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Behavior-incidence models have been used to model phenomena such as free-riding vaccinating behavior, where nonvaccinators
free ride on herd immunity generated by vaccinators. Here, we develop and analyze a simulation model of voluntary ring
vaccination on an evolving social contact network. Individuals make vaccination decisions by examining their expected payoffs,
which are influenced by the infection status of their neighbors. We find that stochasticity can make outcomes extremely variable
(near critical thresholds) and thus unpredictable: some stochastic realizations result in rapid control through ring vaccination
while others result in widespread transmission. We also explore the phenomenon of outcome inelasticity, wherein behavioral
responses result in certain outcome measures remaining relatively unchanged. Finally, we explore examples where ineffective or
risky vaccines are more widely adopted than safe, effective vaccines. This occurs when such a vaccine is unattractive to a sufficient
number of contacts of an index case to cause failure of ring vaccination. As a result, the infection percolates through the entire
network, causing the final epidemic size and vaccine coverage to be higher than would otherwise occur. Effects such as extreme
outcome variability and outcome inelasticity have implications for vaccination policies that depend on individual choice for their
success and predictability.

1. Introduction

With the advent of vaccines, medicines, and improved hyg-
iene and sanitation, disease burden has decreased consider-
ably compared to previous centuries [1]. However, the mod-
ern era has brought new problems. For example, many infec-
tious diseases caused by bacteria are becoming resistant to
antibiotics [2]. Immunization programs are likewise facing
challenges: in some cases, the primary barrier to maintaining
high vaccine coverage is no longer lack of access to vaccines
but rather lack of population uptake of vaccination. For
example, unfounded vaccine scares have set back eradication
programs and caused outbreaks of disease in countries that
were previously close to eliminating the infections [3].

Traditional infectious disease transmission modeling
assumes homogeneous mixing of the population, that is,

individuals interact with all other individuals within the
population equally; there is no preferential interaction. As
such, any susceptible individual can become infected directly
via contact with any infectious individual in the population
[4, 5]. However, heterogeneous mixing is the reality in many
situations.

One way we can conceptualize this in terms of individuals
being part of social contact networks [6]. A social network
is composed of nodes that are attached to one another
with edges. Each node in the network represents a decision
maker in the population. The edges that connect nodes
represent the social connections of these individuals. These
connections can represent contact between family members
living with one another, friends, coworkers, and schoolmates.
Infection spreads from node to node along these edges. Com-
pared to a homogeneous mixing population, this structure

mailto:bryce.morsky@gmail.com


2 Computational and Mathematical Methods in Medicine

increases the danger of infection to any node sharing an edge
with an infectious node, whereas nodes not in direct contact
with an infectious node are not in danger of infection until
the infection reaches them from elsewhere in the network.

The effectiveness of individuals voluntarily choosing to
be vaccinated to control the spread of infectious diseases
can rely upon how individuals weigh the risk of vaccinating
versus the risks associated with infection, and this tension
can be modeled using game theory or related behavioral
modeling approaches [7–17]. We can view the choices to
be vaccinated and to refrain from vaccination as strategies.
And, whichever of these strategies results in less adverse
health impact is the strategy we assume an individual will
choose. The choices that individuals make also affect the
population as a whole. If more individuals are vaccinated,
herd immunity can protect those who are susceptible in the
population. However, susceptible individuals can “free ride”
on the herd immunity generated by vaccinated individuals,
who accepted real or perceived risks to get vaccinated.
This effect results in a conflict between private and group
interests: a social dilemma. This effect can be seen as an
example of policy resistance, which is the tendency for human
behavioral responses to a newly introduced intervention
to undermine the intervention [18]. Policy resistance is an
example of a nonlinear feedback phenomenon.

Some game theoretical models assuming a homoge-
neously mixed population predict that an infectious disease
cannot be eradicated due to this social dilemma [9, 19]. If
it is assumed that there is some risk to being vaccinated,
the proportion of the population that vaccinates will always
be less than the proportion required for elimination of the
infection due to herd immunity. Therefore, unless the risk
from being vaccinated is zero, the infection cannot be con-
tained. However, the global eradication of smallpox in 1977
despite voluntary vaccination policy in many jurisdictions
contradicts this prediction [20, 21].

A previous game theoretical model of vaccinating behav-
ior on a contact network identified one possible solution
to this paradox, by showing that constraining transmission
to occur on a contact network changes the incentive to
vaccinate and makes rapid control of an outbreak through
voluntary ring vaccination possible [22, 23]. Ring vaccina-
tion is a strategy of preventing transmission of infection
by vaccinating the contacts of an infectious index case.
Smallpox was spread primarily through close interactions
between individuals, hence a network approach to smallpox
transmission is applicable, and ring vaccination was used in
the final stages of the smallpox eradication program [20, 21].
Numerous publications have shown the many other ways in
which epidemic dynamics on a network, with or without
behavioral modeling included, can diverge from epidemic
dynamics in a homogeneously mixing population [24–30].

The network-based behavior-incidence models of [22,
23] assumed a static contact network. Here, we use a
simulation model to explore vaccinating behavior during an
epidemic on a dynamically changing contact network, rep-
resenting the changing social connections that characterize
real populations on both shorter and longer timescales.
We assume a hypothetical close contact infection, such as

one spread through household contacts and in healthcare
settings, making use of a social contact network appropriate.
We identify parameter regimes that give rise to interesting
dynamics that are relevant to disease control efforts. For
instance, we identify regimes where stochastic effects can lead
to enormous variability in outcomes, suggesting that the out-
come of a voluntary immunization program would be highly
unpredictable. We also explore examples of policy resistance
[18]. Finally, we illustrate the concept of outcome inelasticity,
whereby the nonlinear feedbacks inherent in behavior-
incidence dynamics cause certain outcome measures to
remain relatively constant across a broad range of parameter
values. Our objective is not to directly inform public health
policy as it relates to control of infection through ring
vaccination. Rather, we are interested in exploring the range
of possible dynamics exhibited in simple models of this type.

2. Methods

2.1. Initial Network Construction. We construct a social net-
work composed of N nodes with mean node degree ν. Each
node is an individual. During the construction phase of the
simulation, we select two nodes at random and place an
edge between them if they are not already connected. We
continue until νN/2 edges in total have been placed. It can be
shown that the resulting node degree distribution is Poisson.
The edges represent a social contact between the individuals
in the network through which infection can spread, such
as contacts between family members or between healthcare
workers and patients. We will describe the edge turnover
algorithm in a Section 2.4.

2.2. Disease Natural History. We consider a hypothetical
acute, self-limiting infection, with a latent and infectious
period, long-lasting natural immunity, high rate of symp-
tomatic infections, and a high mortality rate. Infection is
followed by a latent period where the infected individual is
not yet infectious; the latent period is followed by an infec-
tious period where the individual is both symptomatic and
infectious. There is a probability β per day that a susceptible
node is infected by an infected neighbor. Thus, for a node
with ninf infectious neighbors, the probability λ of being
infected per day is

λ = 1− (1− β
)ninf . (1)

We assume that a node only becomes infectious after a latent
period described by a Gamma distribution with mean 1/σ
and variance Ωσ , and remains infectious for some period
also determined by a Gamma distribution with mean 1/γ
and variance Ωγ. We assume that the start of infectiousness
coincides with the start of symptomaticity, that all infectious
nodes exhibit symptoms, and that a node is aware if any of
its neighbors are exhibiting symptoms.

The vaccine carries a low but non-negligible mortality
risk. For simplicity, we will assume that a susceptible node
who has been efficaciously vaccinated is immediately pro-
tected whereas the vaccine has no effect in nodes who are
already infected. Every node who wants to be vaccinated can
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be vaccinated, but vaccine is only available to neighbors of an
infected node. The all-or-none vaccine efficacy is ε.

2.3. The Vaccination Decision Process. In each timestep, every
susceptible unvaccinated node has the option to be vacci-
nated or to refrain from being vaccinated (hence, we assume
a population where outbreak investigations entailing contact
tracing are possible and vaccines are available). Each node
attempts to maximize its payoff. Thus, to determine whether
or not a node chooses to be vaccinated, a node’s payoff for
vaccinating, PV , is compared to its payoff for not vaccinating,
PN . If PV > PN , then the node is vaccinated, and otherwise
the node refrains from being vaccinated (although the node
may be vaccinated in the future). The formulae for PN and
PV are detailed in (2) and (3) and the payoff functions are
similar to those of [22, 23].

Under some circumstances, such as prophylactic vacci-
nation, individuals need not wait to get vaccinated until a
contact has been identified as being infectious, and so our
assumption that nodes only seek vaccination when a contact
is infected would not apply. However, for ring vaccination,
there are scenarios where this assumption would be valid.
For instance, public health may restrict the option to get
vaccinated to contacts of an identified index case, due
to short vaccine supply or insufficient front-line staff to
vaccinate everyone who wants a vaccine.

The payoff functions are expressed in units of life years,
that is, the number of remaining years that the node can
expect to live. Let L be a baseline payoff, corresponding to
the expected number of life years remaining before penalties
from vaccination or infection are taken into account. We first
derive the payoff for not being vaccinated. If a node escapes
being infected in a given day but remains susceptible and thus
may be infected in future, it receives a payoff of α. Normally,
we expect α < L since if a node remains susceptible, it is at
risk of being infected in the future if it comes into contact
with an infectious neighbor, and hence their payoff should be
less than guaranteed perfect health L. However, we set α = L
because (1) this is a conservative assumption with respect to
testing the effectiveness of voluntary ring vaccination, since
if ring vaccination is effective for α = L, it will be effective for
α < L, and (2) it is difficult to quantify how much less α is
than L.

If a node is infected, then their penalty is a probability
dinf of dying each day that they are infected. A node who dies
from infection receives a payoff of 0, and a node who survives
infection and is thereby conferred with lifelong immunity
receives a payoff of L. Therefore, since the probability of
being infected per day is λ, the payoff for not vaccinating
today is

PN = (1− λ)α + λ(1− dinf )L. (2)

This payoff function takes into account how rational individ-
uals weigh their chance of infection according to the proba-
bility λ, and the penalties of either remaining susceptible and
being uncertain about future prospects or the high risk of
mortality associated with infection (dinf ).

For a node that chooses to vaccinate, we must first
determine if the node dies from the small probability of life-
threatening complications due to vaccination. This occurs
with probability dvac. We chose a baseline value dvac = 0.001.
This value is much higher than what is realistic for existing
vaccines. However, our primary objective was to explore
the possible dynamics in various parts of the parameter
space of the model, and more realistic values for dvac would
have resulted in only one outcome—rapid control through
voluntary ring vaccination—making the analysis trivial. As
for all parameters in the model, we also assume that the
node’s perceived risk matches the actual risk dvac, in other
words, individuals have “perfect information”. We also ran
simulations where perceived and actual risk could differ,
but we did not find any significant qualitative differences in
dynamics. If death due to the vaccine occurs, then the node
accrues 0 life-years; if it does not, then a determination of
the effectiveness is assessed. If the vaccine is effective and
nonlethal, then the node accrues L life-years. The probability
of this event is ε(1 − dvac). If the vaccine is neither effective
nor lethal, then the possible outcomes are the same as for
those who did not vaccinate. If the node avoids infection, it
attains α life years, otherwise it becomes infected and attains
L life-years if it survives or 0 life years if it does not. The
probability of the vaccine failing and being nonlethal, and
the node avoiding infection is (1 − ε)(1 − dvac)(1 − λ). The
probability of the vaccine failing and being nonlethal, and the
node surviving infection is (1− ε)(1−dvac)λ(1−dinf ). Thus,
after some simplifications, PV is

PV = (Lε + (α(1− λ) + Lλ(1− dinf ))(1− ε))(1− dvac).
(3)

Because we are modelling a single outbreak in a popula-
tion with no previous history of infection or vaccination, we
assume that each node has no memory of past infections or
vaccinations.

2.4. Model Dynamics. The following algorithm describes the
sequence of possible events that are applied to the population
each time step (a time step is assumed to last one day).

(1) Randomly select a node that has not been selected
this day.

(2) The following occur in a random order.

(a) If the node is susceptible and has not chosen to
be vaccinated in a previous time step, payoffs
are calculated and the node may choose to be
vaccinated. If the node is vaccinated, it may
die from vaccine complications, and any edges
connected to it are removed from the network.
If the node is efficaciously vaccinated, it is
fully protected from infection. If the node is
inefficaciously vaccinated, then it will remain
susceptible, but will not be able to be vaccinated
again.

(b) If the node is susceptible, the node may be
infected by its infectious neighbors.
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(c) If the node has been infected and the disease is
latent, the latent period may end.

(d) If the node is infectious, it may die due to
the infection and any edges connected to it are
removed from the network.

(e) If the node is infectious, it may recover with life-
time immunity to the infection.

(3) Repeat steps 1 and 2 until all nodes have been selected
once and only once.

(4) ζνN/2 edges are destroyed.

(5) ζνN/2 edges are created by randomly selecting nodes
not already connected, and creating an edge between
them.

(6) End time step.

The purpose of using asynchronous updating (random-
izing the order of potential events that may occur) was to
prevent artificial correlations from developing. As a result
of this asynchronous updating, we note for example that a
node may become infected either before or after it chooses
to vaccinate, depending on the ordering chosen on that
timestep.

We designate ζ as the proportion of edges in the network
that are changed per day. Thus, ζνN/2 edges are created
and ζνN/2 edges are destroyed each day. The process begins
by randomly choosing a node, and breaking its connection
to one of its neighbors, chosen at random. The process
continues until ζνN/2 connections have been broken. Nodes
are then chosen at random to be connected to randomly
chosen nodes to which they are not currently connected until
ζνN/2 connections have been made.

As initial conditions, I0 randomly selected nodes are
infected and the remainder are fully susceptible and unvac-
cinated. For all of our simulations, we set I0 = 10 nodes,
and N = 5000 nodes. We ran 50 simulations for each set
of parameter values we examined, averaged the results, and
computed the standard deviations. Each simulation ran for
300 simulated days. We chose 300 days because all simulated
outbreaks ended or nearly ended by day 300.

3. Results and Discussion

3.1. Description of Dynamical Regimes. The baseline param-
eter values used for all simulations appear in Table 1. Simu-
lations use these values by default, unless otherwise noted in
the figure captions. We note there are at least three dynamical
regimes that can arise in this model (these are depicted in
Figure 1 and summarized in Table 2).

(i) Successful ring vaccination: ring vaccination is suc-
cessful and infection is quickly contained.

(ii) Widespread vaccination: there is widespread vaccina-
tion and infection is either moderate or limited/con-
tained.

(iii) No vaccination: no nodes choose to get vaccinated,
and there is widespread infection.

Table 1: List of parameters, baseline values, and definitions.

Parameter Value Note

α 40 life years Payoff for continued susceptibility

β 0.02/day Probability of transmission along an
edge

ε 0.95 Vaccine efficacy

ζ Variable Proportion of network edges changed
per day

ν 10 nodes Mean node degree

dinf 0.3 Probability of death due to infection

dvac 0.001 Probability of death due to vaccination

I0 10 nodes Initial number of infectious nodes

L 40 life years Baseline payoff

N 5000 nodes Population size

Ωγ 4 days Variance of latent period

Ωσ 4 days Variance of infectious period

1/γ 12 days Mean duration of latent period

1/σ 19 days Mean duration of infectious period

Table 2: Trends in the final number of efficaciously vaccinated,
susceptible, and dead nodes for each regime.

Regime
Final

vaccinated
Final

susceptible
Final dead

Successful ring vaccination Low High Very low

Widespread vaccination Moderate Moderate
Low to

moderate

No vaccination None Low High

Successful Ring Vaccination. Ring vaccination is successful
when payoff values are such that most or all neighbors of
an index case immediately vaccinate, and vaccine efficacy is
sufficiently high. This case occurs with the parameter values
in Table 1 and when ζ = 0: at the parameter values of
Table 1, it is optimal for neighbors to choose vaccination,
and since ζ = 0, there is no edge turnover and hence no
opportunity for the index case to come into contact with
additional susceptible individuals. In this case, the infection
is quickly contained. It remains possible that a few of the
neighboring nodes are infected before they are vaccinated
or because the vaccination was not efficacious. However,
ring vaccination around these secondary cases will result in
rapid containment of additional spread. This regime is also
described in [23], which studies static networks.

Widespread Vaccination. Vaccination can become wide-
spread when the network is sufficiently dynamic, when
payoff functions are such that a node will not vaccinate unless
two or more of its neighbors are infectious (implying failure
of ring vaccination around a single index case), when β is suf-
ficiently high, or when ε is sufficiently low. In the case where
a high turnover rate is the cause of widespread vaccination
(Figure 2), the outbreak spreads throughout the network as
infectious nodes are continuously connected to new suscepti-
ble nodes via the network turnover effect and the susceptible
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Figure 1: Three dynamical regimes of the model: ring vaccination (a), widespread vaccination (b), and no vaccination (c). Lines represent
the number of susceptibles (solid), efficaciously vaccinated (dashed), dead (dotted), infected (fine dashed), and recovered (1 dash-2 dots)
individuals. Baseline parameter values from Table 1 are used except that dvac = 1 for the no vaccination regime. For the widespread
vaccination regime, ζ = 0.1; for all others ζ = 0.

nodes choose to vaccinate to protect themselves; the number
vaccinated slowly rises, and the number susceptible slowly
decreases until the outbreak dies out. The number of infected
individuals remains limited since new neighbors of an infec-
tious node quickly choose to vaccinate. When the cause of
widespread vaccination is that two or more infectious neigh-
bors are required to induce vaccination, infection spreads
immediately beyond isolated index cases because a signif-
icant number of neighbors choose not to vaccinate, since
most individuals only have zero or one infectious neighbor
in the early stages of the outbreak. As a result, the infection
spreads throughout the network, inducing further vaccina-
tion as well as further cases of infection. Eventually, there are
enough infectious nodes to induce widespread vaccination
to further halt the spread of the infection and protect the
portion of the population that is susceptible. Therefore, there
may still remain many susceptible nodes since vaccine is
partly effective in disrupting transmission in the network. An
example of a parameter range in which two infectious neigh-
bors are required before a node will choose to be vaccinated
is when 0.03 < dinf < 0.05 as can be seen in Figure 3(a). In the

third case (Figure 5), where widespread vaccination is caused
by the value of β being very high, the outbreak can effectively
escape any vaccination rings and spread to many nodes
simply because the disease is transmitted before neighbors
have a chance to get vaccinated. Yet, the vaccination rings do
prevent a degree of spread, and thus eventually, the outbreak
is eventually contained. In the final case, where widespread
vaccination is caused by the value of ε being very low, the
infection can spread to those nodes that remain susceptible
after unsuccessful vaccination. In Figure 4(a) we see a high
vaccine uptake when vaccine efficacy is approximately 0.5.

No Vaccination. The third dynamical regime is when the
payoff functions are valued such that no nodes choose to
become vaccinated. When this occurs, the infection spreads
throughout the network, infecting most nodes. However, due
to random chance and the possibility of nodes dying before
they can spread the infection to areas of the network that
contain susceptible nodes, there may remain some nodes
that are susceptible once the outbreak has ended. Figure 1(c)
depicts the case where the vaccine has such a high dvac that no
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Figure 2: The effect of changing the turnover rate, ζ . Subpanel (a) shows the average final sizes of the number of susceptible (solid line)
and efficaciously vaccinated (dashed line); subpanel (b) shows the average final sizes of the number of recovered (solid line) and dead
(dashed line) individuals only, for the same parameter values but a different vertical scale. Bars represent one standard deviation across the
50 realizations. The standard deviation bars for susceptible nodes are not shown for clarity; they are close in magnitude to those for the
number vaccinated.

vaccinations occur. If we were instead to significantly reduce
dinf , we would observe a similar infected curve, yet would see
significantly fewer deaths and more recovered.

3.2. Impact of Network Dynamics. Allowing network edges to
turn over allows infectious individuals to escape containment
rings and interact with other individuals in the population,
thereby resulting in more vaccination within the population
(although not necessarily more infection). For low values
of the turnover rate ζ , we obtain the first dynamical
regime where ring vaccination can be successful—the rate
of turnover is not sufficient to threaten the integrity of the
ring vaccination strategy. However, as we increase ζ and
the network becomes more dynamic, more individuals come
into transient contact with the index cases, causing them to
vaccinate and resulting in a significant increase in the num-
ber of individuals vaccinated (Figure 2). The dependence of
the final number of vaccinated and susceptible individuals
on the turnover rate ζ is a sigmoidal curve: the number
of individuals vaccinated initially grows exponentially in ζ ,
with a corresponding decrease in the number of susceptible
individuals, but starts to saturate for larger values of ζ . The
number of susceptible and vaccinated nodes are equal at
roughly ζ = 0.12 (Figure 2). As ζ→1.0, the entire population
faces the decision about whether to seek vaccination. Thus,
at the parameter values in Table 1, such that any individual
with at least one infected neighbor chooses to vaccinate,
the proportion that successfully vaccinate for high ζ will
approximately equal ε, the proportion that die will be
approximately dinf (1 − ε), and the proportion that will
recover will be approximately (1− dinf )(1− ε).

3.3. Outcome Variability. For values of ζ between 0.1 and 0.2
and with other parameters are at baseline values, there is an
enormous degree of variability of possible outcomes, indi-
cated by the large standard deviations in the final sizes of the

number of susceptible and vaccinated individuals (Figure 2).
Within this range of outcomes occur situations where ring
vaccination rapidly contains the outbreak and the final num-
ber of vaccinated individuals is therefore low, or situations
where widespread vaccination occurred due to some limited
secondary transmission and sufficiently rapid turnover. Such
parameter regimes are relevant to public health policy, since
the variability would make it difficult to predict what course
an epidemic would take and whether a voluntary vaccination
policy would be effective at containing the infection without
the need to immunize a large proportion of the population.

The variability suggests that the system is on the bound-
ary between the two regimes of rapid control through ring
vaccination and widespread vaccination, where stochastic
effects may easily tip the system in one direction or another.
Hence, this may reflect proximity to an underlying critical
point [30]. A significant amount of variability can also be
found in other parameter regimes, including biologically
plausible values for the vaccine efficacy (Figures 3, 5, and 4).

3.4. Outcome Inelasticity. Across a broad range of values
for the turnover rate ζ , when the probability of death due
to infection, dinf , is smaller than approximately 0.05, the
penalty for being infected is sufficiently small that two or
more infectious neighbors are required to induce a node
to be vaccinated. As a result, infection may spread widely
throughout the network and many individuals may choose to
be vaccinated (Figures 3(a), 3(b), 3(c), and 3(d)). The
final number of recovered and vaccinated individuals is
thereby large but the total number of deaths is relatively
low since dinf is small. In comparison, when dinf > 0.05,
the penalty for becoming infected is sufficiently large that
all neighbors of an index case are induced to vaccinate and
the outbreak is contained by ring vaccination (Figures 3(a)–
3(d)). As a result, the final number of recovered, dead, and
vaccinated individuals remain low even as the final number
of susceptible individuals is high. The delineation between
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Figure 3: The effect of varying dinf on the average final sizes of the number of susceptible (solid line), recovered (1 dash-2 dots line),
efficaciously vaccinated (dashed line), and dead (dotted line) individuals for ζ = 0 (a), ζ = 0.025 (b), ζ = 0.05 (c), and ζ = 0.1 (d), and the
effect of varying dinf on the average final sizes of the number of dead individuals only, for several values of ζ (e). Bars represent one standard
deviation across the 50 realizations.

these two parameter regimes (widespread vaccination versus
ring vaccination) is very sharp. We note that the removal of
individuals for dinf > 0 can potentially influence dynamics
since death due to infection will reduce the duration of
infectiousness. This effect could be significant for larger
values of dinf and would tend to reduce the final size.

Within the widespread vaccination regime, for dinf <
0.05, the final number of dead individuals is relatively
insensitive to changes in the probability of death dinf for all
values of ζ simulated (Figure 3(e)). In fact, as dinf increases
by a factor of 10 from 0.005 to 0.05, the number of dead
individuals only doubles for the higher values of ζ . As dinf
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Figure 4: The effect of varying ε on the average final sizes of the number of susceptible (solid line), recovered (1 dash-2 dots line),
efficaciously vaccinated (dashed line), and dead (dotted line) individuals for ζ = 0 (a), ζ = 0.025 (b), ζ = 0.05 (c), and ζ = 0.1 (d).
Bars represent one standard deviation across the 50 realizations.

increases, the payoff to remain unvaccinated declines and
hence more individuals chose to vaccinate, which partly
counteracts the effect of an increased probability of death.
The nonlinear feedback loop associated with behavioral
responses to disease incidence acts to maintain the number
of deaths at a relatively constant level, even as the other
outcomes change. We call this outcome inelasticity, and note
that it has been observed in behavior-incidence models in
other contexts [31].

3.5. Socially Suboptimal Outcomes and Policy Resistance. Sev-
eral changes to parameters that make vaccines less attractive
can increase vaccine coverage, by causing ring vaccination
to fail and thus allowing infection to spread throughout the
network, spurring more vaccinations in the long term.

For instance, higher risks associated with the vaccine
(higher dvac) can result in more individuals choosing to be
vaccinated: a higher vaccine risk results in fewer contacts of
the index case choosing to vaccinate. Therefore, ring vaccina-
tion fails to contain the outbreak and the infection can spread
beyond the index cases to the rest of the population. As
prevalence of infection increases, more individuals have two

or more infectious neighbors, and for appropriate parameter
values, these individuals would now become vaccinated,
when having only one infectious neighbor was insufficient
to convince them to become vaccinated. Therefore, the final
number of vaccinated and infected individuals is higher.
A socially optimal outcome that resulted in fewer deaths
within the population (and less vaccination) could have
been reached had ring vaccination of the index cases been
complete, but this is prevented by aversion to vaccine risks
which ironically results in both higher vaccine coverage and
more infected cases. This can be seen as illustrating policy
resistance [18] in the sense that a policy recommendation of
ring vaccination of index cases would be rendered ineffective
by the individually optimal solution of avoiding vaccine risks,
despite that causing the infection to spread to the rest of the
population.

In a similar vein, when vaccine efficacy is very high
ε ≈ 0.95, ring vaccination is successful and the outbreak is
quickly contained without having to vaccinate a large pro-
portion of the population. However, as ε decreases, more
secondary transmission occurs in unsuccessfully vaccinated
individuals and the final number of vaccinated and recovered
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Figure 5: The effect of varying β on the average final sizes of the number of susceptible (solid line), recovered (1 dash-2 dots line),
efficaciously vaccinated (dashed line), and dead (dotted line) individuals for ζ = 0 (a), ζ = 0.025 (b), ζ = 0.05 (c), and ζ = 0.1 (d).
Bars represent one standard deviation across the 50 realizations.

individuals increases (Figure 4). Hence, a less effective vac-
cine is utilized more widely. However, if the vaccine efficacy
decreases too much, individuals stop vaccinating altogether
since the vaccine is unlikely to protect against infection and
yet carries some risk (Figure 4).

3.6. Other Results. Some previous behavior-incidence mod-
els for SEIR-type infections that assume homogeneous
mixing have found that increasing the transmissibility of
the infection will increase vaccine coverage [9]. Interestingly,
the opposite can occur in this model. As the edgewise
transmission probability β is increased, a point is reached
at which the number of vaccinated individuals begins
decreasing as β continues to increase (Figure 5). At the
same time, the final sizes of dead and recovered individuals
continues to increase with increasing β (Figure 5). This effect
is not due to behavioral changes, since all nodes will chose
to be vaccinated if they have at least one infectious neighbor
when β ≥ 0.0035/day. Rather, it occurs because of the close
contact nature of infection on a network: it is possible for
individuals to be infected before they have the opportunity
to vaccinate, and this is more likely to occur when β is very
large.

4. Conclusions

Here we analyzed a game theory-derived model of vaccinat-
ing behavior on a social contact network where a Susceptible-
Exposed-Infectious-Recovered (SEIR) infection is transmit-
ted along edges from individuals to their neighbors. Each
day, individuals analyze the expected payoffs from being
vaccinated and not being vaccinated and choose the choice
that appears to maximize their expected life years at that
time. Existing edges can break up and be replaced by new
edges connecting the nodes to other randomly chosen nodes,
which models changes in social interactions and mobility of
individuals.

We identified several types of dynamics that arise from
the nonlinear feedback mechanisms inherent in this and
many other behavior-incidence models. For example, we
observe that the final number of dead individuals does
not increase linearly with the probability of death due to
infection, dinf . This is partly because a rising risk of death
from infection induces more individuals to vaccinate and
thus prevents more fatalities than would otherwise be the
case. Additionally, transmission is reduced due to an increase
in the number of nodes that die before infecting others,
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since death due to infection can reduce the duration of
infectiousness in our model. Because the outcome (number
of dead individuals) varies in a less than linear way with the
input parameter (dinf ), we termed this outcome inelasticity.

A similar effect has been observed in a game theoretical
model of vaccinating behavior during a pandemic, where it
was observed that the epidemic peak occurred at roughly the
same time for a broad range of values of the transmission
rate, due to the response of the population to the unfolding
outbreak [31]. Therefore, although we have explored these
phenomena in the context of a specific model, the ubiquity
of nonlinear feedbacks in these models may apply to
vaccination behavior-incidence models more generally. This
would tend to apply whenever the population has the latitude
to respond in a way that mitigates a more transmissible or
more severe infection, especially if the negative feedback is
very strong.

Along similar lines, we observed that vaccine coverage
may be higher with a vaccine that is less effective or more
dangerous. This occurs because if the vaccine is sufficiently
unattractive, not all neighbors of an index case will become
vaccinated. As a result, the infection can break through
imperfect vaccinee rings and percolate through the network,
boosting final size and final vaccine coverage. We also
observed that for some parameter regimes, the variability
in outcomes can be very high: some stochastic realizations
yielded a result of rapid containment of the infection through
ring vaccination, while other stochastic realizations at the
same parameter values yielded a situation of widespread vac-
cination and moderate final epidemic sizes. This variability
has implications for predicting the effectiveness of control
policies, and may reflect the existence of critical thresholds
in the model.

We assumed a hypothetical, self-limiting, highly symp-
tomatic close contact infection for which a vaccine exists.
Real-world analogs for this are rare, but perhaps the closest
analog is smallpox, which was eradicated through ring
vaccination, was spread through close contact, and was
highly symptomatic. Some future emerging zoonotic diseases
may also fit this description, particularly if shortage of
vaccine supplies due to recent emergence of the pathogen
requires public health to prioritize vaccination for close
contacts of index cases.

We made several simplifying assumptions that could
influence model dynamics and hence our conclusions. For
instance, we assumed that individuals do not react to what
is occurring beyond their immediate neighbors. We also
assumed the parameters do not change during the simu-
lations or vary between individuals, however, in sensitivity
analysis we analyzed scenarios with heterogeneous parameter
values, and found little qualitative difference in our results.
Potentially, individuals could seek preemptive vaccination,
especially if they are aware of infection in the neighbors of
their neighbors. An individual’s views of the mortality rates
due to the vaccine or the infection may change due to events
within the rest of the population, for example, any negative
effects caused by the vaccine may cause a vaccine scare.
Furthermore, individuals may decrease their contacts (e.g.,
children may stay at home from school during an outbreak,

or avoid a daycare) for fear of the infection, or protect
themselves in other ways, such as wearing protective masks
[14]. A further limitation of our model is that individuals
in reality may not know that their neighbor is infectious,
whereas we assumed that the start of infectiousness coincides
with the appearance of symptoms and that all neighbors
correctly deduce infection in an infected neighbor. We
assumed no heterogeneity in the edge turnover rate σ or edge
weights, although both edge turnover rate and edge weight
will vary according to relationship type. Finally, we neglect
clustering in the network, although realistic social contact
networks can exhibit a high degree of clustering. These areas
represent opportunities for further research.

In conclusion, we have found that behavior-incidence
dynamics of an SEIR-type infection on a social contact net-
work can exhibit effects that are relevant to disease control
efforts: stochasticity near critical thresholds can make the
effectiveness of ring vaccination difficult to predict, and
nonlinear feedback mechanisms can lead to policy resistance
or outcome inelasticity, neither of which would be predicted
by a model that did not take strategic interactions or
behavioral responses to disease dynamics into account.
Policy resistance is a well-studied phenomenon in behavior-
incidence models [13, 16, 18]. In comparison, outcome
inelasticity and outcome variability have been less studied
in the context of behavior-incidence models, but given their
relevance to assessing disease control strategies perhaps they
should be studied more extensively.
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