participate in 
the regulation of BC proliferation, metastasis, and chemoresistance 
[168]. In conclusion, BC development is an extremely complex process 
that involves network crosstalk of multiple signaling pathways. These 
signaling pathways can serve as powerful clinical targets for BC pre-
vention and therapy. 

Fig. 2. The crosstalk between AMPK signaling and PI3K/AKT signaling pathway associated with the energy metabolism in BC. The activation of AMPK signaling 
promotes the AKT activity, and the activation of AKT inhibits AMPK signaling. Both signaling pathways can be involved in BC progression by regulating energy 
metabolism. PI3K, phosphoinositide 3- kinase; AKT, protein kinase B; G6PD, glucose-6-phosphate dehydrogenase; HK, hexokinase; PFK, phosphofructokinase; LDHA, 
lactate dehydrogenase A; PPP, pentose phosphate pathway; LKB1, liver kinase B1; ACC, acetyl‑ CoA carboxylase. 

X. Zheng et al.                                                                                                                                                                                                                                   



Translational Oncology 26 (2022) 101534

8

Potential therapeutic targets for the metabolic pathways associated with 
transcription factors 

In addition to their oncogenic activities, c-MYC, HIF-1α, and p53 act 
as the key transcriptional regulators of metabolic enzymes and facilitate 
to be supplied the required energy for cancer cells. Therefore, several 
targets in the metabolic pathway have been suggested as druggable 
potential for cancer treatment and drug discovery. 

c-MYC 

c-MYC was a transcript factor that related to the energy metabolism 
in cellular processes. Many key enzymes, such as GLUT1, HK2, PFK-1, 
LDHA, ASCT2, and SLC7A25, are closely associated with c-MYC 
expression. Under the regulation of c-MYC, the enzymes participated in 
the BC cell proliferation, differentiation, growth, migration, and other 
processes [169]. In MYC overexpressing TNBC cell, the metabolic dys-
regulation is essential for the cell growth. The metabolites associated 
with fatty acid oxidation significantly increased by MYC overexpression, 
and the inhibition of fatty acid oxidation dramatically decreased energy 
metabolism and inhibited tumor growth in a MYC-driven transgenic 
TNBC model and a MYC-overexpressing TNBC patient-derived xenograft 
[139]. More importantly, MYC driven tumors in a glutamine dependent 
manner, study disclosed that the high protein expression of the gluta-
mine metabolism was all associated with high MYC protein in luminal B 
tumors [170]. Increased MYC heightened cancer cell glutamine meta-
bolic activity by upregulating the expression of ASCT2 and GLS1 [63]. 
The activation of ASCT2 and GLS1 induced by MYC increased the 
glutamine uptake and catabolism in cancer cells [171]. The inhibition of 
MYC significantly decreased the SLC1A5 and GLS expression in BC cells, 
which finally impeded the BC cell proliferation [172]. As an important 
anticancer therapy in the treatment of BC, the c-MYC is the potential 
target for many drugs. The diclofenac [173], decitabine, [174] and 
primaquine [175] could effectively inhibit the expression of c-MYC in 
BC cell lines to induce the cell apoptosis, by regulating the key enzymes 
in the energy pathway. For example, the diclofenac impaired the cell 
proliferation and glucose metabolism in TNBC through targeting the 
c-MYC and reducing GLUT1 expression and HK activity [173]. In addi-
tion, MYC conferred chemotherapy resistance by regulating mitochon-
drial OXPHOS in BC stem cells [176]. However, while MYC contributed 
to the tamoxifen resistance, it resensitized cisplatin in ER positive BC 
[177], and knockdown of MYC expression in BC cells overcame 
tamoxifen resistance by the regulation of aspirin [178]. In conclusion, 
MYC can be feasibly targeted to overcome metabolic plasticity in BC. 

HIF-1α 

HIF-1α signaling is a key regulator in cancer cell while facing hyp-
oxia. The cancer cell will switch the metabolism to glycolytic pathways 
by HIF-1α [179]. The increased HIF-1α upregulated the expression of 
GLUT1 and HK2 [180], and simultaneously inhibited the mitochondrial 
OXPHOS and TCA cycle via directly transactivating pyruvate dehydro-
genase kinase-1 (PDK1), a key enzyme that decreased the activity of 
PDH by phosphorylation [181]. At the expression level, HIF1α was 
positively correlated with HK2, LDHA, and PKM2 in BC cell lines [148]. 
In NRF2-silencing BC cell lines, the accumulation of HIF-1α was hin-
dered and consequently inhibited the hypoxia-inducible expression level 
of glycolysis-associated genes, including PDK1 and LDHA [182]. The 
results also demonstrated that after the hypoxic incubation in control 
cells, the differential metabolites were related to PPP and glycolysis 
pathway [182], suggesting the role of HIF-1α in regulating cellular 
metabolism in cancer progress. Therefore, the activity of HIF-1α is a 
primary target in the potential therapeutic strategies for BC. Some nat-
ural compounds, such as sanguinarine [183] and cardamomin [184], 
significantly inhibited the BC cell growth by downregulating HIF-1α and 
its downstream signaling pathways. In addition, metformin induced a 

bidirectional signaling suppression between BC cells and 
cancer-associated fibroblasts by increasing the phosphorylation of 
AMPK, which reduced the activity of HIF-1α signaling and subsequently 
tumor-stromal cross talk [185]. More importantly, enriched HIF 
expression and transcriptional activity were induced by paclitaxel or 
gemcitabine in BC cells [186]. It is worth noting that coadministration of 
HIF inhibitors overcame the resistance of BC stem cells to paclitaxel or 
gemcitabine in vitro and in vivo, leading to tumor eradication and 
improved patient survival. Collectively, inhibition of HIF-1α impeded 
cancer stem cells expansion and restored the chemotherapy sensitivity 
in TNBC [176]. 

p53 

The tumor suppressor gene, p53, is involved in almost all pathways 
related to energy metabolism, including glucose transport, gluconeo-
genesis, TCA cycle, mitochondrial respiration, and PPP [187]. In BC cell 
lines, the inhibition of p53 resulted in the energy metabolism reprog-
ramming and upregulated the glucose metabolism-related genes, 
including PKM2, LDHA, and G6PD [188]. In BC expressing wild-type 
p53 effectively suppressed the LDHA expression, which down-
regulated the aerobic glycolysis in human BC cell lines [189]. The result 
suggested a novel insight that p53 inhibited the development and pro-
gression of BC by downregulation of aerobic glycolysis. The bortezomib 
induced the cell apoptosis in 4T1 BC cell in a p53-independent manner 
[190]. Similarly, treatment using 5-fluorouracil in MDA-MB-231 BC cell 
[191] and sodium cantharidate in BC cells increased the expression of 
p53 and induced apoptosis by regulating energy metabolism [192]. The 
p53 is important for epirubicin sensitivity; the loss of p53 function was 
observed in MCF − 7 BC cells [193]. Similarly, Qi disclosed that 
adenovirus-mediated p53 transfection in human BC cell lines enhanced 
adriamycin cytotoxicity and reversed adriamycin resistance, and that 
p53 combined with adriamycin dramatically inhibited the growth of 
subcutaneous xenograft of MCF-7/ADR [194]. 

Conclusion 

Energy metabolism reprogramming is the most characteristic feature 
of all cancer cells, including BC, which meets the enormous energy de-
mands of tumor cell growth. Undoubtedly, the glycolytic phenotype 
facilitates the tumor malignancy. BC along with many other cancers 
displays addiction to glutamine, and high glutamine activity was iden-
tified to support biosynthesis, energetics, and homeostasis. Serine 
metabolism is more important than the glycine pathway for BC cell 
proliferation and migration. The interplay between amino acids meta-
bolism and the TCA cycle promotes glutamine and serine to α-ketoglu-
tarate, which increases the activity of TCA cycle. The crosstalk among 
the energy metabolism pathways depends on the genetic makeup, 
modulation of multiple signaling pathways, and the activities of 
different transcription factors. Therefore, the transcriptional regulators 
of metabolic enzymes and signaling pathways provide a potential target 
for the treatment of BC. 
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