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The growing interest on sustainable biotechnological processes for the production of energy and indus-
trial relevant organic compounds have increased the discovery of electroactive organisms (i.e. organisms
that are able to exchange electrons with an electrode) and the characterization of their extracellular elec-
tron transfer mechanisms. While most of the knowledge on extracellular electron transfer processes
came from studies on Gram-negative bacteria, less is known about the processes performed by Gram-
positive bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria lack an outer-
membrane and contain a thick cell wall, which were thought to prevent extracellular electron transfer.
However, in the last decade, an increased number of Gram-positive bacteria have been found to perform
extracellular electron transfer, and exchange electrons with an electrode. In this mini-review the current
knowledge on the extracellular electron transfer processes performed by Gram-positive bacteria is intro-
duced, emphasising their electroactive role in bioelectrochemical systems. Also, the existent information
of the molecular processes by which these bacteria exchange electrons with an electrode is highlighted.
This understanding is fundamental to advance the implementation of these organisms in sustainable
biotechnological processes, either through modification of the systems or through genetic engineering,
where the organisms can be optimized to become better catalysts.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Electron transfer reactions are at the core of numerous biologi-
cal processes, in particular in respiration. During respiration most
microorganisms are able to convert biochemical energy into ATP.
This usually involves a cascade of reactions where electrons are
transferred, via several redox proteins, from an electron donor to
an electron acceptor. Most forms of respiration involve a soluble
compound as an electron acceptor (e.g. nitrate, oxygen, and sul-
fate), however there are others where solid compounds (e.g. metal
oxides, electrodes) act as the electron acceptor [1]. In this case, the
terminal electron acceptor is insoluble and cannot enter the cell,
and the microorganisms must perform extracellular electron trans-
fer (EET) to connect their electron transport chain to the solid elec-
tron acceptor [2,3]. Today, it is well recognized that the reduction

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.11.021&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2020.11.021
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cpaquete@itqb.unl.pt
https://doi.org/10.1016/j.csbj.2020.11.021
http://www.elsevier.com/locate/csbj


Fig. 1. Mechanisms of extracellular electron transfer (EET) processes. EET may occur through direct contact using cell-surface proteins, including multiheme c-type
cytochrome (process i) or electrically conductive pilus (process ii), or through indirect electron transfer where chelators or siderophores solubilize the solid electron acceptor
and transfer the electrons to the bacteria (process iii), or with soluble electron shuttles that mediate electron transfer between the cell and the solid electron acceptor (process
iv). In this figure, the solid electron acceptor is represented in grey and bacteria are represented in red. Chelators/siderophores and electron shuttles are represented in green
and in yellow, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of solid electron acceptors occurs through two different mecha-
nisms: directly, (i) through cell-surface proteins that interact with
the solid electron acceptor (ii) or through cellular appendages,
including electrically conductive pilus that form a bridge between
the cell and the electron acceptor; or indirectly, (iii) through the
use of chelators or siderophores that solubilize the solid electron
acceptor and introduce them into the cell, or (iv) using soluble
shuttles, such as organic compounds with quinones moieties, that
interact with the electron acceptor outside of the cell [3–5] (Fig. 1).

Microorganisms that possess EET capabilities play a fundamen-
tal role in the geochemical cycle of several elements, including car-
bon and iron, and are also potential targets for numerous
biotechnological applications, such as for the bioremediation of
metal contaminated environments, production of energy and
added-value compounds, or for biosensing [6–10]. Some of these
organisms are also termed electroactive given their ability to
exchange electrons with an electrode, in the so called bioelectro-
chemical systems (BES) [11,12]. Microbial fuel cells (MFC) are
one of the most studied BES [13]. A typical MFC is an electrochem-
ical cell arranged in two chambers separated by a proton exchange
membrane, containing an anode and a cathode. In the anode com-
partment, the microorganisms oxidize organic matter and use the
electrode as the terminal electron acceptor [6]. Typically, the elec-
trons collected at the electrode are then transferred to the cathode
through an external wire, and are combined with oxygen to gener-
ate water. The electron flow between the anode and cathode
enables the electrical power harvesting [6,13]. The increased inter-
est of this type of technology has boosted the application of BES,
being currently explored for the production of electrical power,
treatment of wastewaters, for electrosynthesis of added-value
compounds and biofuels and for water desalination [14,15].

Electroactive organisms can be found in all three domains of
life, being ubiquitous in distinct environments, including lakes,
soils as well as in deep-sea hydrothermal vents [11,12]. Recently,
is has been demonstrated that these organisms are also present
in the human digestive system [16,17], in the mouse gut micro-
biome [18–20] and oral plaque [21], with some of them associated
with infectious diseases [22,23].

Gram-negative mesophilic bacteria are one of the most studied
class of electroactive organisms, with most of the knowledge being
confined to the model organisms Geobacter sulfurreducens and She-
wanella oneidensis MR-1 [2,3,24]. Nonetheless, Gram-positive bac-
teria have recently attracted the scientific attention, given their
capacity in producing high levels of current in MFC [25,26], and
by being associated with infectious diseases in humans
[16,17,22,23]. Given the importance of these organisms in BES,
research has been dedicated in exploring their use as catalysts in
BES and in the understanding of their EET processes [27–29]. Only
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by understanding how electroactive organisms perform EET and
exchange electrons to electrodes, it is possible to use them in
biotechnological processes and start implementing BES in real-
world applications. Indeed, knowledge on the molecular mecha-
nisms of the EET processes performed by Gram-negative bacteria
allowed to modify these organisms and improve their performance
in BES [30–36], showing that synthetic biology field has the poten-
tial to advance the implementation of BES in the real-world [37].

As several reviews have been published on Gram-negative
organisms [2,3,24], this review will focus on Gram-positive elec-
troactive bacteria, in particular on the developments on the under-
standing of their EET mechanisms and on the cellular components
involved in these processes.
2. Gram-positive electroactive bacteria

For several years Gram-positive bacteria were considered elec-
trochemically inactive and EET was considered incompatible with
this class of organisms [38,39]. In contrast to Gram-negative bacte-
ria, Gram-positive bacteria lack an outer-membrane, contain a
thick cell wall (20–80 nm) composed by peptidoglycan, teichoic
acids, and sometimes are covered by a glycoprotein S layer
[40,41], which were thought to prevent electron transfer to solid
electron acceptors.

Nonetheless, when growing in co-cultures, some species of
Gram-positive bacteria were showed to transfer electrons to an
electrode in a MFC, being able to perform EET [39,42,43]. The first
pure cultures of Gram-positive bacteria able to exhibit electro-
chemical activity were Clostridium butyricum [43], Desulfitobac-
terium hafniense [44], and Lactococcus lactis [45]. Studies on these
organisms have demonstrated that Gram-positive organisms can
perform indirect electron transfer, using electron shuttles excreted
by them [45] or by other organisms [16,39,46]. But later, it was also
shown that Gram-positive bacteria are able to perform direct elec-
tron transfer to electrodes, being this type of EET mechanism asso-
ciated with a biofilm that is formed on the surface of the electrode
[28,47,48]. Gram-positive bacteria can also perform EET by receiv-
ing electrons from a solid electron donor, including an electrode in
microbial electrosynthesis (MES) [49,50]. These devices have
recently attracted the interest of the scientific and industrial com-
munity, given the ability to couple microbial metabolism to the
production of valuable chemicals and fuels, with the reduction of
CO2 [9].

Several electroactive Gram-positive bacteria are present as
commensals in the intestines of numerous animals, whereas others
are opportunistic pathogens [19,21,51,52]. Examples of these are
Lactococcus monocytogenes [51], Enterococcus faecalis [52], Entero-



Table 1
List of Gram-positive bacteria described to be electroactive.

Year Microorganism Source Reference

2001 Clostridium
butyricum EG3

MFC containing starch processing
wastewater

[43]

2006 Brevibacillus sp.
PTH1

MFC containing sludge and
domestic and industrial
wastewater

[55]

2007 Desulfitobacterium
hafniense strain
DCB2

Deutsche Sammlung von
Mikroorganismen und
Zelkulturen (DSMZ)

[44]

2008 Thermincola potens
strain JR

MFC containing sludge from
thermophilic methanogenic
anaerobic digester

[26]

2008 Thermincola
carboxydophila

Sediment MFC containing marine
marsh sediment

[56]

2009 Bacillus subtilis Laboratory culture [57]
2009 Lactococcus lactis Meiji Milk Products Co., Ltd. [45]
2009 Thermincola

ferriacetica
DSMZ [48]

2012 Faecalibacterium
prausnitzii

DSMZ and human feces [53]

2014 Enterococcus faecalis MFC containing sludge [58]
2014 Clostridium

pasterianum DSM
525

DSMZ [49]

2014 Corynebacterium
glutamicum

American Type Culture Collection
(ATCC)

[50]

2015 Thermoanaerobacter
pseudethanolicus

ATCC [25]

2016 Clostridium
beijerinckii IB4

Mutant formed by ion
implantation

[59]

2017 Bacillus thuringiensis Laboratory culture [60]
2018 Listeria

monocytogenes
Unité des Interactions Bactéries
Cellules laboratory’s Listeria
strain collection

[16]

2018 Bacillus megaterium
strain LLD-1

MFC containing sludge from JiMei
wastewater treatment plant

[61]

2019 Bacillus cereus DIF1 China Center for Type Culture
Collection (CCTCC)

[62]

2019 Rhodococcus ruber
DIF2

CCTCC [62]

2019 Clostridium
cochlearium

DSMZ [18]

2020 Paenibacillus
dendritiformis MA-
72

Sediment MFC containing
sediment from river Strum

[28]
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coccus avium [21], Clostridium cochlearium [18] and Faecalibac-
terium prausnitzii [53,54]. Indeed, in several of them the presence
of an EET system was shown to be important for the colonization
of pathogenic bacteria [21,51].

Up to date more than 10 species of Gram-positive bacteria were
identified as electroactive (Table 1).

When compared with Gram-negative bacteria, the EET mecha-
nisms of Gram-positive bacteria have been less explored. This is
mainly associated with the difficulties encountered during growth
as a pure culture in the laboratory, the lack of their genetic infor-
mation, and, in most cases, the impossibility of genetically manip-
ulate these organisms. Up to now, the EET mechanism of Gram-
positive bacteria were only explored for a few organisms, showing
that Gram-positive bacteria can perform direct and indirect elec-
tron transfer to solid electron acceptors. Understanding the pro-
cesses by which Gram-positive bacteria perform EET is of
significant relevance to enhance electroactivity and optimize BES,
either by modifying electrode materials and bioreactor set-up, or
through genetic modification where electroactive organisms can
be genetically engineered to become better than their counterpart
wild-type strains in terms of electroactivity and/or metabolic func-
tionalities [36]. The main mechanisms performed by Gram-
positive are described below, focusing on the molecular processes
by which these organisms perform EET.
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3. Indirect electron transfer in Gram-positive bacteria

Indirect electron transfer to solid electron acceptors takes place
in the presence of small redox active compounds, that mediate
electron transfer between the microorganism and the solid elec-
tron acceptor, or vice-versa. These redox compounds can be a
metabolite produced by the microorganism (e.g. flavins, phenazi-
nes, quinones) [62–64] or an artificial electron shuttle that can
be added to the system (e.g. poly(MPC-co-VF), macrocyclic cobalt
hexamines, osmium redox polymers) [57,65,66].

The electroactivity of Gram-positive bacteria was first associ-
ated with their ability in using electron shuttles produced by
Gram-negative bacteria belonging to Pseudomonas sp. [46]. Indeed,
metabolites produced by Pseudomonas sp. were responsible for the
Gram-positive bacterium Brevibacillus sp. PTH1 to achieve EET [39].
But later on, it was demonstrated that Gram-positive bacteria can
also produce redox mediators, such as humic acids, quinones and
flavins [16,44,61,62,67]. For example, Lactococcus lactis cells can
catalyse EET to an electrode by the excretion of soluble quinones
as redox mediators [45], while spore-forming bacteria belonging
to Bacillus genus have the ability to excrete flavins [41,61,62,68–
70]. These flavins enable Bacillus sp. to mediate electron transfer
to electrodes in MFC [62,68], and provide a boost to electricity gen-
eration in microbial consortia with Gram-negative bacteria or
yeasts [60,69,70]. Recently, it was also shown that flavins are
secreted by Rhodococcus ruber DIF2, and that flavin mononu-
cleotide (FMN) plays an important role in the EET of this bacterium
to electrodes [62]. Though humic acids were shown to support the
generation of electricity of Desulfitobacterium hafniense strain
DCB2, the specific electron shuttle responsible to mediate electron
transfer to the electrode was not identified [44].

The cofactor nicotinamide adenine dinucleotide (NAD) was also
shown to play a significant role in the viability and electroactivity
of B. subtilis when submitted to long-term exposure to harsh envi-
ronments [71]. In these conditions B. subtilis can use EET as an elec-
tron communication pathway, where NAD is an essential
participant to maintain its viability [71].

The incorporation of Bacillus cells in an anaerobic sludge also
had a significant effect in the power generation in a MFC [72]. By
promoting the formation of an electroactive biofilm and by
supressing methanogenesis, Bacillus cereus enhanced current pro-
duction in MFC [72]. Furthermore, a genetically modified strain
of B. subtilis RH33 that produces high levels of riboflavin were also
shown to boost electricity generation in a microbial consortium
with S. oneidensis MR-1 [70], emphasising the importance of indi-
rect electron transfer in EET of Gram-positive bacteria.

The electroactivity of Listeria monocytogenes has been observed
almost three decades ago [73], but only recently it was demon-
strated that this Gram-positive bacterium can use environmental
flavins to shuttle electrons to solid electron acceptors [16]. An
eight-gene locus was found to be responsible for the EET capacity,
with a NADH dehydrogenase channelling electrons to a
membrane-localized quinone pool, and an extracellular flavopro-
tein that, in conjunction with flavins, mediate electron transfer to
extracellular acceptors [16]. This locus is present in numerous
organisms within the Firmicutes class of organisms, which suggest
that the flavin-based transfer mechanisms is highly conserved in
Gram-positive bacteria [16,51]. Indeed, this gene cluster was found
to be important for EET to ferric iron in E. faecalis [22], indicating
that the proteins involved in this process are similar in Gram-
positive bacteria. It was proposed that an atypical NADH hydroge-
nase (NDH-3 in E. faecalis and NDH-2 in L. monocytogenes) couple
the oxidation of NADH in the cytoplasm to reduction of demethyl-
menaquinone (DMK) (Fig. 2A). Given that DMK is the only quinone
available in the membrane of E. faecalis, it can either be oxidised by
cytochrome bd under aerobic conditions and in the presence of



Fig. 2. Model for the proposed EET processes pathway of L. monocytogenes (A)
(adapted from [16]) and T. potens (B) (adapted from [29]).
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heme, or under anaerobic environments by EET processes [22,52].
The lipoprotein PplA present at the surface of L. monocytogenes,
was shown to bind FMN, being proposed to be an important com-
ponent in the EET pathway of this Gram-positive bacterium, facil-
itating electron transfer between FMN and extracellular electron
acceptors [16,22]. Two small proteins, EetA and EetB were also
found to be important for EET [16,22]. EetA was predicted to be a
membrane protein anchored to the outer-side of the cytoplasmic
membrane, while EetB was demonstrated to be an integral mem-
brane protein that contains four transmembrane segments and a
large periplasmic loop (Fig. 2A). Although it was proposed that
these proteins form a complex in the membrane their role remains
to be elucidated [22]. Hederstedt and co-workers proposed that
when osmium complex-modified redox polymers (OsRP) are used
as mediators, E. faecalis uses a different EET pathway. This pathway
does not depend on the NADH dehydrogenase and on EatA, sug-
gesting that OsRP receives electrons directly from the DMK [22].

The use of siderophores has also been observed in several elec-
troactive Gram-positive bacteria [74–76]. In C. ferrireducens, a sup-
plementary strategy for the utilization of siderophores in the
reduction of iron oxides has been proposed [74]. This suggests that,
as in Gram-negative bacteria [77–79], different EET pathways exist
in Gram-positive bacteria, and that these may depend on the envi-
ronment and growth conditions.
4. Direct electron transfer in Gram-positive bacteria

Most electroactive organisms use both types of EET processes to
exchange electrons with an electrode, which make it difficult to
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identify solely the direct electron transfer process. Evidence of this
type of mechanism is usually assessed by the formation of a bio-
film, and by the lack of impact in current production after remov-
ing the medium or after adding redox mediators [47,48].

Direct electron transfer to an electrode by Gram-positive bacte-
ria was first identified in Thermincola sp. [48]. T. ferriacetica was
capable of generating an electric current in an air–cathode MFC
without the addition of soluble redox mediators [48]. The lack of
electron shuttles, the formation of a biofilm on the electrode and
the rapid current recovery by this strain after exchanging the
media were shown to be consistent with direct EET. Furthermore,
the Coulombic efficiency observed for this organism was higher
than 95%, indicating that nearly all electrons were used for elec-
trode reduction and not for the production of reduced organic com-
pounds [48]. This behaviour was also observed for T. potens strain
JR, suggesting that direct EET is characteristic of this genus [47]. In
contrast to T. ferriacetica, T. potens strain JR could use soluble elec-
tron shuttles to transfer electrons to solid electron acceptors,
although no soluble redox mediators have been identified in the
MFC spent medium [47].

Genomic analysis of T. potens strain JR [80] have led to the pro-
posal that multiheme c-type cytochromes (MHC) could be involved
in EET in Gram-positive bacteria, as observed for Gram-negative
electroactive bacteria. Indeed, trypsin-shaving LC-MS/MS experi-
ments and surface-enhanced Raman spectroscopy allowed the
identification of several MHC that could be involved in EET in this
organism [29]. Although the identification of c-type cytochromes
as key proteins for the reduction of insoluble electron acceptors
has been previously observed for Gram-positive bacteria [74], this
was the first time that an EET pathway was proposed for the trans-
fer of electrons outside of the cell [29]. The proposed EET pathway
is composed by four MHC, that were shown to be conserved among
Thermincola sp. [81], suggesting that a general strategy for electron
transfer may occur within this genus (Fig. 2B). As observed for sev-
eral Gram-negative bacteria, the EET pathway in Thermincola sp. is
composed by an inner-membrane MHC that receive electrons from
the menaquinone pool, that then transfers the electrons to a
periplasmic cytochrome. The transfer of electrons outside of the
cell depends on a hexaheme cytochrome that was proposed to be
embedded in the peptidoglycan at the cell wall and on the nine-
heme cytochrome OcwA present at the cell-surface of these bacte-
ria, responsible to reduce solid electron acceptors, electron shuttles
and oxyanions [27,29] (Fig. 2B). This arrangement is different from
what is typical observed in electroactive Gram-negative bacteria,
where porin-cytochrome complexes composed by a b-barrel porin
and one or two MHC are responsible for electron transfer across
the outer membrane [82].

Direct electron transfer was also observed for other Gram-
positive bacteria including Chlostridium pasteurianum [49], P. den-
dritiformis MA-72 [28] and Carboxydothermus ferrireducens [74],
although the molecular processes and the proteins involved are
still unknown.

In Gram-negative bacteria, direct electron transfer was also
observed to occur through electrically conductive pili [83] or outer
membrane extensions [84]. These structures allow the microor-
ganism to make an electrical connection between periplasmic car-
riers and the insoluble electron acceptors, that can be located as far
as 15 lm away from the cell [85].

Filaments of the type IV pili were also reported for some Gram-
positive bacteria [86]. Although most of the functions of type IV pili
in Gram-positive bacteria have been associated with mobility and
adherence to host cells [86,87], pili-like appendages have been
observed in C. ferrireducens grown on iron oxides [74], in Paeni-
bacillus dendritiformis when growing on an electrode [28] and in
E. faecalis pili revealed to contribute for EET [88]. It was demon-
strated that E. faecalis biofilmmatrix harboring iron sinks promotes
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EET and augments biofilm growth, increasing current generation in
MFC [89]. The biofilm associated pilus (Ebp) was demonstrated to
be a key player in this process by sequestering iron in close prox-
imity to the cells, either as surface attached pili or within the bio-
film matrix, enabling E. faecalis to use it as terminal electron
acceptor [88].

Extracellular polymeric substances (EPS) surrounding electroac-
tive organisms help cells to attach to solid minerals or surfaces,
assisting biofilm formation and protecting them from unfavourable
environments [90]. EPS were also demonstrated to have electroac-
tive properties, due to the presence of nucleic acids, humic sub-
stances, flavins and even proteins that are redox-active or
semiconductive [91,92]. EPS from Bacillus sp. WS-XY1 was shown
to be electroactive and of significant importance for EET in this
bacterium [92].
5. Summary and outlook

EET between microbes and solid electron acceptors/donors,
such as iron minerals or electrodes, is a widespread process that
affect biogeochemical cycles, microbial ecology and that can be
explored for the generation of electricity and chemicals in BES.
For this reason, the elucidation of the mechanisms by which
microorganisms perform electron transfer between intracellular
and extracellular environments has been subject to widespread
attention. Although most of electroactive organisms discovered
to date are Gram-negative bacteria [11,12], Gram-positive bacteria
were also demonstrated to perform EET, being able to transfer elec-
trons to solid compounds directly and indirectly. Like Gram-
negative bacteria, some Gram-positive bacteria rely on MHC to
transfer electrons to solid electron acceptors outside of the cell.
Up to date the only cell-surface cytochrome from Gram-positive
bacteria that have been characterized in detailed was the OcwA
from T. potens, showing that it can reduce solid electron acceptors,
soluble electron shuttles and oxyanions [27]. Nevertheless, the
way this protein is anchored and arranged at the cell surface and
how electrons are transferred across the cell wall are still to be
determined. In the fermentative Gram-positive bacteria L. monocy-
togenes and E. faecalis flavin-interacting proteins represent the
extracellular components of their EET machinery, facilitating elec-
tron transfer, via FMN, to extracellular electron acceptors [16].
Although a cluster of proteins has been proposed to be widespread
within the Firmicutes phylum, and to be important for EET, the
mechanisms by which these organisms exchange electrons with
solid electron acceptors remains to be elucidated.

The recent studies on Gram-positive bacteria revealed that, as
in Gram-negative bacteria, a diverse way to perform EET exists in
this class of microorganisms, including direct and indirect electron
transfer. This demonstrates that rather than being a specialized
process, EET is a fundamental process of microbial metabolism that
occurs in numerous organisms and across diverse environments.
The characterization of these processes is crucial not only to unra-
vel the involvement of microbial metabolism in the biogeochemi-
cal cycle of elements, but also to enhance the development of
novel sustainable biotechnological processes, where these organ-
isms can be employed. Indeed, although Gram-positive bacteria
can be more sensitive to several compounds (e.g. antibiotics, clean-
ing agents) given the high permeability of the peptidoglycan layer,
their thick cell wall in addition to their ability in forming spores,
enables their use in more extreme conditions [18,21,26].

Although knowledge of the EET performed by Gram-positive
bacteria have increased in the last years, much more studies are
required to fully understand their molecular processes in exchang-
ing electrons with solid electron acceptors or donors. As future
work, studies on the proteins involved in these processes, as well
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as the understanding of their electron transfer mechanisms should
be a priority. Only with this knowledge it will be possible to
improve these organisms and boost their performance beyond
their natural metabolic capabilities, allowing to advance the imple-
mentation of BES and expand their biotechnological application.
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