
����������
�������

Citation: Klančar, G.; Zdešar, A.;

Krishnan, M. Robot Navigation

Based on Potential Field and

Gradient Obtained by Bilinear

Interpolation and a Grid-Based

Search. Sensors 2022, 22, 3295.

https://doi.org/10.3390/s22093295

Academic Editor: Andrey V. Savkin

Received: 4 April 2022

Accepted: 23 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robot Navigation Based on Potential Field and Gradient
Obtained by Bilinear Interpolation and a Grid-Based Search

Gregor Klančar 1 and Andrej Zdešar 1 and Mohan Krishnan 2,*

1 Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
gregor.klancar@fe.uni-lj.si (G.K.); andrej.zdesar@fe.uni-lj.si (A.Z.)

2 Electrical & Computer Engineering and Computer Science Department, University of Detroit Mercy,
Detroit, MI 48208, USA

* Correspondence: mohank@udmercy.edu

Abstract: The original concept of the artificial potential field in robot path planning has spawned a
variety of extensions to address its main weakness, namely the formation of local minima in which
the robot may be trapped. In this paper, a smooth navigation function combining the Dijkstra-
based discrete static potential field evaluation with bilinear interpolation is proposed. The necessary
modifications of the bilinear interpolation method are developed to make it applicable to the path-
planning application. The effect is that the strategy makes it possible to solve the problem of the
local minima, to generate smooth paths with moderate computational complexity, and at the same
time, to largely preserve the product of the computationally intensive static plan. To cope with
detected changes in the environment, a simple planning strategy is applied, bypassing the static plan
with the solution of the A* algorithm to cope with dynamic discoveries. Results from several test
environments are presented to illustrate the advantages of the developed navigation model.

Keywords: robot navigation; path planning; potential field; bilinear interpolation; dynamic local
re-planning

1. Introduction

The main goal of a navigation function is to create feasible, safe paths that avoid
obstacles and allow a robot to move from its start configuration to its goal configuration [1].
Online robot navigation and path planning consists of two complementary aspects. In
the global path-planning phase, the task is to find an optimal path to the intended goal,
starting from the robot’s starting position and using all the previous information about
the environment. This plan takes into account the need to avoid obstacles but only those
that are assumed to be present before the robot starts to move towards the goal. This is
coupled with the local obstacle avoidance phase in which the robot avoids new obstacles
detected by its sensors while navigating the planned path. The former can be thought of as
proactive, while the latter is reactive. With this understanding comes the acceptance that
the former is usually more optimal than the latter in some sense. The biggest challenge in
real-world applications is the ability to handle unanticipated changes in both structured
and unstructured environments. Because the discovery of new obstacles is an evolutionary
process, it cannot be assumed that the overall path that is eventually completed will
be as optimal as a path that was planned with the knowledge of all the aspects of an
unchanged environment at the beginning. However, this is not a fair comparison because
new map situations are usually discovered after the robot has begun to execute the original
plan. Moreover, due to these new discoveries, the robot may find itself in situations
where it seems to be trapped if it continues to follow the global plan while only imposing
a requirement to avoid collisions with the new obstacles. The goal is then to develop
strategies to overcome the new obstacles in an effective and situationally appropriate way
while the robot continues to head towards its original goal.

Sensors 2022, 22, 3295. https://doi.org/10.3390/s22093295 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1461-3321
https://orcid.org/0000-0002-2254-6069
https://doi.org/10.3390/s22093295
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093295?type=check_update&version=2

Sensors 2022, 22, 3295 2 of 22

It is important to understand the trade-off involved in the above situation, which can
be thought of as a see-and-react strategy when dealing with new discoveries. In contrast to
this approach, there is the alternative of re-implementing the global path-planning strategy
at the point where new environmental discoveries are made. However, implementing a full-
featured online global path-planning strategy is usually not feasible due to computational
costs. Speed is essential because potential delays in reacting could affect the ability to deal
with new discoveries safely and efficiently unless one is willing to slow down or stop until
a new plan is available. This is particularly true when considering that changes in the
environment relative to prior assumptions are quite likely in actual navigation applications.
It is to address this need that several incremental methods have been developed [2–6],
which reduce computational and storage costs by reusing existing planning information.

An extensive survey of path planning algorithms has been carried out in [7]. Algo-
rithms are divided into categories and sub-categories within them, based on the modality of
their development. This work falls in the sub-category of graph search , which supports a
variety of path-planning approaches, but here specifically, a graph search based on the use
of a uniform grid. It combines this with the adoption of a variant of the original artificial
potential fields (APF) method [8]. According to [7], the APF is categorised as reactive
manoeuvring. Thus, essentially, a uniform grid-based graph search is combined with a
reactive manoeuvring technique to carry out global and local path planning.

The environment can be represented as a graph using cell decomposition or roadmaps.
Examples of the latter approach are the Voronoi graph [9], which can produce optimum
clearance from the obstacles, and the tangent graph [10], which contains the optimal
solution and requires less memory than the visibility graph, its superset. In [11], a tangent
graph is constructed for obstacles described with analytic curves in which a finite search
algorithm can be used to find the optimal path. The optimal path found in the tangent graph
may not be smooth. The authors in [11] combine the tangent graph with online reactive
navigation to generate smooth paths for the unicycle drive. Although the algorithm always
finds a path, the path may not be optimal. The computational complexity of roadmap-based
path-planning algorithms depends on the number of obstacles and the complexity of the
obstacle shapes (i.e., the number of the primitives describing all obstacles). The problem
of reducing the computational complexity of constructing a tangent graph was addressed
in [12]. Among the cell decomposition approaches, grid-based tessellation is the most
common and is also used in this work. In grid-based approaches, the complexity mainly
depends on the number of cells—a smaller cell size leads to a higher path resolution. The
cell size must be small enough to describe the environment with sufficient detail, but must
not be too small, as this significantly increases the computational complexity of the search
algorithms. The proposed approach introduces an interpolation that can produce smooth
paths even at a coarse map resolution.

The earliest graph-theoretic path-planning algorithm is arguably the one developed
by Dijkstra [13], which inspired many subsequent variations. It has two aspects associated
with its basic construction that could make it less suitable for use in some real-world robot
navigation problems. Firstly, it finds the optimal paths between a source node and all
destination nodes (or equivalently, between multiple source nodes and a single destination
node). In many applications involving only a single robot and a single destination, it
increases the computational burden in doing much more than is needed. Secondly, it does
not accommodate new discoveries made as the robot’s sensor horizon advances on the way
to the goal. Yet, in other applications involving several missions originating at different
locations, with the need to converge to a single destination such as in warehouses [14,15], or
games [16,17], Dijkstra’s algorithm matches the need. The computational burden associated
with it then becomes justifiable, especially if it is required to be exercised occasionally and
the results reused with different starting locations. The focus then shifts to the second issue
mentioned above, as to how to make the Dijkstra paths viable even when dealing with
environmental changes.

Sensors 2022, 22, 3295 3 of 22

The A* algorithm [18] and its derivatives, such as D*Lite [4], are computationally
efficient algorithms compared to Dijkstra in the specific task that they address of finding a
path between a single source and goal nodes. This reduced task allows an informed search
strategy in the form of a heuristic to be deployed, which leads to the computational savings.
The one-source–one-goal paradigm can be identified with a single robot trying to get to
a single destination. Both A* and D*Lite accommodate new obstacle discoveries, but the
latter is an incremental algorithm which makes it suitable when there are continuing map
changes while navigating to the same goal.

Some of the prior efforts of other researchers that use methods related to our path
planning and navigation strategy are now discussed. The concept of artificial or virtual
potential functions (APF) was first proposed in [8]. They are called artificial because
these are not actual electric potentials but are only conceptualised as such. In the original
formulation, as explained in Choset [19], the two attractive and repulsive potential functions
were algebraically summed to obtain the overall potential function. In practice, the ad hoc
parametric choices of the model could set up local minima at which the net force on the
robot is zero, resulting in the robot being trapped on its way to the goal.

Let us now turn our attention from the core APF concept to how it was actually
realised in prior robot navigation research. Ratering and Gini [20] proposed a hybrid
potential field consisting of the combination of a global potential field calculated with
a variant of Dijkstra’s algorithm and a local potential field synthesised with the help
of sonar measurements. Wang et al. [21] also constructed the global and local planners
separately. Distance transformation, another variant of Dijkstra’s algorithm, is used for
the global planner, while an APF-based method is used for the local planner. The overall
navigation strategy is characterised by a mediation between the strict need to achieve the
subgoals of the global plan and the freedom of the APF-based local planner, so that local
minima are avoided. Azmi and Ito [22] propose a technique to handle the local minima
problem, in this case, a repetitive oscillatory excursion between two local minima. A
map transformation operation was proposed that resulted in the stalemate being resolved
through the rotation of the environment space. Lazarowska [23] devised the planning of
trajectories for autonomous ships navigating amongst both static and dynamic obstacles.
The static APF model accounted for the compliance of special maritime rules that prescribed
deliberate actions to avoid collisions between ships. Similarly, Klančar and Seder [15]
combined the static APF with local reactive model–predictive planning to avoid collisions
among multiple robotic vehicles in warehouse navigation. Amiryan and Jamzad [24]
used the APF to complement a pre-determined path generated by a sampling-based path
planner such as Rapidly-exploring Random Tree (RRT) [6] to avoid local minima problems.
In [25], a hybrid planning method is proposed that combines a particle swarm optimisation
algorithm with the APF for static obstacles and the potential field prediction for dynamic
obstacles. Several solutions have been proposed to overcome problems with local minima,
such as representing concave obstacles by convex representations [26], adding virtual
obstacles to move away from local minima [27] or by small perturbations of the APF based
on the input-to-state stability property [28]. Alternatively, a robot navigation function
can be determined using deep neural networks with reinforced learning as in [29], ant
colony optimisation [30], simulated annealing, particle swarm optimisation [25], genetic
algorithms and fuzzy logic [31] or the like.

The sampling of the APF-based literature discussed above indicates that the APF
concept continues to play a role in robot navigation. Specific use cases range from the
original concept of an integrated formulation premised on attractive/repulsive forces to
separate formulations addressing the static and dynamic planning phases, to dealing with
dynamic moving obstacles and other variations.

The main contributions of this paper are the following.

• A new navigation function is proposed that generates smooth and collision-proof paths
by using the bilinear interpolation (BiLI) method to obtain an artificial potential field
gradient-descent navigation function from a discrete cost-to-goal (CtG) map obtained

Sensors 2022, 22, 3295 4 of 22

by an optimal discrete grid-based search method. The approach is computationally
efficient as it relies on a coarse discrete graph search that can be precomputed for
static environments and known goals and can be easily reused for multiple missions
from different parts of the environment that need to navigate to a common goal. The
bilinear interpolation method implements a continuous potential field and driving
direction from a discrete grid-based search.

• Although BiLI is commonly used in computer vision applications, its use for robot
planning requires some enhancements, such as handling occupied cells whose values
are not defined, interpolating at the environmental boundaries and ensuring con-
tinuous gradient descent, which are the main novelties of this work. The resulting
path is collision-proof, continuous and close to the optimum, even at the course grid
resolution used. It also avoids the problems with local minima that are common in
general APF-based methods.

• BiLI can be applied in dynamic environments where incremental graph search meth-
ods such as D∗ or similar [2,4,5,32] can be used to efficiently account for the changes
in the environment. In this work, a simple strategy is proposed using Dijkstra for the
global CtG map planning and A∗ for dealing with locally sensed environment changes.
When different types of map changes are detected that affect the CtG values, the
proposed model uses the A* algorithm to find an emergency bypass path to areas of
the environment where the old CtG values are still valid. The bypass path is followed
by the determination of a final gradient-descent path segment to the overall goal.
Then, a situational decision is made whether to take the additional path segments
at the point of the map change or to keep the original path. Using A* to determine
the diversion path is relatively fast compared to regenerating the CtG values with
Dijkstra, as usually only a few cells need to be examined.

The remaining parts of the article are organised as follows. The first part of the path-
planning model developed in this effort is explained in Sections 2 and 3, with the help of a
test environment scenario. The reactive strategy to negotiate a blockage of the global path
is formulated in Section 4 with the same environment. Section 5 contains a description
of additional test scenarios formulated to evaluate this model and the attendant results.
Finally, Section 6 contains a brief summarising discussion of the work and suggests further
steps, while Section 7 draws some broad conclusions.

2. The Environment and APF Generation

Following a description of the environment, the formulation of the APF values for
each cell of the grid-based discretisation is discussed in this section.

2.1. The Environment

A sample environment is shown in Figure 1 which represents the static map in one
experiment. Appropriate modifications to it will be subsequently made that reflect the
dynamic discovery of new obstacles. Moreover, other obstacle configurations will be
created later that represent additional challenges addressed in this work.

The environment consists of a walled-off 10 by 10 m field of play. It can be scaled up
to any size, as desired. The entire area is divided into 400 cells (20 by 20), with each cell
being 0.5 m square. The environment features four prominent symmetrically positioned
“obstacle islands” that, given the starting and goal locations (also shown), block line of
sight to the goal for significant portions of a possible path.

The broad characteristics of the environment are:

• Even when an obstacle only overlaps part of a cell, the entire cell is considered
occupied. Thus, the map of the environment is in the form of a binary occupancy grid,
which also factors in obstacle inflation.

• Dynamic changes in the environment over the initial static knowledge are assumed to
be small and localised.

Sensors 2022, 22, 3295 5 of 22

• They can be in the form of additions or subtractions. That is, cells that were unoccupied
might be occupied as well as the opposite.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

11.8

11.3

10.8

10.3

9.78

9.57

9.36

9.16

8.95

8.74

8.54

8.62

8.12

7.91

7.71

7.5

7.71

7.91

11.3

11.1

10.6

10.1

9.57

9.07

8.86

8.66

8.45

8.24

8.04

8.24

7.91

7.41

7.21

7

7.21

7.41

10.8

10.6

10.4

9.86

9.36

8.86

8.36

8.16

7.95

7.74

7.54

7.74

7.71

7.21

6.71

6.5

6.71

6.91

10.3

10.1

9.86

7.66

7.45

7.24

7.04

6

6.21

6.41

9.78

9.57

9.36

7.45

6.95

6.74

6.54

5.5

5.71

5.91

9.57

9.07

8.86

7.24

6.74

6.24

6.04

5

5.21

5.41

9.36

8.86

8.36

7.04

6.54

6.04

5.54

4.5

4.71

4.91

9.16

8.66

8.16

7.66

7.45

7.24

7.04

6.83

6.33

5.83

5.33

4.83

4.62

4.41

4.21

4

4.21

4.41

8.95

8.45

7.95

7.45

6.95

6.74

6.54

6.33

6.12

5.62

5.12

4.62

4.12

3.91

3.71

3.5

3.71

3.91

8.74

8.24

7.74

7.24

6.74

6.24

6.04

5.83

5.62

5.41

4.91

4.41

3.91

3.41

3.21

3

3.21

3.41

8.54

8.04

7.54

7.04

6.54

6.04

5.54

5.33

5.12

4.91

4.71

4.21

3.71

3.21

2.71

2.5

2.71

2.91

8.62

8.24

7.74

4.83

4.62

4.41

4.21

2

2.21

2.41

8.12

7.91

7.71

4.62

4.12

3.91

3.71

1.5

1.71

1.91

7.91

7.41

7.21

4.41

3.91

3.41

3.21

1

1.21

1.41

7.71

7.21

6.71

4.21

3.71

3.21

2.71

0.5

0.707

1.21

7.5

7

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

0.5

1

7.71

7.21

6.71

6.21

5.71

5.21

4.71

4.21

3.71

3.21

2.71

2.21

1.71

1.21

0.707

0.5

0.707

1.21

7.91

7.41

6.91

6.41

5.91

5.41

4.91

4.41

3.91

3.41

2.91

2.41

1.91

1.41

1.21

1

1.21

1.41

Smoothed Dijksta path 1

Smoothed Dijksta path 2

RRT Dubins path

Smoothed RRT Dubins path

Proposed approach

Figure 1. Static map of environment with start (S) and goal (G) locations, discrete CtG values assigned
to the free cells (white cells, gray cells belong to obstacles) and some different smooth paths that
connect the start and the goal locations.

2.2. Formulation of APF

A variant of the original APF (artificial or virtual potential functions) concept [8] is
used to fulfill the global path-planning function. As pointed out earlier, the original APF
was conceived as a function that is continuous with respect to space, that addressed both
goal seeking and obstacle avoidance in an integrated manner. It followed from attractive
and repulsive forces between artificial electrical charges. However, that approach is known
to potentially spawn local minima trapping the robot.

As opposed to the classical approach, the floor space is tessellated into a suitable
x–y grid to accommodate the use of a standardised discrete occupancy map to represent
obstacles. The Dijkstra algorithm is used to generate the cost-to-goal (CtG) value for all
cells in the environment, which constitutes the global cost map. In doing this, diagonal
cell-to-cell transitions are given appropriate differential weights relative to horizontal and
vertical transitions. The CtG values are shown overlaid in Figure 1 within each cell for the
assumed environment. For example, the CtG is zero for the goal cell and 10.8 m for the
starting cell.

Within the grid map, the Dijkstra algorithm can be used to obtain the shortest path. In
Figure 1, the cells that lead from the start to the goal cell are shaded with a light blue colour.
A smooth path can then be obtained if a spline (using, e.g., Bézier curves or clothoid curves)
is fitted over the centres of the cells that comprise the path. In Figure 1, the Automated
Driving Toolbox in Matlab is used to smooth the paths using cubic splines as shown in two
examples (Smoothed Dijkstra path 1 and Smoothed Dijkstra path 2). This approach does
not ensure that the smooth path does not go too close or even over the obstacles unless
collision checking is also made during spline fitting. In Figure 1 is also an example of the
path obtained by the approach proposed in this paper. This is a smooth path that is obtained
based on the interpolated gradient of the APF that takes obstacles into account implicitly.
Figure 1 also presents a smooth path that is obtained with Rapidly-exploring Random Tree
(RRT*) [33]. In this case, RRT* uses Dubins’ curves [1] to obtain the path from the start to

Sensors 2022, 22, 3295 6 of 22

the goal, and the obtained path is further smoothed by fitting a cubic Bézier spline. The
shape of the curve depends on many constraints (e.g., path curvature, segment length,
safety distance, vehicle constraints, etc.) that can be given to the algorithm to optimise;
therefore, paths with different shapes and smoothness can be obtained. Moreover, the RRT
approach is stochastic; therefore, a completely different solution can be obtained in every
run of the algorithm even if the input conditions do not vary. Some smoothed paths can
be very oscillatory or make large turns around the obstacles, or path smoothing can also
produce infeasible paths that collide with obstacles. The proposed approach in this paper
is deterministic and produces smooth and near optimal paths that ensure a minimum safe
distance from the obstacles, and it is also computationally efficient because it produces
satisfactory results even when the cell size is relatively large.

The CtG numbers serve as the classical APF values that are the basis of the global
planning within the environment, after some refinement discussed shortly. Just as in the
classic APF method, a gradient descent determines the direction of motion. If the static
map does not change, a gradient-descent approach based on the CtG values can be used
to move the robot all the way to the goal. However, details need to be addressed, such as
how the gradients are calculated and smoothed for a function that is discrete over the floor
space, as well as how dynamic discoveries in the environment are handled, etc.

3. Interpolation and Smoothing of Potentials and Gradients for Path Planning

The discretisation of the floor—a decision made to contain the computational cost as
well as to simplify the consideration of obstacle occupancy—correspondingly creates a
discrete CtG surface. This then restricts the resolution of the gradient determination which
affects the smooth navigation. To address this, a refinement is introduced through the use of
a well-known technique of image resampling known as bilinear interpolation (BiLI) [34,35],
which operates on pixels that are like the cells in our environment, as discussed below.

3.1. Bilinear Interpolation

The conceptual basis of BiLI is explained using Figure 2 [35]. BiLI uses a 2 by 2
cell window to interpolate CtG values within the centred unit square region within this
window (dashed square in Figure 2), thus creating new data points in an educated manner.
It does so by using linear functions to perform the interpolation in what is essentially a
planar extension of 1D linear interpolation. The spline-based function representing the
interpolating surface is associated with 4 parameters whose values need to be estimated.
This is achieved using the CtG cell values at the corners of the unit square.

According to location of a point [x, y]T in a cell M , a 2 by 2 region of cells around it is
chosen for the interpolation, whose centres are connected by a dashed square in Figure 2.
Normalised coordinates are found by centres of these cells as:

xn = x−x0
dc

, yn = y−y0
dc

, (1)

where [x0, y0] is the origin of the normalised coordinates defined by the lower left corner
of the dashed square and dc is the cell size. The interpolated and discrete CtG value
(potential in the sequel) in normalised coordinates are expressed as Pn(xn, yn) = P(x, y)
and Un(xn, yn) = U(x, y), respectively. The potential for the four adjacent cell centres
(corners of dashed square in Figure 2) are

pcr = Un(xn, yn)

∣∣∣∣
xn=c, yn=r

, (2)

where c, r ∈ {0, 1} and Un(xn, yn) = U(x, y).
The interpolated potential Un(xn, yn) at any given normalised position [(xn, yn)]T

inside the quadrant of cell M delineated by the unit square is defined as [35]:

Pn(xn, yn) = w00 p00 + w01 p01 + w10 p10 + w11 p11, (3)

Sensors 2022, 22, 3295 7 of 22

where the BiLI weights are given by: w00 = (1 − xn)(1 − yn), w01 = (1 − xn)yn,
w10 = xn(1− yn) and w11 = xnyn.

Figure 2. Basis of bilinear interpolation. Interpolated potential at a given point [x, y]T is defined by
the discrete potential at centres (black dots) of four cells connected by the dashed square. Gray dots
denote centres of cells.

By following the negative gradient of interpolated potential P(x, y) = Pn(xn, yn), the
safe path from everywhere in the environment towards the goal location (with potential 0)
can be obtained. The negative gradient of P(x, y) in [x, y]T can be obtained as :

g(x, y) = −∇P(x, y) = −
[

∂P(x,y)
∂x , ∂P(x,y)

∂y

]T
− 1

dc

[
∂Pn(xn ,yn)

∂xn
, ∂Pn(xn ,yn)

∂yn

]T

= − 1
dc

[
p11yn − p01yn + p00(yn − 1)− p10(yn − 1)
p11xn − p10xn + p00(xn − 1)− p01(xn − 1)

]
.

(4)

3.2. Adjustments of Bilinear Interpolation for Path Planning

Before applying the interpolation of Equation (3), a check needs to be performed if
any of the three neighbour cells of the cell M (see Figure 2) involved in the interpolation
are occupied. Note that cell M is never occupied as we are interpolating potential at a
point [x, y]T inside it. For occupied cells, the potential is typically infinite or undefined, as
motion over the obstacles towards the goal should not be possible/permitted. The potential
for occupied cell U(xm, ym) (with centre at xm, ym) is reconstructed from the eight-cell
neighbourhood by finding the unoccupied cell with the largest potential, as:

{c, r} = argmax
c,r

{U(xm + dcc, ym + dcc) 6= ∞}

U(xm, ym) = U(xm + dcc, ym + dcr) + dc
√

c2 + r2
, (5)

where c, r ∈ {−1, 0, 1}.

Sensors 2022, 22, 3295 8 of 22

Additionally, a check needs to be performed if any of the four cells needed for the inter-
polation (also interpolation cells, see Equation (3) and Figure 2) is outside the environment.
A simple solution to this could be that the grid cell area is always at least one cell larger than
the area we are interpolating. More general solution applies calculation of the potential
and gradient for a nearby location [xt, yt]T , where all four cells used in the interpolation are
inside the environment. For a position [x, y]T , where one or more interpolation cells are
outside the environment, the nearby location is determined by translating the position from
the border for dc

2 in x and/or y direction towards the inside of the environment as follows:

xt =

x ; xmin ≤ x ≤ xmax

xmin +
dc
2 ; x < xmin

xmax − dc
2 ; x > xmax

yt =

y ; ymin ≤ y ≤ ymax

ymin +
dc
2 ; y < ymin

ymax − dc
2 ; y > ymax

, (6)

where environment borders are defined by xmin, xmax, ymin, ymax. For translated nearby loca-
tion, interpolated potential is computed from (3) noted as P(xt, yt) and the gradient from (4)
noted as gt(xt, yt). Finally, the appropriate potential for each interpolating cell outside the
environment (noted as P∗) are reconstructed using Lie derivative (also direction derivative):

P∗ = P(xt, yt) + gt(xt, yt)× [x− xt, y− yt]
T . (7)

Figure 3 (top-left image) shows the resulting potential (CtG values) surface obtained
through application of the BiLI technique, corresponding to the environment of Figure 1.
Notice how the CtG surface slopes continuously downward from the start point to the goal
point, with the four “islands” represented by infinite potentials. This follows from the fact
that the CtG values will monotonically decrease from any cell in the environment towards
the goal. Moreover, a few sample paths obtained by following the negative gradient
(computed from Equation (4)) from different locations towards the goal are shown in the
top-right image with blue line. Notice discontinuous change of the negative gradient
direction near occupied cells, which can also be observed by checking gradients near
obstacle (the cells near the central obstacle in the bottom-left image from Figure 3 with
enlarged cell at obstacle corner). To improve this and obtain smoother paths (as illustrated
in the top-right figure by purple line), we additionally propose interpolation of the negative
gradients in Section 3.3.

3.3. Interpolation of Gradients

The resulting potential in Figure 3 is continuous, but its negative gradient may be
discontinuous especially in the vicinity of obstacles, as seen from the bottom-left image
in Figure 3 where, at the boundaries between the quadrants of a cell, the gradient shows
discontinuities. The negative gradient indicates the required driving direction to reach the
goal in optimal manner. Every discontinuity of the gradient is problematic, as a wheeled
robot would need to stop and rotate on the spot to reliably follow the course of the negative
gradient towards the goal. To improve this, we propose interpolation of the negative
gradient, similar to what was performed for the potential field.

For chosen location [x, y]T in cell M, we estimated the interpolated potential P(x, y)
and its negative gradient g using Equations (3) and (4). Interpolated potential is obtained
from the four interpolation cells centre potentials as indicated by Figure 2. In the following,
we will use the same interpolation principle to also obtain the interpolated negative gradient
h(x, y) with continuous course as shown in the right images of Figure 3. The gradient
for the centres of the four interpolating cells can be estimated from (4), which for each
cell considers only the left neighbour (xn = 0) to obtain x element of the gradient g or
only the upper neighbour (yn = 0) to obtain y element of g. Therefore, we estimate the
cell centre gradient considering the smallest discrete potential (valid for the cell centre) of
both neighbour cells in x or y axis. Denote the interpolating cell centre gradients (similarly

Sensors 2022, 22, 3295 9 of 22

as their potential in (2)) by hcr = [hxcr, hycr]T where c, r ∈ {0, 1}. For a cell with centre
coordinates xm = x0 + dcc, ym = y0 + dcr the cell gradient reads

hcr = −

1
dc

[
e(U(xm + dce, ym)− pcr)
f (U(xm, ym + dce)− pcr)

]
; U(xm, ym) < ∞,

1
dc

[
Sx(U(xm + dcSx, ym)− p∗cr)
Sy
(
U
(
xm, ym + dcSy

)
− p∗cr

)] ; U(xm, ym) = ∞,
(8)

where
e = argmin

s
{U(xm + dcs, ym)} ; s ∈ {−1, 0, 1}

f = argmin
s
{U(xm, ym + dcs)} ; s ∈ {−1, 0, 1} (9)

and Sx = sgn(x− xm), Sy = sgn(y− ym) where sgn(.) denotes the sign function. The first
part of (8) relates to the case where the cell is free and the second for the case when cell is
occupied. If the cell is occupied (U(xm, ym) = ∞), then its potential is updated (noted as
p∗cr in (8)) from already known potential P(x, y) and the gradient g(x, y) in current position
[x, y]T as follows:

p∗cr = P(x, y) + g(x, y)× [xm − x, ym − y]T .

0

8

6

5

4

8
2 6

4
2

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 3. Interpolated potential surface Pn(xn, yn) (CtG values, darker colours denote lower CtG
values) obtained through bilinear interpolation with contours of equal potential, corresponding to
the discrete CtG values of environment of Figure 1 (top-left). Obtained paths following the negative
gradient (blue line) and interpolated negative gradient (purple line) are shown (top-right). Part of
the environment near the goal with negative gradients (red lines going from black dots outwards)
computed from (4) (bottom-left) and interpolated negative gradients (bottom-right).

Before computing the cell gradients in (8) and (9), a check needs to be made if any of
the neighbour cells is outside the environment. If this is the case, the potential of this cell is
reconstructed similarly as in (7) considering the known interpolated potential P(x, y) and
gradient g(x, y) for the point [x, y]T .

From estimated cell gradients h00, h01, h10 and h11 (Equation (8)), the final interpolated
gradient in current position is obtained by:

h(x, y) = w00h00 + w01h01 + w10h10 + w11h11, (10)

Sensors 2022, 22, 3295 10 of 22

where the same weights w00, w01, w10, w11 as in (3) are used. The comparison of the gradient
field g and the improved interpolated gradient h is shown in Figure 3 in the lower graphs.
The obtained planned paths by following the interpolated gradient of the potential field
result in collision safe and smooth paths as shown in the top-right graph of Figure 3.

Bilinear interpolation can therefore be elegantly used to obtain continuous potential
field as well as appropriate desired driving directions (the interpolated negative gradients
h) based on a discrete grid-based cost map (discrete CtG potential field). The obtained
paths in path planning are collision safe, without local minima and with continuous
course of driving direction, which is important for robotic vehicles. Note that Bicubic
interpolation [15,36] could also produce smoother interpolations, but it requires 4 by 4
neighbourhood, which is problematic in the vicinity of obstacles or in narrow corridors,
as the occupied cells have infinite CtG value. Occupied cells require special treatment
before they are used in the interpolation. This becomes even more challenging for bigger
neighbourhoods (e.g., 4 by 4 as opposed to 2 by 2). Therefore, for the path planning, we
propose the use of bilinear interpolation with appropriate preprocessing of occupied cells
and with additional gradient interpolation to obtain smooth paths. The path is smooth,
even as it is intuitive and optimal. As mentioned earlier, no local minima will exist in the
CtG contour, unlike in the classical APF formulation, because of the inherent manner of its
construction. However, if the static map is augmented by new obstacles put in play after
its creation, this could change. This eventuality is dealt with in the next section.

Let us analyse the computational complexity of the proposed smooth path planning.
The path is obtained with a gradient-descent method. The number of steps that are required
to reach the goal is dependent on the size of the sampling step. The sampling step can be
lower bounded to prevent oversampling and upper bounded to obtain desired smoothness
of the path. Consider that a particular path passes over M cells and that the sampling step
is selected in a way that on average (or at maximum) L iterations of the gradient descent are
made in each of the cells. This means that computational complexity of gradient descent is
O(LM), and it is therefore dependent on the sampling step and path length. In each step
of the gradient-descent calculation, an interpolated value of the gradient is obtained from
the four nearest surrounding cells (see Equation (10)) around the current path point. The
gradient in each of these four cells is calculated from the APF of the four neighbouring
cells (Equation (8)). Therefore, to compute the interpolated gradient for a given cell, a
neighbourhood of twelve cells is needed in total. Hence, the gradient does not need to
be determined for every cell, but only for the cells that are along the path. We assume
that the gradient calculations can be cached; therefore, the computational time and space
complexity of obtaining the gradients in the cells around the path are O(M). Note that
cell gradient calculations could also be made in parallel if calculation speed is crucial. We
calculate the values of the APF for the entire map with N cells using Dijkstra algorithm,
which in case of a grid map has a computational time complexity of O(N log(N)) and final
space complexity of O(N). The values of the potential field could also be determined only
for the cells in the vicinity of the path that are sufficient for gradient calculation. This is
a viable option when we would like to quickly determine only a single path, especially
if the map is very large. In this case, the Dijkstra algorithm can be stopped once the goal
is reached (in this step, it is also beneficial to use A*) and then the Dijkstra algorithm is
resumed only if the value of the potential for an unknown cell needs to be known and only
until the final value of the cell potential is known. However, in our case, we calculate the
APF for the entire map, as this enables fast recalculation of various paths that lead to a
single goal (or begin at a common start), which is beneficial for the cases when part of the
map changes, as presented in the next section.

4. Discovery of New Obstacles and Reactive Avoidance Manoeuvre

A change in the environment is shown in Figure 4 with the addition of an L-shaped
obstacle (in Figure 4 (top-right)) cluster roughly halfway through the initially planned
path in Figure 4 (top-left). The detection of these additional obstacles is assumed to take

Sensors 2022, 22, 3295 11 of 22

place when the robot’s sensor horizon includes the region, through an iterative comparison
between what it sees with its sensor and what it expects to see from the initial static map.
The range of the sensor used will have some effect on when any reactive manoeuvre is
initiated, but this detail is not critically relevant to our model development.

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

11.8

11.3

10.8

10.3

9.78

9.57

9.36

9.16

8.95

8.74

8.54

8.62

8.12

7.91

7.71

7.5

7.71

7.91

11.3

11.1

10.6

10.1

9.57

9.07

8.86

8.66

8.45

8.24

8.04

8.24

7.91

7.41

7.21

7

7.21

7.41

10.8

10.6

10.4

9.86

9.36

8.86

8.36

8.16

7.95

7.74

7.54

7.74

7.71

7.21

6.71

6.5

6.71

6.91

10.3

10.1

9.86

7.66

7.45

7.24

7.04

6

6.21

6.41

9.78

9.57

9.36

7.45

6.95

6.74

6.54

5.5

5.71

5.91

9.57

9.07

8.86

7.24

6.74

6.24

6.04

5

5.21

5.41

9.36

8.86

8.36

7.04

6.54

6.04

5.54

4.5

4.71

4.91

9.16

8.66

8.16

7.66

7.45

7.24

7.04

6.83

6.33

5.83

5.33

4.83

4.62

4.41

4.21

4

4.21

4.41

8.95

8.45

7.95

7.45

6.95

6.74

6.54

6.33

6.12

5.62

5.12

4.62

4.12

3.91

3.71

3.5

3.71

3.91

8.74

8.24

7.74

7.24

6.74

6.24

6.04

5.83

5.62

5.41

4.91

4.41

3.91

3.41

3.21

3

3.21

3.41

8.54

8.04

7.54

7.04

6.54

6.04

5.54

5.33

5.12

4.91

4.71

4.21

3.71

3.21

2.71

2.5

2.71

2.91

8.62

8.24

7.74

4.83

4.62

4.41

4.21

2

2.21

2.41

8.12

7.91

7.71

4.62

4.12

3.91

3.71

1.5

1.71

1.91

7.91

7.41

7.21

4.41

3.91

3.41

3.21

1

1.21

1.41

7.71

7.21

6.71

4.21

3.71

3.21

2.71

0.5

0.707

1.21

7.5

7

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

0.5

1

7.71

7.21

6.71

6.21

5.71

5.21

4.71

4.21

3.71

3.21

2.71

2.21

1.71

1.21

0.707

0.5

0.707

1.21

7.91

7.41

6.91

6.41

5.91

5.41

4.91

4.41

3.91

3.41

2.91

2.41

1.91

1.41

1.21

1

1.21

1.41

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

11.8

11.6

11.4

11.4

10.9

10.7

10.5

10.3

10.1

9.62

9.12

8.62

8.12

7.91

7.71

7.5

7.71

7.91

11.3

11.1

10.9

11.1

10.7

10.2

10

9.83

9.91

9.41

8.91

8.41

7.91

7.41

7.21

7

7.21

7.41

10.8

10.6

10.4

10.6

10.5

10

9.54

9.33

9.54

9.21

8.71

8.21

7.71

7.21

6.71

6.5

6.71

6.91

10.3

10.1

9.86

8.83

9.04

9.24

8.91

6

6.21

6.41

9.78

9.57

9.36

8.33

8.54

8.74

8.95

5.5

5.71

5.91

9.57

9.07

8.86

7.83

8.04

8.24

8.45

5

5.21

5.41

9.36

8.86

8.36

7.33

7.54

7.74

4.5

4.71

4.91

9.16

8.66

8.16

7.66

7.45

7.24

7.04

6.83

7.04

7.24

4.83

4.62

4.41

4.21

4

4.21

4.41

8.95

8.45

7.95

7.45

6.95

6.74

6.54

6.33

6.54

7.04

4.62

4.12

3.91

3.71

3.5

3.71

3.91

8.74

8.24

7.74

7.24

6.74

6.24

6.04

5.83

4.41

3.91

3.41

3.21

3

3.21

3.41

8.54

8.04

7.54

7.04

6.54

6.04

5.54

5.33

5.12

4.91

4.71

4.21

3.71

3.21

2.71

2.5

2.71

2.91

8.62

8.24

7.74

4.83

4.62

4.41

4.21

2

2.21

2.41

8.12

7.91

7.71

4.62

4.12

3.91

3.71

1.5

1.71

1.91

7.91

7.41

7.21

4.41

3.91

3.41

3.21

1

1.21

1.41

7.71

7.21

6.71

4.21

3.71

3.21

2.71

0.5

0.707

1.21

7.5

7

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

0.5

1

7.71

7.21

6.71

6.21

5.71

5.21

4.71

4.21

3.71

3.21

2.71

2.21

1.71

1.21

0.707

0.5

0.707

1.21

7.91

7.41

6.91

6.41

5.91

5.41

4.91

4.41

3.91

3.41

2.91

2.41

1.91

1.41

1.21

1

1.21

1.41

100

0 8

2
6

4
4

6

2

5

8

010

10

15

100

0 8

2
6

4
4

6

2

5

8

010

10

15

Figure 4. Augmented environment with new discoveries. Static map of environment with planned
path in blue line towards goal (top-left). Change of environment with new L-shaped obstacle where
robot (shown by the sky blue line and its sensor range by the gray dots) is blocked at stuck cell
(highlighted by yellow) if continuing based on static CtG map. Replanned CtG values for new
environment with highlighted light purple cells where CtG values have changed and new gradient-
descent path in green (top-right). Interpolated potential (CtG, darker color denote lower values)
surface before (bottom-left) and after the environment change (bottom-right).

It should be noted that if the new obstacle does not impede motion, then nothing
needs to change. However, following the initially planned global path here will stop the
robot at the “stuck cell” (see the global path in Figure 4 (top-left) in conjunction with the
“stuck cell” shown in yellow in Figure 4 (top-right)), which is effectively a local minimum
forced by the new obstacle. Essentially, the robot ends up in a trap in pursuing gradient
descent based on the initial plan. In fact, the discovery—here, an addition to the static
obstacle map—can be taken as an indication that the CtG values in the vicinity are no
longer reliable.

The results of repeating the Dijkstra algorithm to refresh the CtG values of the entire
environment with the new obstacles included are also shown in Figure 4 (top-right). The
cells with modified CtG values are highlighted (in comparison to plot (top-left)), which
clearly reveals that the new obstacles only influence the CtG values (increases them) of
a small subset of the cells that are upstream of the new obstacles. The downstream CtG

Sensors 2022, 22, 3295 12 of 22

values are unaltered, as would be expected. The new interpolated CtG surface is shown in
Figure 4 (bottom-right) and is in accordance with the updated map.

The new gradient-descent path from the original starting point is also shown in
Figure 4 (top-right) with the green line, which confirms that if we had been aware of these
new obstacles at the very beginning, the global path planning would have accounted for it
and the CtG numbers would have been monotonic again. This recalculation could have
also been performed from the trapped position of the robot to the goal. However, this is
the calculation that is to be avoided because of the associated computational burden. The
new path is just presented here to make a point.

Thus, the challenge is to come up with a reactive strategy that enables the robot
to get around the obstruction through developing a bypass path that involves minimal
computation effort. This path should lead the robot to an area where the old CtG values can
be used again to continue travel. The flowchart shown in Figure 5 is a broad representation
of the core method adopted. There are minor case-based variations stemming from the type
of map change encountered, which are not included in this basic flowchart for simplicity.
The explanation that follows is with reference to this flowchart as well as the two in
Figures 6 and 7 that follow, dealing with lower-level steps in the algorithm.

Find Dijkstra cost to
goal from all cells

Specify start/goal
positions & static map

Use BiLinear Interpolation
to interpolate CtG surface

Apply smoothed Gradient
Descent for optimal

path to goal

Drive robot on path
to goal

Map change?

Proceed to
final goal

Find suitable local
bypass path goal

Determine A*
bypass path

Use Gradient
Descent to predict
final path segment

No Yes

Decide choice of path
to final goal based on
type of map change

Establish early
leave point if it

exists

Figure 5. Core flowchart of algorithm (some variations based on case). Leave point determination
applies only when current path is blocked.

Sensors 2022, 22, 3295 13 of 22

Tag earliest as
suitable leave

point
Follow A* path
till bypass goal

A* bypass
path cells

Any with 1 or 2
unobstructed cells

towards goal?

Yes No

Closer to goal than
via bypass goal?

Yes No

Figure 6. Finding suitable leave point. Leave point is established if cell on A* path has immediate
unobstructed cells in original goal direction and is closer to it than path via bypass goal.

Leave
Cell

Goal
Cell

Goal
Cell

Goal cell
direction

Goal cell
direction

Leave
Cell

Cells to
check for

obstruction

Figure 7. Checking blockage condition for leave cell candidates. Based on alignment of potential
leave cell with original goal cell, occupancy status of either one or two cells is checked to determine
whether obstruction is present.

A predefined, 5 by 5 search window of cells (see the yellow dashed square in Figure 8
(top-right)), which can be thought of as a “fishing net”, is centred at the stuck robot cell
(the yellow cell in Figure 8 (top-right)). The cells within the window are examined to find
the lowest CtG value that is smaller than the CtG value at the stuck cell, as per the original
static map, to use as a temporary intermediate goal (the green cell in Figure 8 (top-right)
to help negotiate the blockage caused by the newly discovered obstacles with a sensor
(e.g., LiDAR). An inherent assumption is that the size of the search window is sufficient
to uncover a cell with a CtG value that is on the other side of the blockage, and hence
unaffected by it. This is facilitated by centring the net at the stuck robot cell right next to the
new obstacles blocking the path, even though the blockage may have been detected even
further away by the robot’s LiDAR. If this step does not uncover a satisfactory temporary
local goal, larger nets are cast iteratively until a suitable cell is found. Moreover, it might be
possible to get more creative with the footprint adopted for this search window, which is
beyond the scope of this work.

Sensors 2022, 22, 3295 14 of 22

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 0.5

0.50.71

0.5

0.710.5 0.71

1

1.2

1.5

1.7

1.4 1.2 1.41.21.2

1.2

1

1.2

1.9 2.41.4

1.9 2.1

1.7

1.5

1.7

1.9

2.6

1.9

2.4 2.6

2.9

3.1

3.12.1

2.8

2.2

2

2.2

2.4

2.42.6

3.6

3.83.6

3.8

4.34.1

2.42.4

3.3

4.64.8

5.55.35.5

5.3

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 8. Strategy to negotiate dynamic obstacles. Original planned path based on the static environ-
ment map shown is shown with blue line (top-left). New obstacle blocking path initiates A∗ bypass
(red line) calculation from stuck cell (highlighted in yellow) to the temporary intermediate goal cell
(highlighted in green) (top-right). The leave point and final overall path is shown with A∗ bypass
(bottom-left) and in by smoothed bypass (green line) using BiLI interpolation (bottom-right).

With the stuck cell and the temporary goal identified, the A* algorithm is then run
to find a diversionary path from the robot’s stuck location to the temporary local goal
identified, as described above. This step should not result in an “unreachable goal” being
returned, as the algorithm is executed with the known map at the time. The resulting
path obtained is also shown in Figure 8 (bottom-left). It should be noted that using D*Lite
instead of A* will not result in any computational savings, because the algorithm needs
to be run just once, in which case there is no advantage of one over the other. Whether it
is necessary to follow the A* bypass path all the way to completion would depend on the
situation. The reason is that if in negotiating the obstacle via the A* path the robot finds
itself in a cell that is closer to the final goal, completing the A* path and then proceeding to
it is not as efficient compared to treating the cell as a leave point. This additional condition
built into the algorithm is laid out in the flowchart extension presented in Figure 6.

A good leave cell must also satisfy another condition. It should also be one for which
there is at least one unobstructed cell within its 8-cell neighbourhood in the direction of the
goal. This is illustrated in Figure 7 for the two situations that represent all the possibilities
that can occur. Essentially there are two cases, because of the quantisation imparted by
the discretised cell structure. Either one or two cells need to be checked, depending on the
relative positioning of the goal cell and the candidate leave cell. That is, are they vertically

Sensors 2022, 22, 3295 15 of 22

or horizontally aligned or at a different angle, in which case the line joining them will
be straddled by two cells. In the latter case, only one needs to be free to meet the leave
condition. If none of the leave cells pass the dual tests, the bypass path is followed all the
way to the temporary bypass goal.

When a leave cell is established, it is taken to mean that the local obstruction has been
satisfactorily bypassed and the old CtG values are valid again. The algorithm reverts to
the gradient descent using the old CtG values. It should be noted that it is possible to
determine a suitable leave point and the final gradient-descent segment even before the
robot moves from the stuck cell. This enables the path to be evaluated before travel. The
leave point and the final overall path of the robot between the original starting point and
goal location are also shown in Figure 8 with A∗ bypass (bottom-left) and by the smoothed
bypass path using BiLI interpolation (bottom-right).

The use of the CtG values and gradient descent as an overarching method to drive
to the goal and the separate handling of unexpected obstructions through a bypass path
ensures that, unlike in the classical formulation of the APF, local minima cannot be formed
at the global path planning with static map phase. That is, the two-step approach results in
local minima being caused only by newly discovered obstacles and transfers the burden of
resolving them to the local path-planning phase. This is a key element of the path-planning
strategy used here.

The planning model discussed here was evaluated in additional experiments. The
environments used and the attendant results obtained are discussed in the next section.

5. Additional Experiments and Results
5.1. Obstacle Missing from Static Map within Sensor View

A new environment is shown in Figure 9 (top-left) with the start (lower left) and
goal (upper right) locations, as well as the path resulting from the global path-planning
phase. As the robot travels towards the goal and its sensor horizon advances, it discovers a
change in the static map on which the planning was premised. A cell in the “wall” that was
thought to be blocked is found to be clear from the robot’s sensor view. Here, the change is
a subtraction as compared to the earlier example. The cleared cell as well as the cell where
the discovery was made are shown in Figure 9 (bottom-left).

This can be used to trigger an opportunistic strategy—when a blockage is removed,
there is a possibility that a shorter path to the goal exists and needs to be investigated. The
A* algorithm is invoked to determine a path to the region of the cell, which is now open,
so that the old CtG surface can be used again. This is accomplished by setting the target
cell for the A* bypass path to an unblocked cell beyond the cleared cell in the direction
of the goal. The potential A* bypass path is shown in Figure 9 (bottom-left) in red and
the corresponding smoothed version by the green line in Figure 9 (bottom-right). The
remaining path from that cell to the original goal cell is again obtained through using the
CtG values and gradient descent and is shown in Figure 9 (bottom-right) in which the
overall path from the original starting position to the goal is also evident.

If there are multiple occupied cells that are now clear, all of them need to be assessed
in the same manner as discussed above. Before taking a bypass path, a check needs to be
conducted to see whether the modified path (made up of an A* segment followed by a
gradient-descent segment) is shorter than the remaining current path to the goal. Only if
the newer path is better should the robot use it to get to the goal instead of the original
path. In the environment considered, this happens to be the case.

Sensors 2022, 22, 3295 16 of 22

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0

0.710.50.71

0.5

0.710.5

1.2

1.41.21.4

0.71

1.2

1.9

2.62.42.6

2.6

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 9. Path planning with obstacle clearance within sensor view. Initial path planned (blue
line) based on knowledge of global static map is followed (top-left and top-right). Robot detects
change in static map using sensor view (cleared cell) and computes A* bypass path (red line) to an
unblocked cell beyond cleared cell (bottom-left). The smoothed bypass path (green line) connects to
the gradient-descent path (blue line above the obstacle) based on CtG (bottom-right).

5.2. Obstacle Missing from Static Map Outside of Sensor View

It is also possible to conceptualise a situation where the robot comes to know about the
removal of an obstacle from the static map in a region of the environment outside the sensor
range of the robot while it is in motion on the current path to the goal. For example, this
could happen when another robot passing by that region notices and relays the change(s) to
a central station and/or all agents. While this could be a corrected error in the map creation,
it could also be the result of a temporary obstacle (for example, a fallen tree) being cleared.

This situation can be handled in the same way as the previous one. A potential A*
bypass path can be estimated from the robot’s current position to a target cell just beyond
the cell whose occupancy status has changed. This serves as a bridge to an area where
the old CtG values are still valid. As before, the next segment of the path is established
using the gradient descent from the temporary bypass goal on to the original destination.
Then, based on whether this new alternate route is shorter than the remaining part of the
current route, the robot can decide whether to switch to the alternate path or continue on
the current one.

An example of this case is shown in the environment in Figure 10. The various parts
of the figure are in line with Figure 9 and can be understood with the help of the caption.

Sensors 2022, 22, 3295 17 of 22

In the environment of Figure 10, the information on the map change helps chart a shorter
route to the goal.

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0

0.710.50.71

0.5

0.710.5

1.41.21.4

1.2

1.4

1.9

2.1

1.21.21.2

1.21.21.2

1.9

2.6

2.4

2.6

3.33.13.3

3.3

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 10. Path planning with obstacle cleared outside the robot sensor view. Initial path (blue line)
planned based on knowledge of global static map is followed (top-left). Robot is informed of cleared
obstacle cells (outside robot’s sensor view) and A* bypass path (red line) to an unblocked cell beyond
cleared cell is computed (top-right). The composite alternative path made up of final gradient-descent
path (blue line above the obstacle) using the original CtG (bottom-left) and smoothed bypass version
(green line) (bottom-right) is shorter than the one in the (top-left) figure and robot switches to it.

5.3. U-Shaped Trap

The last environment considered is one which incorporates the classic U-shaped
concave trap. The static map is initially empty and the planned path between the start
position and the goal is shown in Figure 11 (top-left), before the blockage is discovered, and
is as expected. Even when the lower part of the U-shaped particle is discovered (Figure 11
(top-right)), the robot continues to proceed on the initial straight path recommended by
global path planning. It does this until it encounters the core structure of the trap and
the attendant local minima created (Figure 11 (bottom-left)). The ability to resolve an
unexpected concave obstacle configuration on the planned path is a good test of the ability
of an algorithm, because those that are purely combinatorial will fail this test.

Sensors 2022, 22, 3295 18 of 22

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 0.5

0.710.50.71

0.5

0.710.5 0.71

1.211.2

1.21.2

1.2 1 1.21.4 1.4

1.7

1.9

1.9

1.9

1.7

1.9

1.7 1.5 1.71.9 1.9

2.4

2.62.4

2.6

2.42.6

2.4

2.6

3.12.92.93.1

2.1 2.12.1

2.42.42.4

3.63.43.43.6

4.13.94.14.13.94.1

2.2 2 2.2

3.1

3.3

3.3

3.3

3.1

3.3

4.84.64.8

4.6

5.3

5.1

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 11. Path planning with appearance of unexpected U-shaped trap. Robot initially plans path
(blue line) in empty static map (top-left) and starts to travel on it (top-right). When blockage is
within sensor range, a bypass path is computed by a red line (bottom-left). The path is smoothed
(green line) and connects with the final gradient-descent path (blue line) using CtG (bottom-right).

In accordance with the algorithm, a 5 by 5 window of cells is examined around the
stuck cell (the yellow cell in Figure 11 (bottom-left) where the robot’s initial gradient-
descent path is blocked by the obstacle) to find the lowest CtG value below the current
one (temporary intermediate goal cell marked by green in Figure 11 (bottom-left)). As
explained earlier, such a cell is considered as being in an area where the CtG values are
unaffected by the new blockage. If in some other case, the chosen 5 by 5 search window
size does not produce a suitable target, because the cell with a minimum CtG value smaller
than the current value lies within the trap zone, the search can be repeated using a larger 7
by 7 window and so on. This will eventually yield a temporary bypass goal outside the
trap. The A* bypass path to this cell is also shown in Figure 11 (bottom-left) in red. The
smoothed version obtained by the bilinear gradient interpolation in green, the post-bypass
path segment based on the gradient descent, and the overall composite path between the
start and goal points is shown in Figure 11 (bottom-right). Note that the path follows the
computed bypass only until the leave point where the old CtG values and its interpolated
gradient-descent path can be followed again.

6. Discussion

Although bilinear interpolation and the calculation of gradients from a discrete grid are
well-established in image processing, their direct application to a discrete APF can lead to

Sensors 2022, 22, 3295 19 of 22

several problems. At the points where the cell is connected to its neighbour, discontinuities
can occur in the gradients, making the use of a gradient descent problematic. This can lead
to undesirable zigzag paths when following the direction of the gradient descent. This
problem is much more pronounced near obstacles. The potential of occupied cells is not
defined by the CtG assignment and can be considered infinite, as the cell should not be part
of a path to the goal. This can lead to problems with local minima near obstacles where the
direction of the gradient descent could change by more than 90°.

To interpolate the potential appropriately, one could also use some other higher-order
interpolation technique, such as the bicubic interpolation [15,36]. The advantage of this
technique would be a smooth gradient transition at the cell border because it uses third-
order polynomials for the interpolation, which are continuous up to the second derivative
(C2). However, bicubic interpolation requires the use of a 4 by 4 neighbourhood, which
becomes problematic near obstacles or in narrow corridors because the occupied cells
have infinite (undefined) potential values. These occupied cells need special treatment
before they can be used in the interpolation. Therefore, bicubic interpolation brings its own
problems, as it requires a neighbourhood of 16 cells for the interpolation, in contrast to
bilinear interpolation, which only requires 4 cells.

An additional problem that plagues bicubic interpolation is the occurrence of anoma-
lies such as surface oscillations and the possibility of local minima near obstacles. Third-
order polynomials have a continuous gradient which, while fitting the equidistant cell
centres near obstacles (e.g., obstacle corners), causes oscillations in between (a common
problem in the interpolation where the fit is perfect at the data point but could be oscillatory
in between, known as the Runge phenomenon).

In image processing, the gradient is normally computed with the convolution of
the image with the gradient operator. There are various gradient operators, such as
one-dimensional operators (e.g., [1, − 1], [1, 0 − 1]) and Robert’s cross or the Prewitt,
Sobel and Scharr operators [37], which are more robust to noise. Some of these filters
introduce gradient shifting and/or smoothing. In our case, averaging is not required, as
the APF inherently does not contain noise. The proposed method for calculating the APF
gradient is therefore different from the gradient methods used in image processing because
it is designed in a way that the gradient in the cell centres always points towards the
neighbouring cell with the lowest potential, or the gradient is zero if the current cell has
the lowest potential. This ensures that the interpolated gradient points towards the cells
with the lowest potential, regardless of the potential magnitude in the cell neighbourhood
(without an undesired gradient shift and averaging). Therefore, an optimum smooth path
from the start to the goal can be obtained, because the obtained path accurately follows the
bottom of the valley that is defined by the APF.

The calculation of the potential field and the gradient in the free space away from
the obstacles is straightforward, but in the vicinity of the obstacles, special care is needed
to determine the appropriate potential and gradient, as presented in the paper. In the
cells surrounding the obstacles, the gradient is calculated from the potential field of the
neighbouring cells. If some of these adjacent cells are occupied by obstacles, the potential
in these cells may be different depending on which side of the obstacle the gradient is
calculated—this occurs in the case of thin or diagonally touching obstacles. Therefore,
the batch calculation of the APF can only be performed for the cells that do not touch the
obstacles. Moreover, to determine the optimal path, the proposed approach can calculate
the gradients online only for the cells that are surrounding the tip of the path while it is
being generated. One could resample the grid to double/quadruple the resolution of the
map to alleviate the problems encountered near thin obstacles. However, this would require
more computational resources (by a factor of four in the case of a double resolution) to
calculate the APF and its gradient. However, because the gradient is interpolated, smooth
paths are obtained even if the resolution of the map is low.

The proposed bilinear interpolation is applied to the path planning in a static and
dynamic environment. A simple model for combining the global and local path planning

Sensors 2022, 22, 3295 20 of 22

that also derives from the original potential fields concept is used. Its key aspects are as
follows. A method is needed for multiple missions that could potentially require navigation
to the same destination in the environment. A static APF is therefore interpolated based on
the pre-calculated CtG values for the cells navigating the path to the goal. A global plan is
created based on these CtG values using a gradient descent on the static APF. Along its
path, local map changes in the environment can be detected in various ways. A bypass
strategy is formulated that enables the robot to find and evaluate a temporary bypass path
through the use of the A* algorithm. A case-based decision is made whether to take the
alternate path. Obtaining the diversionary path is relatively fast compared to regenerating
CtG values for the entire environment. The benefits will be proportionately even greater
for larger and less constricted environments.

In summary, the proposed approach introduces the following contributions/modifications
in APF-based path planning: a small required neighbourhood (2 ×2, compared to other in-
terpolations), an easier treatment of the occupied cells in the interpolation, and no anomalies
that could result in local minima or the oscillating direction of the gradient-descent path near
obstacles. The basic bilinear interpolation has a discontinuous gradient between cells, which
we take into account by our proposed additional interpolation for gradients. Standard image
processing techniques usually apply a batch calculation to the entire image, which simplifies
the algorithmic flow in an obstacle-free area. However, additional special care is required to
determine the appropriate potential and gradient near the obstacles. The proposed approach
reduces the computational effort as the interpolation is only performed on cells along the path
and not for the entire environment as is usually the case with batch image processing algorithms.

Due to the applied interpolation in the potential function, good quality paths are
obtained even at a rough grid resolution of the environment. These contribute to the
computational and memory requirement efficiency of the approach.

7. Conclusions

This work proposes a new approach to construct a navigation function in a variant
of artificial potential fields (APF) that can be applied to navigation, path planning and
the control of a mobile robot. The navigation function guarantees safe guidance to a
goal without local minima in concave traps, which is a common problem with APFs.
Optimality and convergence are inherited from an optimal grid-based search which results
in a discrete APF.

To obtain a smooth navigation function and the associated gradient-descent driving
direction, we apply a bilinear interpolation with several novel extensions that allow an
efficient application to path planning. First, we propose a reconstruction of the discrete
potential for the neighbourhood of cells used in the interpolation that belong to obstacles
or are outside the environment. Second, we introduce an additional interpolation of the
gradient-descent directions from the estimated discrete gradients of the interpolated cells.
This leads to a smooth, optimal and collision-safe path or navigation towards the goal.
Third, the proposed interpolation approach can be performed online and is computationally
efficient as it only interpolates the discrete cell potentials along the planned path.

Several path planning results are provided to illustrate the performance of the naviga-
tion function. To illustrate the application in dynamic environments, we propose a simple
strategy to combine global and local path planning to bypass detected dynamic changes.
The strategy enables a robot to find and evaluate a temporary bypass path around newly
detected obstacles through the use of the A* algorithm.

Author Contributions: Conceptualisation, methodology and software, M.K., A.Z. and G.K.; writing—
original draft preparation, M.K.; writing—review and editing, M.K., A.Z. and G.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was partly founded by a US Fulbright Scholar grant to Mohan Krishnan and
partly by the Slovenian Research Agency under Grants P2-0219 and L2-3168.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 3295 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006; p. 1007.
2. Stentz, A. Optimal and efficient path planning for partially-known environments. In Proceedings of the 1994 IEEE International

Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; Volume 4; pp. 3310–3317. [CrossRef]
3. Stentz, A. The Focussed D* Algorithm for Real-Time Replanning. In Proceedings of the International Joint Conference on Artificial

Intelligence, Montreal, QC, Canada, 20–25 August 1995.
4. Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363. [CrossRef]
5. Philippsen, R.; Siegwart, R. An Interpolated Dynamic Navigation Function. In Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3782–3789. [CrossRef]
6. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
7. Sánchez-Ibáñez, J.R.; Pérez-del Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots: A Review. Sensors

2021, 21, 7898. [CrossRef] [PubMed]
8. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
9. Bhattacharya, P.; Gavrilova, M.L. Roadmap-based path planning-using the voronoi diagram for a clearance-based shortest path.

IEEE Robot. Autom. Mag. 2008, 15, 58–66. [CrossRef]
10. Liu, Y.H.; Arimoto, S. Path Planning Using a Tangent Graph for Mobile Robots Among Polygonal and Curved Obstacles:

Communication. Int. J. Robot. Res. 1992, 11, 376–382. [CrossRef]
11. Savkin, A.V.; Hoy, M. Reactive and the shortest path navigation of a wheeled mobile robot in cluttered environments. Robotica

2013, 31, 323–330. [CrossRef]
12. Eapen, N.A. Path planning of a mobile robot among curved obstacles through tangent drawing and trapezoidal decomposition.

Eng. Sci. Technol. Int. J. 2021, 24, 1415–1427.[CrossRef]
13. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
14. Fragapane, G.; de Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and control of autonomous mobile robots for intralogistics:

Literature review and research agenda. Eur. J. Oper. Res. 2021, 294, 405–426. [CrossRef]
15. Klančar, G.; Seder, M. Coordinated Multi-Robotic Vehicles Navigation and Control in Shop Floor Automation. Sensors 2022, 22,

1455. [CrossRef] [PubMed]
16. Mali, A.D.; Motion Planning in Computer Games. In Encyclopedia of Computer Graphics and Games; Lee, N., Ed.; Springer

International Publishing: Cham, Switzerland, 2018; pp. 1–6. [CrossRef]
17. Banik, S.; Bopardikar, S.D. Attack-Resilient Path Planning Using Dynamic Games With Stopping States. IEEE Trans. Robot. 2022,

38, 25–41. [CrossRef]
18. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
19. Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.; Thrun, S. Principles of Robot Motion: Theory, Algorithms,

and Implementations; MIT Press: Cambridge, MA, USA, 2005; p. 603.
20. Ratering, S.; Gini, M. Robot navigation in a known environment with unknown moving obstacles. Auton. Robot. 1995, 1, 149–165.

[CrossRef]
21. Wang, L.C.; Yong, L.S.; Ang, M. Hybrid of global path planning and local navigation implemented on a mobile robot in indoor

environment. In Proceedings of the IEEE Internatinal Symposium on Intelligent Control, Vancouver, BC, Canada, 30 October
2002; pp. 821–826. [CrossRef]

22. Azmi, M.Z.; Ito, T. Artificial Potential Field with Discrete Map Transformation for Feasible Indoor Path Planning. Appl. Sci. 2020,
10, 8987. [CrossRef]

23. Lazarowska, A. Comparison of Discrete Artificial Potential Field Algorithm and Wave-Front Algorithm for Autonomous Ship
Trajectory Planning. IEEE Access 2020, 8, 221013–221026. [CrossRef]

24. Amiryan, J.; Jamzad, M. Adaptive Motion Planning with Artificial Potential Fields Using a Prior Path. arXiv 2020,
arXiv:2005.04191.

25. Mandava, R.; Bondada, S.; Vundavilli, P. An Optimized Path Planning for the Mobile Robot Using Potential Field Method and
PSO Algorithm. In Soft Computing for Problem Solving; Advances in Intelligent Systems and Computing; Springer: Singapore,
2019; Volume 2, pp. 139–150. [CrossRef]

26. Lyu, H.; Yin, Y. Fast Path Planning for Autonomous Ships in Restricted Waters. Appl. Sci. 2018, 8, 2592. [CrossRef]
27. Park, M.; Lee, M.C. A new technique to escape local minimum in artificial potential field based path planning. KSME Int. J. 2003,

17, 1876–1885. [CrossRef]
28. Guerra, M.; Efimov, D.; Zheng, G.; Perruquetti, W. Avoiding Local Minima in the Potential Field Method using Input-to-State

Stability. Control Eng. Pract. 2016, 55, 174–184. [CrossRef]

http://doi.org/10.1109/ROBOT.1994.351061
http://dx.doi.org/10.1109/TRO.2004.838026
http://dx.doi.org/10.1109/ROBOT.2005.1570697
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.3390/s21237898
http://www.ncbi.nlm.nih.gov/pubmed/34883899
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1109/MRA.2008.921540
http://dx.doi.org/10.1177/027836499201100409
http://dx.doi.org/10.1017/S0263574712000331
http://dx.doi.org/10.1016/j.jestch.2021.03.002
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1016/j.ejor.2021.01.019
http://dx.doi.org/10.3390/s22041455
http://www.ncbi.nlm.nih.gov/pubmed/35214362
http://dx.doi.org/10.1007/978-3-319-08234-9_266-1
http://dx.doi.org/10.1109/TRO.2021.3123896
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1007/BF00711254
http://dx.doi.org/10.1109/ISIC.2002.1157868
http://dx.doi.org/10.3390/app10248987
http://dx.doi.org/10.1109/ACCESS.2020.3043539
http://dx.doi.org/10.1007/978-981-13-1595-4_11
http://dx.doi.org/10.3390/app8122592
http://dx.doi.org/10.1007/BF02982426
http://dx.doi.org/10.1016/j.conengprac.2016.07.008

Sensors 2022, 22, 3295 22 of 22

29. Cheng, C.; Chen, Y. A Neural Network based Mobile Robot Navigation Approach using Reinforcement Learning Parameter
Tuning Mechanism. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021;
pp. 2600–2605. [CrossRef]

30. Porta-Garcia, M.; Montiel Ross, O.; Castillo, O.; Sepúlveda, R.; Melin, P. Path planning for autonomous mobile robot navigation
with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 2009, 9, 1102–1110. [CrossRef]

31. Tarokh, M. Path planning of rovers using fuzzy logic and genetic algorithm. In Proceedings of the World Automation Conference
ISORA-026, Maui, HI, USA, 11–16 June 2000; pp. 1–7.

32. Ðakulović, M.; Sprunk, C.; Spinello, L.; Petrovic, I.; Burgard, W. Efficient navigation for anyshape holonomic mobile robots in
dynamic environments. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013; pp. 2644–2649. [CrossRef]

33. Karaman, S.; Frazzoli, E. Optimal kinodynamic motion planning using incremental sampling-based methods. In Proceedings of
the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 7681–7687.

34. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; ACM:
New York, NY, USA, 1992; pp. 123–128.

35. Bilinear Interpolation. Available online: https://en.wikipedia.org/wiki/Bilinear_interpolation (accessed on 15 February 2022).
36. Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29,

1153–1160. [CrossRef]
37. Forsyth, D.; Ponce, J. Computer Vision: A Modern Approach; Prentice Hall: Hoboken, NJ, USA, 2011.

http://dx.doi.org/10.1109/CAC53003.2021.9728061
http://dx.doi.org/10.1016/j.asoc.2009.02.014
http://dx.doi.org/10.1109/IROS.2013.6696729
https://en.wikipedia.org/wiki/Bilinear_interpolation
http://dx.doi.org/10.1109/TASSP.1981.1163711

	Introduction
	The Environment and APF Generation
	The Environment
	Formulation of APF

	Interpolation and Smoothing of Potentials and Gradients for Path Planning
	Bilinear Interpolation
	Adjustments of Bilinear Interpolation for Path Planning
	Interpolation of Gradients

	Discovery of New Obstacles and Reactive Avoidance Manoeuvre
	Additional Experiments and Results
	Obstacle Missing from Static Map within Sensor View
	Obstacle Missing from Static Map Outside of Sensor View
	U-Shaped Trap

	Discussion
	Conclusions
	References

