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Purpose: The 5-HT2A receptor (R) is known to modulate dopamine (DA) release in the

mammalian brain. Altanserin (ALT) and 2,5-dimethoxy-4-iodoamphetamine (DOI) act as

5-HT2AR antagonist and agonist, respectively. In the present study, we assessed the

effects of ALT and DOI on motor and exploratory behaviors and on D2/3R binding in the

rat brain with in vivo imaging methods.

Methods: D2/3R binding was determined after systemic application of ALT (10 mg/kg)

or DOI (0.5 mg/kg) and the respective vehicles [dimethyl sulfoxide (DMSO) and 0.9%

saline (SAL)] with [123I]IBZM as a single-photon emission computed tomography (SPECT)

radioligand. Anatomical information for the delineation of the target regions was obtained

with dedicated small animal MRI. Immediately after 5-HT2AR antagonistic or agonistic

treatment, motor/exploratory behaviors were assessed for 45 (ALT) or 30min (DOI) in an

open field. Additional rats underwent behavioral measurements after injection of DMSO

or SAL.

Results: ALT increased D2/3R binding in the ventral hippocampus relative to vehicle,

while DOI augmented D2/3R binding in caudate putamen, frontal cortex, motor cortex,

and ventral hippocampus. The 5-HT2AR agonist as well as antagonist decreased

parameters of motor activity and active exploration. However, ALT, in contrast to DOI,

decreased explorative head–shoulder motility and increased sitting.

Conclusions: The regional increases of D2/3R binding after ALT and DOI (90 and 75min

post-challenge) may be conceived to reflect decreases of synaptic DA. The reductions

of motor/exploratory activities (min 1–45 and min 1–30 after challenge with ALT and DOI,

respectively) contrast the regional reductions of D2/3R binding, as they indicate elevated

DA levels at the time of behavioral measurements. It may be concluded that ALT and DOI

modulate DA in the individual regions of the nigrostriatal and mesolimbocortical pathways

differentially and in a time-dependent fashion.
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INTRODUCTION

Serotonin(5-HT)ergic innervation of the mammalian brain
originates in the rostral and caudal raphe nuclei of the brainstem:
the efferent projections of the rostal group ascend to the
nuclei of the basal ganglia including the substantia nigra (SN;
Wirtshafter et al., 1987), caudate putamen (CP; Steinbusch et al.,
1980), globus pallidus (Eid and Parent, 2016), and subthalamic
nucleus (Carpenter et al., 1981). Further projections rise to the
ventral tegmental area (VTA; Oades and Halliday, 1987), nucleus
accumbens (NAC; Ma and Han, 1992), thalamus (THAL; Moore
et al., 1978), hypothalamus (Larsen et al., 1996), neocortex (Kievit
and Kuypers, 1975), and limbic regions including the amygdala
and hippocampus (HIPP; Köhler and Steinbusch, 1982), while
others descend to the superior colliculus (Villar et al., 1988); the
pedunculopontine tegmental, trigeminal, and cochlear brainstem
nuclei (Li et al., 1993; Thompson et al., 1995; Steininger et al.,
1997); the cerebellum (Torigoe et al., 1986) and the spinal
cord (Kazakov et al., 1993). The caudal raphe nuclei project to
the visceral and somatic motor nuclei, to the lateral reticular
formation, and also to the spinal cord (Li et al., 1993; Manaker
and Fogarty, 1995; Ribeiro-do-Valle, 1997).

In addition to 5-HT, the raphe nuclei contain a variety
of other neurotransmitters including glutamate (GLU; Kaneko
et al., 1990), γ-amino butyric acid (GABA; Belin et al., 1979), and
dopamine (DA; Ochi and Shimizu, 1978). Thereby, the dorsal
raphe nucleus sends DAergic efferents to NAC, CP, prefrontal
cortex (PFC), and septum (Stratford and Wirtshafter, 1990).
Neurochemical studies indicate that 5-HT modulates DAergic
activity and DA release (for review, see, e.g., Alex and Pehek,
2007). Disturbances of both 5-HTergic and DAergic function
have been implied in numerous psychiatric and neurological
conditions (for review, see, e.g., Nikolaus et al., 2009a,b). Both
neurotransmitter systems are relevant for a variety of functions
including motor control, learning, and reward-seeking behavior
(for review, see, e.g., Arias-Carrión and Poppel, 2007; Fischer and
Ullsperger, 2017; Kawashima, 2018).

Altanserin (ALT) is a potent antagonist of 5-HT2A receptors
[R; dissociation constant (Kd) = 0.3 nM; Kristiansen et al.,
2005] with >100-fold selectivity over D2/3R, 5-HT1AR, 5-HT6R,
and 5-HT7R (Leysen, 1989; Tan et al., 1999). 2,5-Dimethoxy-
4-iodoamphetamine (DOI) has 5-HT2AR agonistic properties
(Kd = 4 nM, Appel et al., 1990) with ∼10-fold selectivity over
5-HT2CR (Canal et al., 2013).

In the only available behavioral study in rats,
ALT [2.5 mg/kg subcutaneously (s.c.)] was observed
to reduce locomotion (Kennett, 1992), while, in a
microdialysis experiment (also in rats), intraperitoneal (i.p.)
application of 20 mg/kg elicited an increase of striatal DA
levels (Dewey et al., 1995).

In rats, DOI (0.25 mg/kg s.c., Krebs-Thomson et al., 1998;
0.3 and 1 mg/kg, s.c., Zaniewska et al., 2009; 0.25–4 mg/kg
s.c., Hillegaart et al., 1996) reduced locomotion (Krebs-Thomson
et al., 1998; Zaniewska et al., 2009) and rearing (Hillegaart
et al., 1996; Krebs-Thomson et al., 1998). Decreases of rearing
behavior were also observed by Hawkins et al. (2002) after
intracerebroventricular (i.c.v.) and s.c. administration of 20–200

µg and 0.1–1 mg/kg, respectively. However, they found no effect
on motor activity.

Systemic DOI (2 mg/kg i.p., Gudelsky et al., 1994; 2.5 mg/kg
i.p. Ichikawa and Meltzer, 1995) exerted no effect on DA efflux
in NAC (Ichikawa and Meltzer, 1995) and CP (Gudelsky et al.,
1994; Ichikawa and Meltzer, 1995), whereas infusion into NAC
(10–300µM; Yan et al., 2000), CP (1µM; Lucas and Spampinato,
2000), and PFC (300µM; Bortolozzi et al., 2005) increased DA
levels in these regions as well as in the VTA (Bortolozzi et al.,
2005). Moreover, application of 0.1–10 mg/kg s.c. elevated DA
release in the frontal cortex (FC; Gobert andMillan, 1999). These
findings are in contrast to the report of Ng et al. (1999), who
observed a decrease of DA efflux in the CP upon infusion of 10
and 20µM of DOI into this region.

So far, little is known about the behavioral and neurochemical
effects of ALT in rats. Moreover, findings on DOI have been
controversial with respect to both neurochemistry and behavior.
Also, in vivo imaging evidence is scarce: as of yet, one in vivo
imaging study of striatal D2/3R binding has been conducted on
baboons upon pretreatment with ALT [1 mg/kg intravenously
(i.v.)], showing a reduction of [11C]raclopride binding in the CP
indicative of an elevation of extracellular DA (Dewey et al., 1995).
After treatment with DOI, so far, no in vivo imaging studies of
D2/3R binding have been conducted on humans, non-human
primates, or rats.

In the present study, we investigated the effects of systemic
ALT (10 mg/kg i.p.) or DOI (0.5 mg/kg i.p.) on both
motor/exploratory behaviors and D2/3R binding in regions of
the rat nigrostriatal and mesolimbic systems, which are involved
in motor as well as cognitive and emotional functioning [NAC,
CP, THAL, SN/VTA, FC, motor cortex (MC), parietal cortex
(PC), dorsal HIPP (dHIPP), ventral HIPP (vHIPP)], using small
animal single-photon emission computed tomography (SPECT).
Autoradiography studies have confirmed the presence of D2/3R
binding sites for all of these areas, including those of the HIPP
and neocortex (Bouthenet et al., 1987; Seeman and Grigoriadis,
1987; Morelli et al., 1990). Anatomical information for the
delineation of the target regions was obtained with dedicated
small animal MRI.

MATERIALS AND METHODS

Animals
Studies were conducted on a total of 71 male Wistar rats (ZETT,
Heinrich-Heine University, Düsseldorf, Germany), weighing 437
± 51 g [mean ± standard deviation (SD); age, 3–4 months].
Rats were kept in standard Makrolon cages (590 × 380
× 200mm; three animals per cage) in a climate cabinet
(Scantainer, Scanbur BK, Karlslunde, Denmark; temperature,
20–22◦C; air humidity, 60–70%) with an artificial light–
dark cycle (lights on at 6:00 a.m., lights off at 6:00 p.m.).
Temperature and air humidity were checked on a daily basis.
Food and water were freely available. The protocol was approved
by the regional authority (Landesamt für Natur, Umwelt
und Verbraucherschutz, Nordrhein-Westfalen, Recklinghausen,
Germany) and carried out in accordance with the European
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FIGURE 1 | Time lines of experimental procedures. (A) Treatment with altanserin (ALT) and dimethyl sulfoxide (DMSO). (B) Treatment with 2,5-dimethoxy-4-

iodoamphetamine (DOI) and saline.

Communities Council Directive (86/609/EEC) and the German
Law on the Protection of Animals.

Study Design
Forty rats underwent (1) morphological MRI, (2) D2/3R imaging
after 5-HTergic challenge (ALT or DOI), and (3) D2/3R imaging
after administration of the respective vehicle [dimethyl sulfoxide
(DMSO) or 0.9% physiological saline (SAL)]. Immediately
after 5-HTergic challenges, rats underwent behavioral testing
in an open field (Figure 1). The two SPECT measurements
(including behavioral assessment after 5-HTergic challenges)
were performed 7 days apart and in a randomized order. Due to
cardiac arrest after the administration of the anesthetics, two rats
merely underwent behavioral measurements (ALT, n= 1; DOI, n
= 1) without subsequent D2/3R imaging.

In order to obtain comparative behavioral data, 31 further rats
of the same strain, age, and weight merely underwent testing in

the open field after precedent treatment with DMSO (n= 15) and
SAL (n= 16).

MRI Studies
After administration of ketamine hydrochloride (Ketavet R©,
Pharmacia GmbH, Erlangen, Germany; dose, 50 mg/kg
i.p.; concentration, 100 mg/ml) and xylazine hydrochloride
(Rompun R©, Bayer, Leverkusen, Germany; dose, 2.5 mg/kg
i.p.; concentration, 20 mg/ml), morphological imaging was
performed with a dedicated small animal MRI (MRS3000 Pre-
clinical MRI, 3.0 T, MR Solutions, Guildford, UK; coil diameter,
54mm; field of view, 64 × 64 × 44mm; spatial resolution,
0.25 × 0.25 × 0.69). High-resolution images were obtained by
performing 3D fast low-angle shot (FLASH) sequences (image
matrix, 192 × 192 × 96; echo time, 4.87ms; repetition time,
30ms; excitation flip angle, 30◦; total acquisition time, 9.22min;
Haase et al., 1986).
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Drug Treatment
Rats received either ALT (Sigma-Aldrich, Taufkirchen, Germany;
molecular weight, 411.49 g/mol; dose, 10 mg/kg i.p.; injection
volume, 0.5 ml/kg; concentration, 20 mg/ml; n = 21),
(±)DOI hydrochloride (Sigma-Aldrich, Taufkirchen, Germany;
molecular weight, 357.62 g/mol; dose, 0.5 mg/kg i.p.; injection
volume, 1 ml/kg; concentration, 0.5 mg/ml; n = 19) or the
vehicles DMSO (for ALT; 100%; Sigma-Aldrich, Taufkirchen,
Germany; molecular weight, 78.13 g/mol; dose, 0.5 ml/kg i.p.)
and isotonic SAL (for DOI; B. BraunMelsungen AG, Melsungen,
Germany; molecular weight: 58.5 g/mol; dose, 1 ml/kg i.p.).

In the available studies, ALT was behaviorally and
pharmacologically active after systemic doses of 2.5 mg/kg
(Kennett, 1992) and 20 mg/kg (Dewey et al., 1995), respectively.
DOI proved behaviorally active after systemically applied
doses between 0.05 and 4 mg/kg (Hillegaart et al., 1996), while
neurochemical effects were observed between 0.1 and 10 mg/kg
(Gobert and Millan, 1999). Based on these findings, we chose
intermediate doses of 10 mg/kg of ALT and 0.5 mg/kg of
DOI, respectively.

Single-Photon Emission Computed
Tomography Studies
The employed small animal tomograph (“TierSPECT”; Central
Institute for Electronics, Research Center Jülich, Jülich,
Germany) was described in detail elsewhere (Schramm
et al., 2000). Briefly, the detector consists of a NaI(Tl) disk
(thickness, 3mm) coupled to a position-sensitive photomultiplier
(Hamamatsu R3292) and mounted on a rotating gantry {field
of view, 82mm; tomographic resolution [full width at half
maximum (FWHM)] for 123I, 3.4mm; sensitivity for 123I,
16 cps/MBq}. In the present study, a low-energy ultra-high-
resolution parallel-hole collimator (LEUHR, 37 × 1 × 0.2 mm3)
was employed. Imaging data were recorded in a step-and-shoot
mode over a circular orbit (radius of rotation, 65mm) in angular
steps of 6◦ (60 projections, 60 s/projection). The 15% energy
window was centered on the 159-keV gamma photopeak of 123I.
Data were acquired in a 128 × 128 matrix with a pixel width
and a slice thickness of ≈0.664mm, respectively. Reconstruction
was performed with an iterative ordered-subset-expectation-
maximization algorithm (three iterations, four subsets/iteration).
No post-filtering procedure was applied. An attenuation
correction was implemented assuming a uniformly attenuating
medium (linear attenuation coefficient, 0.10 cm−1).

Upon anesthesia with ketamine hydrochloride (dose,
100 mg/kg i.p.; concentration, 100 mg/ml) and xylazine
hydrochloride (dose, 5 mg/kg i.p.; concentration, 20 mg/ml),
[123I]S-3-iodo-N-(1-ethyl-2-pyrrolidinyl)methyl-2-hydroxy-
6-methoxy benzamide ([123I]IBZM; GE Healthcare, Munich,
Germany; activity, 29.9 ± 3.4 MBq; concentration, 3.4 × 10−9

g/ml; specific activity, >74 TBq/mmol at reference time) was
injected into the tail vein. With an applied mean radioactivity of
30 MBq, a mean animal weight of 437 g, a specific activity of >74
TBq/mmol, and an affinity of ∼0.3 nM (Verhoeff et al., 1991),
according to Hume et al. (1998), a D2/3R occupancy in the range
of 2% may be expected.

In previous studies conducted with the “TierSPECT,” we have
demonstrated the displaceability of this radioligand from the
D2/3R binding site by endogenous DA (e.g., Nikolaus et al., 2016).
In both humans (Verhoeff et al., 1991) and rodents (Verhoeff
et al., 1991; Jongen et al., 2008), under various anesthetics
including ketamine (Jongen et al., 2008).

Specific binding of [123I]IBZM in the striatum reaches its
maximum at 40min post-injection and remains stable for
up to 2 h. This coincides with the time of maximum DA
concentrations after administration of ALT (40–60min post-
challenge; Dewey et al., 1995) and DOI (20–60min post-
challenge; Gobert and Millan, 1999). In order to account for
these time courses, data acquisition was started 45min after
radioligand administration (ALT and DMSO, 90min post-
treatment; DOI and SAL, 75min post-treatment) and ended
60min later (ALT and DMSO, 150min post-treatment; DOI
and SAL, 135min post-treatment). Animals were kept under
anesthesia from 5min before radioligand application until the
end of data acquisition, receiving total quantities of up to 60mg
of ketamine hydrochloride and 12mg of xylazine hydrochloride.

Behavioral Studies
Immediately after administration of ALT, DOI, DMSO, or SAL,
motor and exploratory behaviors were assessed in an open field
(Phenotyper R©, Noldus Information Technology, Wageningen,
The Netherlands; dimensions, 45 × 45 × 56 cm; illumination,
19 lx) with EthoVision XT (Noldus Information Technology,
Wageningen, The Netherlands).

In previous microdialysis studies, DA peaks were reached at
about 40min (ALT; Dewey et al., 1995) and 20min (DOI; Gobert
and Millan, 1999) post-injection. Hence, for a total of 45 (ALT
and DMSO) or 30min (DOI and SAL; Figure 1), durations (s)
and frequencies (counts) of the following behaviors were rated in
blocks of 5min by one of the investigators (SN): (a) ambulation
(as measure of motor activity); (b) sitting (as measure of “passive
immobility”; Müller et al., 2004); (c) rearing (as measure of
active exploration); and (d) explorative movements of head,
neck, and shoulders, while the animal was sitting. Thereby, head
and shoulder movements related to grooming behavior were
explicitly excluded. Furthermore, based on the movement of the
animal’s center point, EthoVision XT automatically determined
the distance in cm covered by the rat. Since the center point
of a rat shifts not only on account of horizontal movements
but also on account of vertical and diagonal movements, as
they occur in rearing behavior and head–shoulder motility, the
resulting distances can be considered as a measure of overall
motor activity. Behavioral studies were conducted between
9:00 a.m. and 5:00 p.m. Following the behavioral tests, rats were
anesthetized as described above and injected [123I]IBZM.

Evaluation of Single-Photon Emission
Computed Tomography Imaging Studies
D2/3R imaging data were analyzed with PMOD (version 3.5,
PMOD Technologies Ltd., Zürich, Switzerland). For each rat,
SPECT and MR images were coregistered. Then, the MRI was
coregistered with the Paxinos standard rat brain MRI (Schiffer
et al., 2006) provided by PMOD. The necessary mathematical
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FIGURE 2 | Paxinos standard rat brain MRI and D2/3R single-photon emission computed tomography (SPECT) images after 5-HT2A receptor antagonistic (A) and

agonistic treatment (B) with [123 I]IBZM as a radioligand. The left column shows Paxinos standard rat brain MR images (Schiffer et al., 2006) at different positions from

bregma together with the standard volume of interest (VOI) templates provided by PMOD. The middle column shows coronal SPECT slices in two characteristic rats

after pretreatment with (A) dimethyl sulfoxide (DMSO) and (B) saline as vehicle at the same positions from bregma depicted in the left column. The right column shows

SPECT slices in the same rats after pretreatment with (A) 10 mg/kg of altanserin and (B) 0.5 mg/kg of 2,5-dimethoxy-4-iodoamphetamine (DOI) at the same positions

from bregma. Increases of [123 I]IBZM accumulation are marked by white arrows. SPECT images show binding potentials (BPs). It is understood that the calculation of

BPs is only valid for regions with specific radioligand binding. Analysis and image algebra were performed with PMOD (version 3.5, PMOD Technologies Ltd., Zürich,

Switzerland). CER, cerebellum; CP, caudate putamen; FC, frontal cortex; MC, motor cortex; PC, parietal cortex; THAL, thalamus; vHIPP, ventral hippocampus.

transformations were saved. The SPECT image as coregistered
with the MRI was imported using these transformations, which
allowed creation of an overlay with the Paxinos standard rat
brain MRI. On these overlays, the following volumes of interest
(VOIs) were defined: NAC, CP, THAL, SN/VTA, FC, MC, PC,
dHIPP, and vHIPP. According to the rat brain atlas (Paxinos and
Watson, 2014), all these regions have maximum craniocaudal
and one-sidedmediolateral and dorsoventral (vertical or oblique)
dimensions in the range of or beyond the spatial resolution of the
imaging system (3.4mm for 123I; Schramm et al., 2000).

Regional binding potentials (BPs) were calculated according

to the simplified reference tissue model (Ichise et al., 2001) by

computing ratios of the radioactivity counts measured in the
specifically bound compartments (NAC, CP, THAL, SN/VTA,
FC, MC, PC, dHIPP, and vHIPP) to the radioactivity counts in

the cerebellar reference VOI. Although the cerebellum receives
5-HTergic afferents from raphe nuclei (Torigoe et al., 1986), it
is suitable as a reference region, since it contains practically no
D2/3R binding sites (Camps et al., 1989).

Statistical Analysis
D2/3R Imaging Studies
Distributions of regional BPs after 5-HTergic challenges as well
as vehicles were tested for normality with the non-parametric
Kolmogorov–Smirnov test (α ≤ 0.05). The regional BPs were not
uniformly normally distributed after ALT or DMSO (0.001≤ p≤
0.200) nor after DOI or SAL (0.008≤ p ≤ 0.200).

Medians and interquartile ranges (25th/75th and 5th/95th
percentiles) of regional BPs were calculated for each treatment.
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FIGURE 3 | Binding potentials (BPs) after altanserin (10 mg/kg; turquoise) and vehicle (dimethyl sulfoxide; white). Rendered are medians and 25th/75th (boxes) and

9th/95th quartiles (whiskers). The circles represent the individual animals. Treatments were compared with the Wilcoxon signed-rank test for paired samples

(two-tailed, α = 0.05). The significant p-values are given. CP, caudate putamen; dHIPP, dorsal hippocampus; FC, frontal cortex; MC, motor cortex; NAC, nucleus

accumbens; PC, parietal cortex; SN/VTA, substantia nigra/ventral tegmental area; THAL, thalamus (THAL); vHIPP, ventral hippocampus.

Moreover, percentual differences of BPs after ALT and DOI
relative to DMSO and SAL, respectively, were computed.

A two-way analysis of variance (ANOVA) was conducted
with the factors “brain region” and “treatment” (α ≤ 0.05).
Regional BPs were compared between 5-HTergic challenge and
the respective vehicle (ALT vs. DMSO, and DOI vs. SAL) with
the non-parametricWilcoxon signed-rank test for paired samples
(two-tailed, α ≤ 0.05).

Statistic calculations were performed with SigmaStat (version
3.5, Systat Software Inc., Erkrath, Germany).

Network Analyses
With this mode of analysis, the network structure of variables—
predefined so-called “nodes”—can be analyzed by estimating
path coefficients, which describe the “strength” of the individual
connections. Here, we separately assessed the associations
between D2/3R binding in NAC, CP, THAL, SN/VTA, FC,
MC, PC, dHIPP, and vHIPP after 5-HTergeic challenges and
the respective vehicles. Covariance matrices were estimated
with gaussian graphical models employing graphical L1 (lasso)
regularized regression in order to increase matrix sparsity
(Friedman et al., 2008). The tuning parameter was chosen
using the extended Bayesian information criterion (EBICglasso).
EBICglassos were computed using JASP (version 0.10.2.0,
© 2013–2019 University of Amsterdam).

Behavioral Studies
For each pretreatment condition (ALT, DOI, DMSO, and SAL),
distributions of behavioral parameters (duration and frequencies
of ambulation, sitting, rearing, and head–shoulder motility) after
5-HTergic challenges as well as vehicles were tested for normality
with the non-parametric Kolmogorov–Smirnov test (α ≤ 0.05).
Since none of the behavioral parameters was uniformly normally
distributed in any of the pretreatment conditions (0.0001 ≤ p
≤ 0.2), behaviors in each 5-min bin were compared between 5-
HTergic challenge and treatment with the respective vehicle (ALT
vs. DMSO, and DOI vs. SAL) with the Mann–Whitney U-test
for unrelated samples (two-sided, α ≤ 0.05). Statistic calculations
were performed with SigmaStat (version 3.5, Systat Software Inc.,
Erkrath, Germany).

RESULTS

D2/3R Binding
5-HTergic Treatments vs. Vehicle
Figures 2A,B show images of the Paxinos standard rat brain
MRI atlas (Schiffer et al., 2006) at different positions from the
bregma together with the standard VOI templates provided by
PMOD (left column). The next two columns show characteristic
images of regional [123I]IBZM accumulations on coronal slices
after treatment with vehicle [DMSO (A) or SAL (B); middle] and
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FIGURE 4 | Binding potentials (BPs) after 2,5-dimethoxy-4-iodoamphetamine (DOI; 0.5 mg/kg; blue) and vehicle (saline; light purple). Rendered are medians and

25th/75th (boxes) and 9th/95th quartiles (whiskers). The circles represent the individual animals. Treatments were compared with the Wilcoxon signed-rank test for

paired samples (two-tailed, α = 0.05). The significant p-values are given. CP, caudate putamen; dHIPP, dorsal hippocampus; FC, frontal cortex; MC, motor cortex;

NAC, nucleus accumbens; PC, parietal cortex; SN/VTA, substantia nigra/ventral tegmental area; THAL, thalamus (THAL); vHIPP, ventral hippocampus.

after 5-HTergic challenge [ALT (A) or DOI (B); right], at the
positions from the bregma depicted in the left column. Scans
after vehicle and the respective 5-HTergic challenge stem from
the same rat.

The two-way ANOVA yielded significant effects of
“treatment” (p < 0.0001) and “brain region” (p < 0.001) as
well as a significant interaction “treatment× region” (p= 0.024).

After 10 mg/kg of ALT (Figure 3), BP was significantly
augmented in vHIPP (+22%, p = 0.030) relative to vehicle. No
significant alterations were observed in the other brain regions
(0.268 ≤ p ≤ 0.899).

In a dose of 0.5 mg/kg, DOI (Figure 4) induced significant
increases of the BPs in CP (+17%, p = 0.018; after exclusion of
the outlier: p = 0.035), FC (+16%, p ≤ 0.001), MC (+29%, p ≤

0.001), and vHIPP (+30%, p = 0.020). No significant alterations
were observed in the other brain regions (0.107≤ p ≤ 0.847).

Network Analyses
Network analyses of the BPs obtained after treatment withDMSO
yielded 23 out of 36 possible connections (Figure 5A; sparsity,
0.361), while after treatment with ALT, 30 out of 36 possible
connections were obtained (Figure 5B), decreasing sparsity to
0.167. The individual path coefficients (c) obtained after DMSO
and ALT are given in Tables 1, 2, respectively. Common to

both treatments were strong positive connections (c > 0.100)
between NAC and CP, FC and MC, dHIPP and vHIPP, CP and
THAL, SN/VTA and THAL, and SN/VTA and vHIPP, as well as
negative connections between FC and vHIPP, and SN/VTA and
PC. Moreover, connections between NAC and THAL and FC and
PC were positive after DMSO but negative after ALT. Conversely,
the connection between NAC and PC was negative after DMSO,
but positive after ALT. Besides, the positive connections between
CP and SN/VTA, CP and FC, CP andMC, and THAL and vHIPP
as well as PC and dHIPP obtained after DMSO were not existent
any more after treatment with ALT. Instead, positive connections
between NAC and vHIPP, SN/VTA and MC, THAL and PC,
THAL and dHIPP, MC and PC, MC and dHIPP, and MC and
vHIPP as well as negative connections between NAC and dHIPP
and PC and vHIPP were existent.

Network analyses of the BPs obtained after treatment with
SAL yielded 23 out of 36 possible connections (Figure 5C;
sparsity, 0.361), while after treatment with DOI (Figure 5D),
29 out of 36 possible connections were obtained (Figure 5B),
decreasing sparsity to 0.194. The individual path coefficients
obtained after SAL and DOI are given in Tables 3, 4, respectively.
Common to both treatments were strong positive connections
(c > 0.100) between NAC and CP, NAC and SN/VTA, SN/VTA
and vHIPP, THAL and FC, and THAL and dHPP as well as
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FIGURE 5 | Connections between nucleus accumbens (NAC), caudate putamen (CP), thalamus (THAL), substantia nigra/ventral tegmental area (SN/VTA), frontal

cortex (FC), motor cortex (MC), parietal cortex (PC), dorsal hippocampus (dHIPP), and ventral hippocampus (vHIPP) obtained after (A) dimethyl sulfoxide (DMSO), (B)

altanserin (ALT), (C) saline (SAL), and (D) 2,5-dimethoxy-4-iodoamphetamine (DOI) application. Positive and negative associations are represented by blue and red

lines, respectively. The size of the lines indicates the strength of the individual connections. Models were estimated with JASP (version 0.10.2.0, © 2013–2019

University of Amsterdam).

FC and MC and a strong negative association between SN/VTA
and PC. After SAL, strong positive connections were obtained
between NAC and THAL, NAC and PC, SN/VTA and FC,
and SN/VTA and MC, which became negative after treatment
with DOI. Moreover, after SAL, strong positive connections
were found between NAC and dHIPP, NAC and vHIPP, CP
and MC, CP and vHIPP, FC and dHIPP, MC and PC, and
PC and vHIPP, which were not existent or much weaker
after DOI. In turn, strong positive connections between NAC
and FC, CP and SN/VTA, CP and THAL, CP and PC, CP
and dHIPP, SN/VTA and dHIPP, THAL and vHIPP, PC and
dHIPP, FC and PC, and MC and vHIPP and strong negative
connections between THAL and PC as well as dHIPP and vHIPP
were added.

Motor and Exploratory Behaviors
Overall activity (Figure 6) was lower after ALT compared
with DMSO in all individual 5-min bins (0.0001 ≤ p ≤

0.042). After DOI, it fell short relative to SAL from min

1 to 20 (0.0001 ≤ p ≤ 0.029) and from min 26 to
30 (p= 0.017).

Inspection of the individual behavioral parameters yielded
decreased duration and frequency of ambulation (Figures 7A,B)
after ALT relative to DMSO from min 1 to 20 (duration, 0.0001
≤ p ≤ 0.46; frequency, 0.0001 ≤ p ≤ 0.036). Moreover, after
ALT, animals ambulated for a shorter time compared with DMSO
from min 41 to 45 (p = 0.042). Comparisons between DOI and
SAL merely yielded a decreased duration of ambulation after the
former relative to the latter treatment frommin 1 to 5 (p= 0.007).

Sitting duration (Figure 8A) was increased after ALT relative
to DMSO in all bins (0.0001 ≤ p ≤ 0.009). There were
no between-group differences, however, of sitting frequency
(Figure 8B). Conversely, sitting durationwas unaltered after DOI
compared with SAL, whereas sitting frequency was increased
from min 11 to 30 (0.0001≤ p ≤ 0.002).

Rearing duration (Figure 9A) as well as rearing frequency
(Figure 9B) was decreased after pretreatment with ALT relative
to DMSO from min 6 to 20 and from min 26 to 30 (duration,
0.0001 ≤ p ≤ 0.013; frequency, 0.0001 ≤ p ≤ 0.018). After
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TABLE 1 | Path coefficient matrix after treatment with dimethyl sulfoxide (DMSO) obtained with EBICglasso modeling of D2/3R binding potentials in nucleus accumbens

(NAC), caudate putamen (CP), thalamus (THAL), substantia nigra/ventral tegmental area (SN/VTA), frontal cortex (FC), motor cortex (MC), parietal cortex (PC), dorsal

hippocampus (dHIPP), and ventral hippocampus (vHIPP).

NAC CP THAL SN/VTA FC MC PC dHIPP vHIPP

NAC 0.000 0.578 0.268 0.000 0.000 0.000 −0.148 0.000 −0.053

CP 0.000 0.218 0.148 0.134 0.142 0.043 0.000 0.000

THAL 0.000 0.350 0.056 0.093 0.000 0.004 0.395

SN/VTA 0.000 0.073 0.000 −0.187 0.000 0.114

FC 0.000 0.679 0.427 0.000 −0.253

MC 0.000 0.051 0.000 0.000

PC 0.000 0.306 0.000

dHIPP 0.000 0.481

vHIPP 0.000

TABLE 2 | Path coefficient matrix after treatment with altanserin obtained with EBICglasso modeling of D2/3R binding potentials in nucleus accumbens (NAC), caudate

putamen (CP), thalamus (THAL), substantia nigra/ventral tegmental area (SN/VTA), frontal cortex (FC), motor cortex (MC), parietal cortex (PC), dorsal hippocampus

(dHIPP), and ventral hippocampus (vHIPP).

NAC CP THAL SN/VTA FC MC PC dHIPP vHIPP

NAC 0.000 0.866 −0.567 0.033 0.030 0.028 0.287 −0.230 0.292

CP 0.000 0.713 0.000 −0.082 0.057 −0.133 0.000 0.000

THAL 0.000 0.155 −0.025 0.018 0.264 0.350 0.069

SN/VTA 0.000 −0.094 0.337 −0.166 0.000 0.248

FC 0.000 0.822 −0.342 0.000 −0.587

MC 0.000 0.427 0.153 0.124

PC 0.000 0.000 −0.587

dHIPP 0.000 0.344

vHIPP 0.000

pretreatment with DOI, both rearing duration and frequency
were reduced relative to SAL from min 6 to 15 and min 26 to 30
(duration, 0.0001 ≤ p ≤ 0.034; frequency, 0.0001 ≤ p ≤ 0.031).

After ALT, the frequency of head–shoulder motility
(Figure 10B) was decreased throughout the whole testing
time relative to DMSO (0.0001 ≤ p ≤ 0.013). Except for the
first 5-min bin, this also held for the duration of head–shoulder
motility (Figure 10A; 0.0001 ≤ p ≤ 0.012). After DOI, the
frequency of head–shoulder motility was elevated relative to SAL
from min 1 to 5 (p = 0.001) and min 26 to 30 (p = 0.048). An
increase of duration of head–shoulder motility was observed
from min 1 to 10 (p= 0.004 and 0.003, respectively).

DISCUSSION

D2/3R Binding
The present study presents the first in vivo imaging evidence
on the effects of 5-HT2AR antagonistic and agonistic challenges
on subcortical and neocortical DA functions: systemic treatment
with the 5-HT2AR antagonist ALT in a dose of 10 mg/kg
significantly increased D2/3R binding in vHIPP (+22%) relative
to vehicle, while systemic treatment with the 5-HT2AR
agonist DOI in a dose of 0.5 mg/kg significantly augmented
D2/3R binding CP (+17%), FC (+16%), MC (+29%), and
vHIPP (+30%).

In previous studies on rats, systemic L-DOPA as well
as GABAAR agonist and N-methyl-D-aspartate (NMDA)R
antagonist treatment reduced [123]IBZM binding, whereas
GABAAR antagonist and NMDAR agonist treatment elevated
[123]IBZM binding to the neostriatal D2/3R (Nikolaus et al.,
2016, 2018, 2019). Since [123]IBZM competes with endogenous
DA molecules for D2/3R binding sites, the observed decreases
and increases of D2/3R binding may be interpreted to reflect
increases and decreases, respectively, of synaptic DA (Laruelle,
2000). Hence, it can be assumed that, also in the present study,
the regional elevations of D2/3R binding elicited by ALT and DOI
were due to decreased DA concentrations in these areas.

Under the present experimental conditions, we observed a
significant elevation of D2/3R binding (indicative of decreased
DA levels) in the vHIPP after 10 mg/kg of ALT. However, in
contrast to the results obtained by Dewey et al. (1995) on baboons
and rats after 1 and 20 mg/kg of ALT using PET and in vivo
microdialysis, respectively, no significant decreases of neostriatal
D2/3R binding were detected. This may be accounted for by the
differences of method: (1) non-invasive in vivo imaging of rats
vs. invasive in vivo microdialysis of rats in the study of Dewey
et al. (1995), (2) anesthetized rats vs. freely moving rats in the
study of Dewey et al. (1995), (3) adult rats (mean weight, 466 g)
vs. adolescent rats (200–300 g) in the study of Dewey et al. (1995),
and, finally, (4) in vivo imaging of rats vs. in vivo imaging of
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TABLE 3 | Path coefficient matrix after treatment with saline obtained with EBICglasso modeling of D2/3R binding potentials in nucleus accumbens (NAC), caudate

putamen (CP), thalamus (THAL), substantia nigra/ventral tegmental area (SN/VTA), frontal cortex (FC), motor cortex (MC), parietal cortex (PC), dorsal hippocampus

(dHIPP), and ventral hippocampus (vHIPP).

NAC CP THAL SN/VTA FC MC PC dHIPP vHIPP

NAC 0.000 0.592 0.307 0.169 0.000 0.000 −0.033 0.103 0.145

CP 0.000 0.065 0.000 0.016 0.132 0.000 0.000 0.234

THAL 0.000 0.071 0.275 0.022 0.000 0.132 0.000

SN/VTA 0.000 0.146 0.138 −0.255 0.000 0.089

FC 0.000 0.604 0.000 0.126 0.000

MC 0.000 0.138 0.000 0.000

PC 0.000 0.045 0.327

dHIPP 0.000 0.000

vHIPP 0.000

TABLE 4 | Path coefficient matrix after treatment with 2,5-dimethoxy-4-iodoamphetamine (DOI) obtained with EBICglasso modeling of D2/3R binding potentials in nucleus

accumbens (NAC), caudate putamen (CP), thalamus (THAL), substantia nigra/ventral tegmental area (SN/VTA), frontal cortex (FC), motor cortex (MC), parietal cortex (PC),

dorsal hippocampus (dHIPP), and ventral hippocampus (vHIPP).

NAC CP THAL SN/VTA FC MC PC dHIPP vHIPP

NAC 0.000 0.648 −0.209 0.168 0.157 0.077 −0.310 0.000 0.047

CP 0.000 0.254 0.242 0.044 0.000 0.341 0.134 0.073

THAL 0.000 0.060 0.298 0.000 −0.144 0.433 0.368

SN/VTA 0.000 −0.183 −0.084 −0.272 0.240 0.304

FC 0.000 0.503 0.134 0.055 0.000

MC 0.000 0.000 0.000 0.074

PC 0.000 0.390 0.000

dHIPP 0.000 −0.321

vHIPP 0.000

baboons in the study of Dewey et al. (1995). Another likely
reason might be the dosage, since Dewey et al. (1995) applied
either a tenth of the dose or twice the dose (1 or 20 mg/kg,
respectively) administered in our investigation. In order to shed
further light on the impact of dosage, a dose–response curve
should be established by future imaging or in vivo microdialysis
studies after increasing doses of ALT.

The present findings showed significant increases of D2/3R
binding (indicative of decreased DA levels) after systemic DOI
in CP, FC, MC, and vHIPP. Since the affinity of DOI for the
5-HT2AR binding site exceeds its affinity for the 5-HT2CR by
one order of magnitude (Canal et al., 2013), and HT2CR is also
related to DA efflux (Alex et al., 2005), it cannot be entirely
excluded that the effects of DOI may have also partially been
induced by 5-HT2CR action. The present result of decreased
DA in the CP agrees with the outcome of a previous in vivo
microdialysis study, reporting a reduction of striatal DA efflux
upon infusion of DOI (10 and 20µM) into this region (Ng
et al., 1999). Apart from the lack of a significant alteration of
D2/3R binding in the NAC (after DOI in a dose of 2 mg/kg
i.p.), which was also reported by Ichikawa and Meltzer (1995),
our findings on D2/3R binding, however, are not consistent with
the precedent microdialysis findings after systemic application of
DOI (Gudelsky et al., 1994; Ichikawa and Meltzer, 1995; Gobert
and Millan, 1999), which reported either no effect on DA levels

in the CP (2 mg/kg i.p., Gudelsky et al., 1994; 2.5 mg/kg i.p.,
Ichikawa and Meltzer, 1995) or increased DA levels in the FC
(0.1–10 mg/kg s.c., Gobert and Millan, 1999). The dose of 0.5
mg/kg of DOI lies in the range of doses (0.1–10 mg/kg) applied
in the other investigations (Gudelsky et al., 1994; Ichikawa and
Meltzer, 1995; Gobert and Millan, 1999), which precludes dosage
as a relevant factor for the inconsistency of outcomes. However,
a likely reason for the observed discrepancy, also here, are
the methodological differences: we employed a non-invasive in
vivo imaging approach in contrast to the invasive microdialysis
studies of Gudelsky et al. (1994), Ichikawa and Meltzer (1995),
and Gobert and Millan (1999). Moreover, we used adult rats
in contrast to the adolescent animals employed in the other
investigations (Gudelsky et al., 1994, 225–300 g; Ichikawa and
Meltzer, 1995, 200–300 g; Gobert and Millan, 1999, 200–220 g).

5-HT2AR Agonistic and Antagonistic
Actions Within Cerebral Networks
After 5-HTergic challenges as well as vehicles, network analyses
of regional D2/3R BPs indicated distinct relations between the
individual brain regions. Thereby, irrespective of the applied
treatment, the same framework of functional connections
between NAC and CP, NAC and THAL, CP and THAL, SN/VTA
and THAL, SN/VTA and vHIPP, and FC and MC was obtained.
Interestingly, however, after SAL, a strong positive connection
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FIGURE 6 | Overall activity. Traveled distance (cm) after 10 mg/kg of altanserin (turquoise), 0.5 mg/kg of 2,5-dimethoxy-4-iodoamphetamine (DOI; blue), and the

respective vehicles [dimethyl sulfoxide (DMSO), white; saline, light purple]. The figure shows box and whisker plots of median overall activity in the individual 5-min

bins. The 25th/75th percentiles are given in the boxes, while the 5th/95th percentiles are represented by the whiskers. The circles represent the individual animals.

Groups (altanserin vs. DMSO; DOI vs. saline) were compared with the independent Mann–Whitney U-test (two-tailed, α = 0.05). Significant p-values are given.

was found between NAC and THAL, which became negative
after treatment with DOI. This also held for the connections
between NAC and PC, SN/VTA and FC, and SN/VTA and MC.
Furthermore, strong positive connections between NAC and FC,
CP and SN/VTA, CP and THAL, CP and PC, CP and dHIPP,
SN/VTA and dHIPP, THAL and vHIPP, PC and dHIPP, FC and
PC, andMC and vHIPP and strong negative connections between
THAL and PC as well as dHIPP and vHIPP were added.

In the mammalian brain, 5-HTergic fibers extend to the SN
and VTA (Oades and Halliday, 1987; Wirtshafter et al., 1987),
which both express high amounts of 5-HT2AR binding sites
(Doherty and Pickel, 2000; López-Giménez et al., 2001). 5-
HT2AR action is known to increase the efflux of both GABA
(Jiang et al., 2009) and GLU in the central nervous system
(Meller et al., 2002). Previous studies with SB 242084 and
Ro 60-0175 as receptor antagonist and agonist, respectively,
additionally, have shown that the 5-HT2R subtype decreased
DA release in the CP by increasing GABAergic inhibition in
the SN (Burke et al., 2014). Hence, it may be hypothesized
that, after treatment with DOI, increased GABAergic inhibition
outweighed GLUergic excitation in the sites of origin of DAergic
fibers, leading to a reduction of DA efflux in the neostriatal
target region as reflected by the elevation of radioligand binding
to the striatal D2/3R. The 5-HT2AR agonistic action exerted

on the CP via the SN, moreover, is indicated by the strong
positive connection between both regions obtained in network
analyses. The CP is inhibited by GABAergic microcircuits
(Groves, 1983). Since it also receives ascending 5-HTergic fibers
from the dorsal raphe nucleus (Steinbusch et al., 1980), it can
be assumed that DOI, furthermore, facilitated the GABAergic
inhibition exerted via these microcircuits, adding to the decrease
of available DA. In the DAergic system, DA concentrations
are regulated by autoreceptors of the D2R subtype localized at
the presynaptic terminal (Langer, 1974). Remarkably, the DOI-
induced reduction of available DA appeared to be so high that
the inhibitory feedback mechanism of D2 autoreceptors was not
effective in normalizing synaptic DA levels in the CP, at least in
the present time window between DOI administration and D2/3R
imaging at 75 min post-challenge.

The THAL (Moore et al., 1978) and neocortex also receive
5-HTergic projections (Kievit and Kuypers, 1975). Both regions
exhibit high densities of GABA (Neto et al., 2006; Mann et al.,
2009) and GLU binding sites (Salt et al., 1996; Sherman, 2014).
Possibly, the 5-HT2AR agonistic treatment increased GABAergic
input from the THAL to the neocortex relative to GLUergic
input, resulting in a net reduction of available DA in the FC and
MC as reflected by the observed elevation of D2/3R binding in
these regions. In turn, it may be assumed that decreased DAergic
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FIGURE 7 | Ambulation. Duration (s) and frequency (counts) after 10 mg/kg of altanserin (turquoise), 0.5 mg/kg of 2,5-dimethoxy-4-iodoamphetamine (DOI; blue), and

the respective vehicles [dimethyl sulfoxide (DMSO), white; saline, light purple]. The figure shows box and whisker plots of median ambulation durations (A) and

frequencies (B) in the individual 5-min bins. The 25th/75th percentiles are given in the boxes, while the 5th/95th percentiles are represented by the whiskers. The

circles represent the individual animals. Groups (altanserin vs. DMSO; DOI vs. saline) were compared with the independent Mann–Whitney U-test (two-tailed, α =

0.05). Significant p-values are given.
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FIGURE 8 | Sitting. Duration (s) and frequency (counts) after 10 mg/kg of altanserin (turquoise), 0.5 mg/kg of 2,5-dimethoxy-4-iodoamphetamine (DOI; blue), and the

respective vehicles [dimethyl sulfoxide (DMSO), white; saline, light purple]. The figure shows box and whisker plots of median sitting durations (A) and frequencies (B)

in the individual 5-min bins. The 25th/75th percentiles are given in the boxes, while the 5th/95th percentiles are represented by the whiskers. The circles represent the

individual animals. Groups (altanserin vs. DMSO; DOI vs. saline) were compared with the independent Mann–Whitney U-test (two-tailed, α = 0.05). Significant

p-values are given.
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FIGURE 9 | Rearing. Duration (s) and frequency (counts) after 10 mg/kg of altanserin (turquoise), 0.5 mg/kg of 2,5-dimethoxy-4-iodoamphetamine (DOI; blue), and

the respective vehicles [dimethyl sulfoxide (DMSO), white; saline, light purple]. The figure shows box and whisker plots of median rearing durations (A) and frequencies

(B) in the individual 5-min bins. The 25th/75th percentiles are given in the boxes, while the 5th/95th percentiles are represented by the whiskers. The circles represent

the individual animals. Groups (altanserin vs. DMSO; DOI vs. saline) were compared with the independent Mann–Whitney U-test (two-tailed, α = 0.05). Significant

p-values are given.
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FIGURE 10 | Head–shoulder motility. Duration (s) and frequency (counts) after 10 mg/kg of altanserin (turquoise), 0.5 mg/kg of 2,5-dimethoxy-4-iodoamphetamine

(DOI; blue), and the respective vehicles [dimethyl sulfoxide (DMSO), white; saline, light purple]. The figure shows box and whisker plots of median durations (A) and

frequencies (B) in the individual 5-min bins. The 25th/75th percentiles are given in the boxes, while the 5th/95th percentiles are represented by the whiskers. The

circles represent the individual animals. Groups (altanserin vs. DMSO; DOI vs. saline) were compared with the independent Mann–Whitney U-test (two-tailed, α =

0.05). Significant p-values are given.
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input from the CP to the neocortex together with the increased
availability of GABA in the latter region incurred a net reduction
of GLUergic input to the THAL, resulting in normal DA
levels, as observed in the present investigation. After both SAL
and DOI, network analyses yielded strong positive connections
between FC and MC as well as THAL and FC and a strong
negative connection between SN/VTA and MC. Interestingly,
however, after DOI, the positive connections between NAC and
PC, SN/VTA and FC, and SN/VTA and MC turned negative,
while a negative connection between THAL and PC and two
positive connections between NAC and both FC and MC were
introduced. This implies an involvement of mesolimbocortical as
well corticocortical projections in the regulation of synaptic DA.
Future in vivo imaging studies with different doses of DOI are
required in order to further elucidate this matter.

The HIPP receives DAergic neurons originating in the VTA
(Nazari-Serenjeh et al., 2011), which—along with its most
prominent projection area, the NAC—displayed no changes
of D2/3R binding under the present experimental conditions.
Previously, DOI was found to elevate GLU levels in the VTA
(Pehek et al., 2006). Given the known facilitatory effect of 5-
HT2ARs also on GABAergic neurotransmission (Jiang et al.,
2009), it may be that the elevation of GABAergic inhibition
exerted by DOI in the VTA, in analogy to its actions in the SN,
outweighed GLUergic excitation, leading to a reduction of DA
levels in the hippocampal target regions of ventral tegmental
projections, which is reflected by the observed elevation of
radioligand binding to the D2/3R in the vHIPP. The contribution
of SN/VTA is underlined by the strong positive connection
between this region and vHIPP obtained in network analysis.
Interestingly, however, DOI also introduced strong positive
connections between THAL and dHIPP, THAL and vHIPP, and
PC and dHIPP as well as a strong negative connection between
dHIPP and vHIPP. The emergence of limbic connections after
DOI relative to SAL reflects the relevance of the 5-HTergic system
for limbic function. Also here, further investigations are required
in order to gain more insight into the 5-HT-triggered regulatory
mechanisms of limbic DA.

After DMSO, strong positive connections were found between
NAC and THAL and FC and PC, which turned negative after
ALT. Conversely, a strong negative connection betweenNAC and
PC turned positive after ALT. Besides, ALT introduced strong
positive connections between NAC and vHIPP, SN/VTA and
MC, THAL and PC, THAL and dHIPP, MC and PC, MC and
dHIPP, andMC and vHIPP as well as strong negative connections
between NAC and dHIPP and PC and vHIPP.

Since both GABA efflux (Jiang et al., 2009) and GLU
efflux (Meller et al., 2002) are stimulated by 5-HT2AR action,
application of a 5-HT2AR antagonist likely reduces the inhibitory
GABAergic as well as the excitatory GLUergic effects of 5-HT.
Hence, the increases of DA efflux in the CP after application
of ALT reported by Dewey et al. (1995) may have been due
to a decrease of GABAergic inhibition relative to the reduction
of GLUergic excitation, leading to a net increase of available
DA. Presumably, in the present study, a decrease of GABAergic
inhibition induced by the dose of 10 mg/kg of ALT was either
too short-termed or so low that it could be compensated by

the reduction of GLUergic excitation, incurring no alteration
of D2/3R binding in the CP indicative of altered synaptic DA
levels. This presumption is underlined by the lack of connection
between the SN/VTA and CP in network analyses.

It may be assumed that, in contrast to DOI, the 5-HT2AR
antagonist also did not decrease the GABAergic input from
the THAL to the neocortex relative to the GLUergic input,
resulting in unaltered DA levels in the cortical regions. This is
supported by the lack of connection between THAL and FC in
network analysis.

For the vHIPP, it can be hypothesized that, in a reversal of
the actions exerted by DOI, a reduction of GLUergic excitation
outweighed the simultaneous decrease of GABAergic inhibition,
also—ultimately—resulting in a decline of DA levels (and the
observed increase of D2/3R binding) in the vHIPP. Also here,
the contribution of SN/VTA is underlined by the strengthened
positive connection between this region and vHIPP obtained in
network analysis.

Also, ALT introduced strong connections between regions
of the mesolimbothalamocortical system including positive
associations between NAC and PC, NAC and vHIPP, SN/VTA
and dHIPP, THAL and dHIPP, and THAL and PC and negative
associations between NAC and THAL, NAC and dHIPP, and
MC and vHIPP. Thereby, however, the 5-HT2AR agonist in
contrast to the 5-HT2AR antagonist induced strong positive
connections between CP and PC, SN/VTA and CP, SN/VTA and
dHIPP, THAL and FC, and PC and dHIPP and a strong negative
connection between NAC and PC, and dHIPP and vHIPP.
Moreover, it strengthened the positive connections between the
THAL and both parts of the HIPP and the negative connection
between SN/VTA and FC. This implies that DOI exerted more
varied and stronger effects in comparison to ALT, which is also
reflected by the fact that DOI affected D2/3R binding also in the
striatal and neocortical regions.

Behavior
The 5-HT2AR agonist as well as antagonist decreased parameters
of motor activity (overall activity and ambulation duration) and
active exploratory behavior (rearing duration and frequency).
Thereby, after DOI, reductions of motor activity were confined to
min 1–20 (overall activity) and min 1–5 (ambulation duration).
However, while DOI increased duration and frequency of
explorative head–shoulder movements, but did not affect passive
immobility (sitting duration), ALT decreased explorative head–
shoulder motility and increased passive immobility. In sum,
the reduction of motor activity was more pronounced after
ALT, while the reductions of active (vertical) exploration were
comparable after ALT and DOI.

The finding of diminished ambulatory behavior after ALT
confirms the results obtained in a previous study (Kennett, 1992).
Likewise, results obtained after DOI corroborate precedent
findings of reduced ambulatory (Hillegaart et al., 1996; Krebs-
Thomson et al., 1998; Zaniewska et al., 2009) and rearing
behaviors (Hillegaart et al., 1996; Krebs-Thomson et al.,
1998; Hawkins et al., 2002) upon systemic pretreatment with
DOI. They are not consistent, however, with the findings on
ambulation by Hawkins et al. (2002), who observed no effect on
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motor activity after i.c.v. administration of 0.02–0.2mg as well
as s.c. administration of 0.1–1 mg/kg. A likely reason for this
discrepancy is that Hawkins et al. (2002) performed their open
field test 10min after a tail-pinch stress test (Hawkins et al., 2002),
which may have influenced the animals’ activity.

Joint investigations ofmotor/exploratory behaviors andD2/3R
imaging have shown that, in mature rats, decreases of regional
D2/3R binding (indicative of elevated DA) were related to
decreases of motor/exploratory activity (e.g., Nikolaus et al.,
2016, 2018, 2019). Also, in the present study, parameters of
motor activity and vertical exploratory behavior were reduced
by 5-HT2AR agonistic as well as antagonistic treatment, with
decreases, however, more pronounced and extended over a
longer period after ALT compared with DOI. This may reflect the
rise of extracellular DA, which was reported for either compound
in in vivo microdialysis studies shortly post-injection (Dewey
et al., 1995; Gobert and Millan, 1999). In context with our
previous findings, the reduction of motor/explorative behaviors
is in striking contrast to the reductions of D2/3R binding
observed in vHIPP after ALT and in CP, FC, MC, and vHIPP
after DOI, which, rather, indicate decreased DA levels in these
regions. This infers that the regional elevations of synaptic DA
indicated by the behavioral findings could not be visualized
in the chosen time windows for in vivo imaging (90–150min
post-challenge for ALT and 75–135min post-challenge for DOI).
After ALT and DOI, DA levels peaked from 40 to 60min
(Dewey et al., 1995) and 20 to 60min post-challenge (Gobert and
Millan, 1999), respectively, with a steady reduction thereafter.
Apparently, in the time between radioligand application and the
achievement of binding equilibrium, the decline of DA levels
incurred a decrease of competition for D2/3R binding sites,
which, in conjunction with the higher affinity of [123I]IBZM
(KD = 0.3 nM; Verhoeff et al., 1991) relative to the endogenous
ligand (KD = 1.2 nM, de Paulis et al., 1988) resulted in the
observed reductions of D2/3R binding. Future in vivo imaging
studies after various concentrations of ALT and DOI and
with radioligand injection at various times post-challenge are
required to further elucidate the time dependency of the effects,
which are exerted by ALT and DOI on regional D2/3R binding
(and DA levels).

Appraisal
For one, also the vehicle DMSO might have induced
pharmacological effects. Unpublished results have shown
that neostriatal D2/3R binding after DMSO was elevated relative
to SAL. Also in the present study, tentative comparisons of
D2/3R BPs have yielded increased receptor binding in NAC,
CP, FC, and MC of DMSO-treated relative to SAL-treated
rats. Moreover, there is evidence that DMSO decreased
motor/exploratory behaviors relative to SAL. In the present
study, such differences were observed for overall activity
(min 1–30), ambulation duration (min 1–10), sitting duration
(min 1–5 and 26–30), sitting frequency (min 1–5), rearing
duration (min 11–15), duration of head–shoulder motility
(min 16–20), and frequency of head–shoulder motility (min
6–10). Hence, it cannot be excluded that the effects of ALT
added upon pharmacological effects of DMSO. For this reason,

behaviors as well as regional BPs were only compared between
5-HTergic challenges and the respective vehicle but not between
ALT and DOI.

Second, in the present in vivo studies, the maximum VOI
diameters were either in the range of or beyond the spatial
resolution of the employed imaging tool. It must be considered,
however, that in those portions of VOIs, whose diameters are
smaller than the FWHM, the exact quantification of D2/3R
binding may be hampered by partial volume effects leading to
underestimations of radioligand accumulation. A further source
of error may be spillover from regions with high radioligand
accumulation such as the extraorbital Harderian glands to
the adjacent VOIs of the FC, CP, and NAC, or from the
CP to NAC, THAL, and dHIPP, causing overestimations of
radioligand binding. However, since this pertains to SPECT
measurements both in baseline and after challenge, the exactitude
of (semi)quantitative values in either condition, but not the
comparability of data between baseline and challenge, may have
been biased.

Third, in vivo imaging findings may have been flawed by the
employment of the NMDAR antagonist ketamine as anesthetic.
Since ketamine has previously been shown to enhance DA release
and reduce D2/3R binding in rats (e.g., Tsukada et al., 2000),
it cannot be dismissed that also in the present study increased
DA levels due to ketamine usage reduced the amounts of visible
regional D2/3R binding after both ALT and DOI. However,
effects on neostriatal and/or ventrostriatal DA are exerted
by practically all known anesthetics, including pentobarbital,
propofol, halothane, chloral hydrate, and isoflurane (for review,
see Müller et al., 2011). Since ketamine was employed in all
our previous in vivo imaging studies, we, therefore, decided to
use it also in the present investigation. As this possible pitfall
concerns the outcome of SPECT measurements after 5-HTergic
challenges as well as after treatment with the respective vehicles,
the obtained BPs remain comparable between conditions. The
publications of Gudelsky et al. (1994) and Gobert and Millan
(1999) do not give information on the state of the animals during
microdialytic sampling. However, in the experiment of Ichikawa
and Meltzer (1995), who observed no changes of striatal DA
concentrations upon infusion of DOI, dialysates were drawn,
while the rats were freely moving. Hence, it must be taken into
account that anesthesia as such may have contributed to the
differences between studies.

Fourth, in this and other investigations (e.g., Nikolaus
et al., 2016, 2017, 2018, 2019), effects of DAergic, GABAergic,
glutamatergic, and 5-HTergic challenges on regional D2R
binding and motor/exploratory behaviors have merely been
assessed in male rats. The main reason for not using female
animals is their estrous cycle, which is characterized by four
phases with distinct fluctuations of estrogen and progesterone
concentrations (Butcher et al., 1974). Thus, if the hormonal
state of the female rodent is to be accounted for, the number
of subjects per experiment multiplies, since four times more
females than males have to be examined. Nevertheless, there
is not only evidence of sex differences in incidence and
onset of stress-related and other psychiatric disorders (for
review, see ter Horst et al., 2012) but also of an interaction
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between ovarian hormone and monoamine function (Janowsky
et al., 1971). As a consequence, future studies should also
be conducted on female rats in order to duly assess the
impact of the hormonal state on D2/3R binding under a given
pharmacological challenge.

CONCLUSION

Taken together, the 5-HT2AR agonistic DOI increased D2/3R
binding (and presumably decreased DA) in the CP as well as
in the limbic and neocortical target regions (vHIPP, FC, and
MC) of ascending 5-HTergic as well as DAergic projections.
After application of the 5-HT2AR antagonistic ALT, the
increase of D2/3R binding (and the decrease of DA) was
confined to vHIPP. Both ALT and DOI decreased parameters
of motor activity and active (vertical) exploration. However,
while DOI increased explorative head–shoulder motility, ALT
decreased explorative head–shoulder motility and increased
passive immobility. The reductions of motor/exploratory
activities contrast the regional reductions of D2/3R binding,
as they indicate elevated DA levels at the time of behavioral
measurements. It may be concluded that ALT and DOI
modulated DA in the individual regions of the nigrostriatal
and mesolimbocortical pathways differentially and in a
time-dependent fashion.
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