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The induction of nerve injury response genes in Schwann
cells depends on both transcriptional and epigenomic reprog-
ramming. The nerve injury response program is regulated by
the repressive histone mark H3K27 trimethylation
(H3K27me3), deposited by Polycomb repressive complex 2
(PRC2). Loss of PRC2 function leads to early and augmented
induction of the injury response gene network in peripheral
nerves, suggesting H3K27 demethylases are required for dere-
pression of Polycomb-regulated nerve injury genes. To deter-
mine the function of H3K27 demethylases in nerve injury, we
generated Schwann cell–specific knockouts of H3K27 deme-
thylase Kdm6b and double knockouts of Kdm6b/Kdm6a
(encoding JMJD3 and UTX). We found that H3K27 demethy-
lases are largely dispensable for Schwann cell development and
myelination. In testing the function of H3K27 demethylases
after injury, we found early induction of some nerve injury
genes was diminished compared with control, but most injury
genes were largely unaffected at 1 and 7 days post injury.
Although it was proposed that H3K27 demethylases are
required to activate expression of the cyclin-dependent kinase
inhibitor Cdkn2a in response to injury, Schwann cell–specific
deletion of H3K27 demethylases affected neither the expres-
sion of this gene nor Schwann cell proliferation after nerve
injury. To further characterize the regulation of nerve injury
response genes, we found that injury genes are associated with
repressive histone H2AK119 ubiquitination catalyzed by PRC1,
which declines after injury. Overall, our results indicate H3K27
demethylation is not required for induction of injury response
genes and that other mechanisms likely are involved in acti-
vating Polycomb-repressed injury genes in peripheral nerve.

Myelination of peripheral nerve axons by Schwann cells has
multiple important functions including trophic support,
structural integrity, and enabling saltatory conduction (1, 2).
These attributes allow robust transmission of action potentials
and maintain axon homeostasis. However, the intrinsic plas-
ticity of Schwann cells to promote repair of peripheral nerves
involves several regenerative processes in response to
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Wallerian degeneration of axons, including both macrophage
recruitment and clearance of myelin debris (3–5). Schwann
cells reprogram themselves to support axon regeneration and
undergo a transformation from a highly quiescent state to
active repair cells that elongate to form Bungner bands that
facilitate axon regeneration (6–8). These elaborate cellular
behaviors do not depend on a stem cell niche (9) but rather
reflect an innate ability of terminally differentiated Schwann
cells to undergo a dramatic transdifferentiation to a more
proliferative, proregenerative state called the repair Schwann
cell (6).

The reprogramming is supported by an array of epigenetic
changes converging into the overall response to simulate axon
regeneration. After the nerve damage, substantial reshaping of
the transcriptome occurs through dramatic changes in tran-
scription factors as well as dynamic changes in acetylation and
methylation of histones in Schwann cells (10–14). Among the
most important transcription factors essential for nerve repair
in Schwann cells is JUN, an AP-1 component that is required
and sufficient for activation of many injury genes (8, 15). For
many JUN target genes and other genes activated by injury, the
basal levels of these aforementioned genes are low or absent in
mature Schwann cells prior to injury due to repressive
H3K27me3 made by the Polycomb repressive complex 2
(PRC2) (8, 12–14, 16). For instance, glial derived neurotrophic
factor (Gdnf) is one of the PRC2-regulated genes important for
nerve regeneration (17). Sonic hedgehog (Shh) is another
highly induced gene that promotes regeneration (18). In our
previous studies, we found that derepression of many nerve
injury genes is accompanied by H3K27 demethylation after
injury (12–14).

Canonical PRC2 is composed of core subunits including the
lysine methyltransferases EZH1/2, suppressor of zeste 12
(SUZ12), and embryonic ectoderm development (EED)
(19, 20), and there are a number of accessory subunits that play
important roles. A Schwann cell–specific Eed conditional
knockout mouse model exhibited premature induction of
nerve injury genes in uninjured nerves (12). Moreover, the
nerve injury experiment showed that Eed cKO mice had pre-
mature and/or augmented induction of nerve injury genes
after injury (13), demonstrating the importance of H3K27me3
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Polycomb derepression in Schwann cells in injured nerve
in repression of the injury-related program. In line with these
findings, chromatin immunoprecipitation (ChIP) studies
indicated that the promoters and gene bodies of many nerve
injury genes in Schwann cells showed loss of H3K27me3 after
injury (12), indicating that this histone mark acts as a switch
for transcriptional induction.

Given that the Schwann cell responses to nerve injury are
accompanied by H3K27me3 reprogramming, this provides a
novel system to test the requirements for activation of PRC2
repressed gene networks that support axonal regeneration and
proliferation. We hypothesized that active removal of
H3K27me3 by H3K27 demethylases JMJD3/KDM6B and
UTX/KDM6A is required for induction of the nerve injury
network in Schwann cells after injury. JMJD3 and UTX pro-
teins belong to the Jumonji family containing the catalytic
JMJC protein demethylase domain (21). These H3K27 deme-
thylases have been shown to be required for activation of
Polycomb-repressed genes in other systems, including neural
progenitor cell development and T cell differentiation (22–24).
However, other demethylase-independent mechanisms for
derepression have been characterized (25) and PRC2 repres-
sion is linked with PRC1 repression, which involves mono-
ubiquitination of H2A (H2AK119ub1) (19). Therefore, we
have also more fully characterized the repressed state of nerve
injury genes by profiling H2AK119ub1 made by Polycomb
repressive complex 1 (PRC1).

Previous studies suggested that JMJD3-mediated demethy-
lation of H3K27 limits Schwann cell proliferation after injury
by activation of the Cdkn2a gene (26). Cdkn2a encodes both
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INK4A/p16, which is a cyclin-dependent kinase inhibitor and
tumor suppressor, and p19/ARF, an important regulator of
p53 activation. Consistent with this model, the Schwann cell–
specific knockout of Eed led to persistent Cdkn2a expression
and a failure of Schwann cells to proliferate after injury (13).
Of interest, studies showed that neurofibromas caused by NF1
mutation most often transition to malignant peripheral nerve
sheath tumor through the co-mutation of PRC2 subunit genes
and CDKN2A (27–29). Therefore, we sought to test the hy-
pothesis that Jmjd3/Kdm6b and Utx/Kdm6a are required to
activate Cdkn2a (p16 and p19) and other injury genes after
injury.
Results

Conditional inactivation of Jmjd3 and Utx in Schwann cells

To test the involvement of H3K27 demethylases in activation
of the Schwann cell injury program, we made a conditional
deletion of Jmjd3/Kdm6b specifically in Schwann cells using the
Mpz-cre driver (30). The conditional allele (Jmjd3 f/f) has exons
14 to 20 of the Jmjd3 gene flanked by loxP sites (31) (Fig. 1A).
This would result in deletion of the catalytic Jumonji domain, at
E13.5 to 14.5 stage in Schwann cells, causing a frameshift in the
C terminus of the protein. We validated the knockout of Jmjd3
gene using quantitative RT-PCRwith primers locatedwithin the
deleted exons. The results showed ~76% loss in Jmjd3 expres-
sion in mutant intact nerves compared with control intact
nerves (Fig. 1C), which corresponds to the proportion of
Schwann cells in peripheral nerve (12).
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Polycomb derepression in Schwann cells in injured nerve
In order to test for potential redundancy in H3K27 deme-
thylation, we also knocked out the other major H3K27
demethylase, Utx/Kdm6a, which is also expressed in RNA-Seq
profiles of peripheral nerve (13, 32, 33). Utx is an X-linked
gene composed of 29 exons (34), and the conditional allele
contains loxP sites surrounding exon 24 coding for the cata-
lytic domain of Utx (35) (Fig. 1B). After breeding this allele to
the Mpz-cre driver line, we found a similar loss of ~70% of Utx
expression in peripheral nerve from single and double
knockouts (Fig. 1C). As seen in previous studies using Mpz-cre
(14), the residual Jmjd3 and Utx expression is likely due to the
presence of non-Schwann cell types in peripheral nerve.

Developmental effects of inactivating H3K27 demethylases

Before testing the involvement of Jmjd3 and Utx in nerve
injury, we evaluated whether deletion of Jmjd3 and Utx affects
Schwann cell development. In our previous analysis of the Eed
knockout, peripheral nerve development was relatively normal
up to 2 months of age, with development of hypermyelination
and Remak bundle fragmentation at later time points (14).
However, in the Jmjd3/Utx conditional knockouts, there are
A

ControlControl Jmjd3/Utx cKO

2 
m

on
th

s

20 μm

7 
m

on
th

s

Figure 2. Schwann cell H3K27 demethylase activity is not required for de
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no obvious behavioral phenotypes typically found in peripheral
neuropathy such as hindlimb clasping even up to 7 months of
age, and visual inspection showed the normal opaque
appearance of myelinated nerve. Despite the apparent lack of
such behavioral phenotype, we examined nerve ultrastructure
by performing electron microscopy analysis of sciatic nerve in
the Schwann cell–specific double knockout of Jmjd3 and Utx.

The electron microscopy images of mature myelin in sciatic
nerves of ~2-month-old mutant mice showed a normal dis-
tribution of axon diameters and myelin sheaths compared with
controls (Fig. 2A). Myelin thickness was measured using the g-
ratio, which is axon diameter divided by outer diameter of
myelin sheath, which is plotted against the axon diameter. The
linear regressions of both distribution plots for both control
and mutant mice are virtually aligned, indicating no significant
difference in myelin thickness compared with control (Fig. 2B).
The number of myelinated fibers is also comparable in both
genotypes.

Our previous analysis of the Eed knockout identified pro-
gressive defects in hypermyelination and Remak bundle
integrity at later time points (14). Therefore, we also harvested
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Polycomb derepression in Schwann cells in injured nerve
the sciatic nerves of 7-month-old double knockout mice and
processed for electron microscopy imaging. The morphology
is similar between mutant and control genotypes as no de-
formities were observed in the mutant nerve (Fig. 2A). Ab-
normalities like myelin outfolding and development of
tomacula caused by excess myelin membranes were observed
in the Eed knockout (14). However, no myelin pathology is
seen in Schwann cell–specific knockout of the two H3K27
demethylases. Although we had observed some difference in
Remak bundles in Eed cKO mice (14), they appear to be intact
in mutants, similar to those of controls and no major defor-
mity is consistently observed in the double knockout nerves.
Therefore, H3K27 demethylase activity is not required for
myelin development or maintenance.

Control of proliferation after injury

It had been reported that JMJD3 is induced after injury (26),
which was proposed to regulate Schwann cell proliferation
after injury by removing H3K27 methylation from the Cdkn2a
gene that encodes both p16 and p19 tumor suppressor pro-
teins. However, examination of nerve injury RNA-Seq datasets
did not show that Jmjd3 is induced at the transcript level (13,
33). Although there could be posttranscriptional induction of
JMJD3, we found that JMJD3 protein is expressed even before
injury in Schwann cells in contrast to the earlier findings
(Fig. 3A). We tested the specificity of our antibody using
siRNA for Jmjd3 in the cultured S16 cells (Fig. S1). In addition,
the protein level of JMJD3 did not appear to significantly in-
crease after nerve injury, as measured by the immunofluores-
cence and Western blot. Nonetheless, JMJD3 could regulate
nerve injury gene induction at 1 day post injury (dpi) even in
the absence of induced protein levels.

The normal induction of Cdkn2a (p16 and p19 transcripts)
occurs at 3 to 7 days after injury, and earlier data suggested
that JMJD3 would be required for this induction (26). In partial
support of this model, we had previously investigated the effect
of H3K27me3 depletion in Schwann cell–specific Eed-cKO
mice and found constitutively high Cdkn2a transcript
expression (p19 and p16) along with reduced proliferation of
Schwann cells after injury (13). Therefore, this model would
predict that loss of H3K27 demethylases in Schwann cells
would result in increased proliferation owing to the inability to
derepress Cdkn2a after injury. To test if Jmjd3 is required for
Cdkn2a induction and regulation of cell proliferation after
peripheral nerve injury, we performed immunofluorescence
for p19 and Ki67 at 4 days after nerve crush. We quantitated
the number of cells positive for p19 and Ki67 along with
Schwann cell marker SOX10. In the Jmjd3/Utx double
knockout, we found that there was no difference from control
at the 4-dpi time point for both p19 induction and prolifera-
tion (Fig. 3, B and C). Since proliferation normally subsides by
14 days after injury, it is possible that the proliferation would
be maintained longer in the absence of Jmjd3 and Cdkn2a
induction. However, the level of proliferation at longer time
points after injury, at both 7 and 14 dpi, was not significantly
different from control (Fig. 3, D–F and Fig. S2). In addition, we
4 J. Biol. Chem. (2021) 297(1) 100852
also determined the transcript levels of p16 and p19 transcripts
of Cdkn2a using qRT-PCR at 3/4 and 7 dpi. We found no
significant difference between genotypes (Fig. 3G). Therefore,
neither Jmjd3 nor Utx is required for Cdkn2a induction, and
their deletion has no major effects on proliferation after injury.

H3K27 demethylases are not required for macrophage
infiltration after nerve injury

Another major component of the nerve injury response
involves Schwann cell production of chemokines (e.g., Mcp1/
Ccl2) that recruit macrophages that clear out the myelin debris
that can inhibit axonal regeneration (36–39). To test whether
the demethylase knockout may have effects on the activities of
immune cells, we examined the CD68 macrophage marker by
immunofluorescence to assess macrophage infiltration and
observed no significant difference between genotypes at 4 and
14 dpi (Fig. 4, A and B), indicating that demethylases are not
required for macrophage recruitment by Schwann cells in
injured nerve.

Regulation of nerve injury genes by H3K27 demethylases

We had found that a significant subset of nerve injury genes
is regulated by PRC2, including Shh (Fig. 5A), Gdnf, and Runx2
(12–14). Several of these genes are rapidly induced after injury
within 24 h, whereas the levels of other injury-induced tran-
scripts become induced at later time points (3–7 days) (13).
Therefore, we hypothesized that the Jmjd3 and Utx knockouts
would block the transcriptional induction of many of these
genes after nerve injury. We utilized quantitative RT-PCR
analysis of sciatic nerve RNA in sham and injured nerve
from both the single knockout of Jmjd3 and double knockout
of Jmjd3/Utx mouse lines to measure the injury induction of
selected PRC2-repressed genes. Although there are other cell
types in nerve, the downstream response of nerve injury genes
like Shh and Gdnf is specific to Schwann cells (8, 33). In the
Jmjd3/Utx conditional knockout, qRT-PCR experiments with
1 and 4 dpi RNA samples of DKO nerve were conducted
(Fig. 5, B and C). We observed that the induction of Shh, Gdnf,
and Fgf5 was modestly impacted in double knockouts at 1 dpi
compared with control. However, the induction of these genes
recovered to normal injury-induced levels at 4 dpi.

We observed no significant changes in the induction of
several nerve injury genes such as Shh, Gdnf, Fgf5, Runx2, and
Hmga2 in the Jmjd3 knockout at 1 dpi (Fig. S3A). In contrast,
the induction of Fgf5 and Hmga2 was slightly reduced at 3 dpi
(Fig. S3B). At 7 dpi in Jmjd3 cKO, all of the genes with the
exception of Fgf5 recovered to the levels observed in the
wildtype mice (Fig. S3C).

We assessed H3K27 demethylase dependence of global gene
expression by performing RNA-Seq at 1 and 7 days post nerve
transection. We identified differentially expressed genes by
comparing two datasets (1 dpi DKO versus 1 dpi control, 7 dpi
DKO versus 7 dpi control). After injury, there were only a few
genes that were significantly lower in the DKO (<0.05 p-value,
FDR corrected). Several studies have characterized the nerve
injury program in Schwann cells using RNA-Seq (13, 32, 33),
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Polycomb derepression in Schwann cells in injured nerve
and ChIP-seq analysis identified 4091 genes associated with
H3K27me3 in intact nerves (12–14). Using these datasets, we
had identified injury-induced genes that are associated with
H3K27me3 resulting in 902 genes and refined them using
RNA-Seq analysis of sorted Schwann cells after nerve injury
(33) to ensure that their induction occurs in Schwann cells. Of
these, there were 343 injury-induced genes that were found to
be regulated by PRC2, since they were induced in the Eed cKO
before and/or after injury (Fig. 5D).

At 1 dpi, there are only six genes that are significantly lower
in the double knockout (Fig. 5E), and three of them are pre-
viously defined as PRC2-regulated injury genes (Fgf5, Sfrp1,
Erbb4). Fgf5 is a growth factor that can stimulate axon growth
and is induced after injury in Schwann cells (36). Erbb4
J. Biol. Chem. (2021) 297(1) 100852 5
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Polycomb derepression in Schwann cells in injured nerve
belongs to a family of important ErbB receptor family mediates
neuregulin-1 signaling. Similarly, at 7 dpi, there are only four
genes that are significantly lower. One of them had also been
defined as PRC2-regulated injury gene: Igfbp5, which is a
modulator of IGF signaling and has previously been charac-
terized to have a role in peripheral axon regeneration (40, 41),
and two others (Pappa and Sez6) are injury-induced genes
associated with H3K27me3. Therefore, the demethylase ac-
tivity of JMJD3 and UTX appears to be largely dispensable for
the induction of the injury program except for a few relevant
injury genes (Fgf5, Sfrp1, Erbb4).

Although relatively few injury genes are affected by loss of
H3K27 demethylase activity, we identified 146 genes that are
significantly altered in the DKO prior to injury (sham). Of the
54 genes that are downregulated, 23 genes are associated with
H3K27me3. This analysis highlighted a potential discrepancy
with the injury time points, where much fewer genes were
lower in the DKO. However, it turns out that 31 of these 54
genes are regulated by injury, and most are significantly
downregulated after injury, which explains why most of these
are not differentially regulated in the DKO after injury. Since
they are downregulated after injury, they are associated with
the myelination program in Schwann cells, and their decrease
in the DKO indicates that demethylases are required for their
developmental induction in Schwann cells. Many of the genes
induced during Schwann cell myelination are dependent on
the EGR2 transcription factor (42, 43), and several of the
downregulated genes had been identified as EGR2 target
genes: Frzb, Hcn1 Fgl2, Slc6a15, Spp1. However, most of the
EGR2 regulatory network including major myelin genes (43)
was unchanged, consistent with the normal nerve morphology
described above.

Overall, both RNA sequencing datasets showed that a ma-
jority of PRC2-regulated genes (13) remained unchanged in
6 J. Biol. Chem. (2021) 297(1) 100852
double cKO nerves under both cut and sham conditions
(Fig. S4, A and B). In addition, the lack of any morphological
defects and the small number of deregulated genes suggest
that demethylases are not essential for Schwann cell devel-
opment, although their absence leads to a delayed induction of
some injury genes.

Histone modification changes in nerve injury genes

In previous studies, we had found that the levels of
H3K27me3 at the promoters of nerve injury genes such as Shh
and Gdnf decreased within 24 h after peripheral nerve injury.
To test that the H3K27me3 mark at such sites is actually being
targeted by demethylase, we utilized the Schwann cell–specific
knockout of Jmjd3 and performed ChIP in sham and cut
nerves with H3K27me3 antibody. In contrast to the previously
described reduction of H3K27me3 levels after injury, the level
of H3K27me3 in several injury gene promoters remained
elevated after injury in the Jmjd3 cKO, indicating that the
injury-induced reduction of H3K27me3 is Jmjd3 dependent
(Fig. S5).

Although H3K27me3 had been implicated as the bottleneck
to the activation of injury gene network in previous reports
(12–14, 26), there are demethylation-independent mechanisms
that could overcome Polycomb repression after nerve injury
(19, 25). It is possible that increased levels of H3K4me3 alone
could be sufficient to activate Polycomb-repressed genes. We
had previously found that H3K4me3 marks are associated with
promoters of Shh, Gdnf, Hmga2, and other PRC2-regulated
genes (12), which indicates that these promoters correspond
to the previously defined bivalent state of promoters associated
with both H3K27me3 and H3K4me3 (44, 45). Using our
H3K4me3 ChIP-seq data, we examined distribution of
H3K4me3 marks on H3K27me3-associated injury genes in
peripheral nerve in intact and injured conditions. A
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distribution plot of H3K4me3 on the 343 H3K27me3-
associated injury genes shows a narrow peak at the TSS that
increases at 1 day post injury compared with that of intact
condition (Fig. 6A). The increased H3K4me3 is a plausible
explanation for some of the most dramatic early changes in
injury gene activation, which can occur several days in advance
of detectable increases in transcript levels. As controls, we
observed no significant changes in the level of H3K4me3 for
randomly selected 300 injury genes lacking H3K27me3 and
another 300 randomly selected uninduced H3K27me3-
associated genes after injury.

Injury-induced depletion of H2A ubiquitination

Studies of Polycomb repression have elucidated an impor-
tant role of the PRC1 complex that modifies H2AK119 by
ubiquitination. The traditional model has been that Polycomb
repression occurs sequentially where H3K27me3 is first
deposited to the site of gene loci and then attracts Polycomb
repressive complex 1 that in turn deposits the H2A119ub1 to
further repress the gene activity (19). However, although
H3K27 methylation does often overlap with H2AK119ub1,
H2A ubiquitination can affect PRC2 recruitment and activity
(46), and it has been shown that these modifications can be
established and regulated independently of each other (19, 47).

This raises the possibility that H2AK119ub1by PRC1 is
involved in the repression of nerve injury genes and further-
more that deubiquitination of this histone mark is required for
their induction (48, 49). We therefore performed the nerve
injury experiment followed by ChIP using an H2AK119ub1
antibody. We found that many of the previously defined PRC2-
repressed injury genes are associated with H2AK119ub1 at the
promoter sites, which is lost after injury (Fig. 6, B and C). We
also performed ChIP-seq for H2AK119ub1 in sham and
injured nerve. In sham nerve, we found a large overlap of
H2AK119ub1 with the H3K27me3 on injury-induced pro-
moters (Fig. 6D). We plotted the average distribution of
H2AK119ub1 at the promoters of 343 Polycomb regulated
genes and found significant enrichment flanking the tran-
scription start sites. In addition, the peak distribution is lower
after injury compared with sham (Fig. S6). This can be seen for
two individual genes (Gdnf and Fgf5), which show changes in
their H2AK119ub1 profiles in sham versus injured nerve.

Our results suggest a new model in which H2A deubiqui-
tination would play a key role in reversing Polycomb repres-
sion rather than H3K27 demethylation. Therefore, our
previous observations of injury gene derepression in the Eed
cKO would predict that loss of Eed may trigger loss of H2A
ubiquitination. We tested that by performing H2Aub1 ChIP
assays in the Eed cKO, and we did indeed find a significant loss
of H2AK119ub1 in uninjured nerve of the Eed cKO (Fig. 6E).
Therefore, our data indicate that both H2A ubiquitination and
p-value between genotypes in the respective condition. *p < 0.05; n = 6 for
intersection of gene sets with H3K27me3 and known injury genes. The list
combined 1 and 7 dpi list of 3360 unique injury genes was obtained from the R
gene list was further filtered for Schwann cell–specific expression using pub
regulated genes from DKO samples compared with control with significant p
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H3K27 demethylation may be required for proper regulation
of injury genes.

Discussion

Many nerve injury genes are repressed by H3K27me3, and
their expression remains low or absent in mature peripheral
nerve. Previous studies had suggested that demethylation is
required for induction of nerve injury and cell cycle genes such
as Shh, Gdnf, and Cdkn2a, promoting the regeneration pro-
gram to proceed in an appropriate and timely manner (26).
This idea was supported by previous studies of a Schwann
cell–specific deletion of Eed (12–14), showing that preventing
PRC2 repression can exert significant effects on the injury
program. Therefore, we determined whether demethylases are
required for gene activation after injury.

In development of Schwann cell–specific knockout of
H3K27 demethylases, we first examined if they were required
for Schwann cell development before assessing their roles in
the nerve injury response. The H3K27 demethylase activity of
JMJD3 and UTX is not essential for Schwann cell development
and myelination. No abnormal developmental phenotype is
seen at the maintenance stage of Schwann cells and the time
point beyond 2 months of age in the mouse models. Therefore,
we could focus on the early gene induction events in the
aftermath of injury. Our primary hypothesis was that PRC2-
regulated genes required H3K27 demethylases to be induced
in the early phase of regeneration, many of which are induced
24 h after injury. Any epigenetic changes required for induc-
tion should occur at this early time point, and we had previ-
ously observed decreased H3K27 methylation at this time
(12–14). However, for most injury genes, the demethylase
activity of JMJD3 and UTX are not required for their induction
with the exception of a few genes like Fgf5. Some injury genes
were still lower at 4 dpi, but RNA-Seq from DKO 7 dpi nerves
showed that there were only four significantly altered genes
across the injury-induced transcriptome. Given the relatively
subtle effects of nerve injury gene induction and their recovery
by 7 days, it is not likely that extended analysis of nerve
regeneration will reveal a phenotype following the nerve injury
in the DKO.

It had been reported that JMJD3 is induced in mouse model
after 5 days post nerve transection by immunofluorescence
and had proposed that JMJD3 has a significant role in Schwann
cell proliferation after injury through demethylation of the
Cdkn2a gene (26). Our earlier studies had confirmed the
presence of H3K27me3 on the Cdkn2a promoters, and we also
had observed overexpression of both p19 and p16 transcripts
and reduced proliferation after injury with a Schwann cell–
specific knockout of Eed (13). The regulation of Cdkn2a
gene by PRC2 has relevance to the Schwann cell–derived tu-
mors in neurofibromatosis caused by mutation of the NF1
control and n = 6 for DKO (one-way ANOVA). D, the Venn diagram shows
of 4091 genes with H3K27me3 was filtered by >10 peak score (13). The
NA-Seq datasets (13, 32), filtered by <0.05 p-value and >2-fold change. The
lished cell sorting data (33). E, tables summarize and highlight the down-
-values across sham and 1, and 7 days after injury.
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tumor suppressor gene (50), The progression from neurofi-
bromas in NF1 to the more malignant form called malignant
peripheral nerve sheath tumor is often accompanied by
comutation of the CDKN2A gene and genes encoding subunits
of the PRC2 complex (e.g., EED and SUZ12) (27–29). Indeed,
NF1 microdeletions are more predisposed to malignant pe-
ripheral nerve sheath tumor owing to the deletion of both NF1
and the neighboring SUZ12 gene (51).

We tested the proliferation in double knockout of deme-
thylases expecting there would be increased and/or prolonged
Schwann cell proliferation after injury if H3K27 demethylases
were required for induction of p19 and p16. However, despite
the evidence for PRC2 regulation of Cdkn2a and Schwann cell
proliferation after injury, our double knockout results showed
that H3K27 demethylases are not required for Cdkn2a in-
duction or regulation of Schwann cell proliferation after injury.
There is no significant difference between genotypes in terms
of proliferation at 7 and 14 dpi. In addition, our immunoflu-
orescence data using independent antibodies for JMJD3 indi-
cate that it is expressed in Schwann cells prior to nerve injury.
Given the early changes in H3K27me3 at 1 day post injury, this
is likely due to targeting/activation of pre-existing JMJD3
protein.

Although previous studies have shown that demethylase
activity regulates the H3K27 methylation status, it has been
documented that JMJD3 and UTX have demethylation-
independent activities and they are constituents of larger
complexes with MLL proteins and also associated with BRG1-
containing complexes (21). In the conditional mutants used
here, the loxP sites remove exons containing the catalytic
domain, with a resulting frameshift leading to loss of the entire
C terminus. Nonetheless, JMJD3 and UTX could be involved
in the injury gene regulation in a demethylase-independent
manner. The previously described association of H3K27
demethylases with MLL complexes (21) is consistent with the
increased H3K4me3 at injury genes (12).

Most of the genes that were found to be JMJD3/UTX
dependent were found in the sham condition. This gene set
was much larger than that found in the 1 and 7 dpi RNA-Seq
datasets, but most of the downregulated genes are ones that
naturally decrease after nerve injury based on several datasets
(13, 32, 33), which explains why they were not significantly
different after injury in the DKO. Their decrease after injury
implies that they are coregulated with the rest of the myeli-
nation program that is dependent on Schwann cell contact
with axons. Indeed, several of this set are among the genes
regulated by the promyelinating EGR2/KROX20 transcription
factor (43). In turn, this suggests that H3K27 demethylase
activity is required for full induction of a subset of the myelin
program. However, we did not detect any overt myelination
defects, and many of these genes are decreased in the range of
40% to 75%. Evaluation of the entire EGR2-regulated gene
network shows that most genes are unchanged in the DKO.
H2AK119ub1 centered at TSS based on 343 Polycomb-regulated gene list. T
replicates. E, ChIP analysis of lysates from intact control and Eed cKO sciatic ne
n = 5 for Eed cKO nerves. Data: mean ± SD; ***p < 0.0005, **p < 0.005, *p <
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Nonetheless, many of these genes are associated with
H3K27me3. We speculate that genes that increase in the sham
DKO samples are mechanistically linked to the downregulated
genes, perhaps involving a transcriptional repressor such as
WT1.

There are several possible mechanisms by which Polycomb
repression can be bypassed without demethylation. For
example, the proliferation of Schwann cells after injury, typi-
cally beginning at 3 to 4 days after injury, can lead to the
passive reduction of H3K27me3 marks if H3K27 methylation
is not maintained after DNA replication (52). This could
explain the lack of effect at 7 days post injury but likely does
not explain the early induction of injury genes at 1 day given
the time course of Schwann cell division after injury. A second
potential model is the H3K4me3 histone mark, which is
commonly associated with active promoters. Many nerve
injury genes are associated with bivalent modification of
H3K27me3 and H3K4me3 (12), and increased H3K4me3 is
consistent with the traditional framework of activation
through rebalancing of Polycomb and Trithorax-like mecha-
nisms (44, 45, 53). Therefore, mechanisms to increase H3K4
methylation could be sufficient to activate Polycomb-repressed
injury genes. Finally, many Polycomb-repressed genes contain
both H3K27me3 and H2AK119ub1 formed by PRC1. PRC1
modifications were thought to be entirely dependent on
H3K27 methylation, but more recent studies indicate that
PRC1 and PRC2 can be regulated independently and that
PRC1 activity may stimulate recruitment of PRC2 (19, 54).
Using ChIP-seq analysis, we found a general colocalization of
H3K27me3 and H2AK119ub1 consistent with previous
studies, but some injury genes only have evidence of PRC1
repression. However, the ChIP-seq data suggest a fairly sig-
nificant decrease of H2AK119ub1 at 1 day after injury.
Therefore, it may be that antagonizing PRC1 repression is the
primary means of activation, and removal of H3K27me3 may
simply be a consequence of H2A deubiquitination. Several
different H2A deubiquitinases have been identified, which
could play a role in injury gene activation, including MYSM,
USP16, and BAP1 (49, 55).

The activation of the nerve injury program is regulated by
transcription factors like JUN, but coordinate activation of this
regenerative program requires definition of the mechanisms by
which the nerve injury program is repressed. Some nerve
injury genes are active in early neural crest and Schwann cell
development (12) and become repressed in differentiated
Schwann cells, and others (like Shh) appear to be induced de
novo without having been expressed in their differentiation
from neural crest (16). The repressed status of nerve injury
genes involves not only Polycomb repression but also repres-
sion by transcription factors like Zeb2 (56, 57) and epigenomic
remodelers such as histone deacetylases and the NuRD com-
plex (10, 58, 59). We have not observed derepression of all
H3K27me3-associated genes in the Eed cKO (13), so it is
he H3K27me3 and H2AK119ub1 ChIP-seq data were generated using two
rves was performed using the H2AK119ub1 antibody. n = 5 for control and
0.05 (one-way ANOVA).



Table 1
qRT-PCR primers (mouse)

Runx2 Forward ACCAAGTAGCCAGGTTCAAC
Reverse GAGGATTTGTGAAGACTGTTATGG

Fgf5 Forward AAAAGCCACCGGTGAAACC
Reverse TCACTGGGCTGGGACTTCTG

Shh Forward CAGCGACTTCCTCACCTTCCT
Reverse AGCGTCTCGATCACGTAGAAGAC

Gdnf Forward TCTCGAGCAGGTTCGAATGG
Reverse AAGAACCGTCGCAAACTTTACC

Hmga2 Forward CAAGAGGCAGACCTAGGAAAT
Reverse CTCTTGCGAGGATGTCTCTTC

Cdkn2a/p16 Forward GAATCTCCGCGAGGAAAGC
Reverse TGTCTGCAGCGGACTCCAT

Cdkn2a/p19 Forward CACCGGAATCCTGGACCAGG
Reverse CACCGTAGTTGAGCAGAAGAGCT

Kdm6b/Jmjd3 Forward CATGAACACCGTGCAGCTAT
Reverse CTCATGTACCGCGAACCACT

Kdm6a/Utx Forward AATATTGGCCCAGGTGACTG
Reverse TCACAGAAGTCATTCAAAACACC

ChIP primers
Shh +3307 Forward GGAAGCGCAGACAGACACTCT

Reverse CACAACAGCCTGGCACTCTCT
Gdnf Forward CCCCTGGATTGCGTGCTC

Reverse GGACATTAACTCCAAGTGGCCC

Antibodies
Catalog
number Company

SOX10 AF2864 R & D systems
Ki67 Ab16667 Abcam
p19/ARF Sc-32748 Santa Cruz
CD68 Ab125212 Abcam
JMJD3 #A9780 Abclonal
ACTB #AC004 Abclonal
IgG 12-370 Upstate/Millipore
H2AK119ub1 8240 Cell Signaling Technology
H3K27me3 AM39155 Active motif
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possible that derepression will involve multiple epigenomic
complexes to maintain repression of the nerve injury program
while allowing for its rapid induction after injury. Our studies
highlight for the first time the involvement of PRC1 repression
in this program, which is the focus of ongoing studies.

Experimental procedures

Information on primer sequences and antibodies used in the
paper are provided in Table 1.

Mouse nerve injury surgery

Animal experiments were performed according to protocols
approved by the University of Wisconsin, Madison School of
Veterinary Medicine. Kdm6b/Jmjd3-floxed mice (31) and
Kdm6a/Utx floxed mice (Jax#024177) (35) were maintained on
the C57BL/6 genetic background (24) and mated to
mP0TOTA-Cre (Mpz-cre) (30). Double Jmjd3/Utx floxed mice
were generated, and homozygous floxed Jmjd3 and Jmjd3/Utx
alleles with and without the Mpz-cre transgene were used for
experiments. Prior to surgery, animals were anesthetized with
isoflurane (Piramal Healthcare), and an injection of 5 mg/kg
ketoprofen was given for analgesia. A 5-mm-long incision was
made through the skin and muscle exposing the sciatic nerve.
The nerve was either cut as close to the proximal lateral region
of the femur as possible or crushed 1 min using fine forceps.
As a control, the contralateral leg also received a sham oper-
ation consisting of only a skin and muscle incision. The skin
wound was sutured with rodent surgical staples. Six wildtype
and knockout nerve tissues distal to the transection or sham
site were isolated with epineurium removed and frozen
immediately in dry ice and stored at −80 �C for further pro-
cessing in ChIP experiments.

Chromatin immunoprecipitation

Six freshly dissected mouse sciatic nerves per condition
were minced in 1% formaldehyde for 8 min and then quenched
for 10 min with glycine to a final concentration of 0.125 M.
Samples were sequentially lysed in buffers LB1, LB2, and LB3 +
0.03% SDS (11). DNA was fragmented to an average size of 0.5
to 2 kb using 5× for 10 min Bioruptor (Diagenode) cycles on
the medium setting. Each aliquot of sonicated chromatin
(150 μg) was incubated overnight at 4 �C with 5 μg of antibody.
A 10% aliquot was saved for input analysis. An 80-μl aliquot of
protein G Dynabead (Invitrogen) slurry was added to each
ChIP sample, rotating overnight at 4 �C. Immunoprecipita-
tions were washed three times in RIPA buffer and then eluted
at 65 �C in reverse cross-linking buffer (50 mM Tris, 10 mM
EDTA, 1% SDS). ChIP DNA was purified by phenol chloro-
form extraction and resuspended in 10 mM Tris, pH 8.0.
Antibodies used in the study are normal rabbit IgG (Millipore,
12-370) and H3K27me3 (Active Motif, 39155). Statistics were
calculated using Student’s t test. Error bars represent standard
deviation, and asterisks denote p value (*p ≤ 0.05; **p ≤ 0.005).
The samples were generated from independent chromatin
pools (n = 3 for H3K27me3 ChIP) and were analyzed using
quantitative PCR primers listed in (Table 1).

Electron microscopy and morphometric quantification

Freshly dissected sciatic nerves were immersion fixed in a
solution of 2.5% glutaraldehyde, 2.0% paraformaldehyde in
0.1 M sodium phosphate buffer, pH 7.4, overnight at 4 �C. The
nerves were then postfixed in 1% osmium tetroxide in the
same buffer for 2 h at room temperature. Following OsO4

postfixation, the nerves were dehydrated in a graded ethanol
series and then further dehydrated in propylene oxide and
embedded in Epon resin. Ultrathin transverse sections were
contrasted with Reynolds lead citrate and 8% uranyl acetate in
50% ethanol. Images were obtained with a Philips CM120
electron microscope with an AMT BioSprint side-mounted
digital camera at the UW Medical School Electron Micro-
scope Facility. Densitometric quantification was performed
using NIS-Elements 4.0. Three mice per genotype were
analyzed, and statistical analyses were evaluated by one-way
ANOVA in all the experiments.

Immunofluorescence

Freshly dissected nerves were embedded in Tissue-Tek
OCT compound (Sakura Finetek) and snap frozen with
liquid nitrogen. Longitudinal or transverse cryostat sections
(10 μm) were air dried for 5 min and fixed in 4% para-
formaldehyde for 10 min. The sections were then blocked in
PBS containing 5% donkey serum/1% BSA/0.5% Triton-X 100
for 1 h at room temperature. Primary antibody incubation was
performed overnight at 4 �C in PBS containing 5% donkey
serum/1% BSA/1% Triton-X 100, and secondary incubation
J. Biol. Chem. (2021) 297(1) 100852 11
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was performed in PBS at room temperature for 1 h. Hoechst
33342 (1:5000 in PBS, Sigma) was applied to stain nuclei for
1 min. Three 4-min washes were performed in PBS after fix-
ation and blocking, and in PBS containing 0.1% Tween20 after
primary antibody incubation and nuclear staining. After cov-
erslips were mounted using Fluoromount-G (South-
ernBiotech), sections were examined on a Nikon A1R confocal
and quantitated by both Columbus imaging software and
manual curation.

Western blot

Freshly dissected nerves were snap frozen with liquid ni-
trogen and crushed. The nerves were then homogenized in
lysis buffer (50 mM Tris-HCl at pH 6.8, 10% glycerol, 2% SDS,
10% β-mercaptoethanol, 50 mM NaF, 1 mM Na3VO4 and
Protease Inhibitor Cocktail [Sigma, P8340]) using a motorized
pellet pestle. Cells in culture were homogenized in 3x lysis
buffer. After a 15-min incubation in ice, lysates were boiled at
95 �C for 3 min and centrifuged at 4 �C for 15 min. Subse-
quently, supernatants were collected and subjected to SDS-
PAGE. After transfer to polyvinylidene fluoride membrane,
proteins were blocked in TBST containing 5% nonfat dry milk
for 1 h at room temperature. Primary and secondary antibody
incubations were performed in TBST containing 5% nonfat
dried milk at 4 �C for overnight and at room temperature for
1 h, respectively. Three 5-min washes were performed in TBST
after the incubations. The membranes were scanned and
quantitated with the Odyssey Infrared Imaging System (Li-Cor
Biosciences). Statistical analyses were evaluated by one-way
ANOVA.

Quantitative RT-PCR

RNA was isolated from sciatic nerves using the Trizol/
chloroform RNA extraction protocol. To prepare cDNA,
250 ng or 1 μg of total RNA of mouse, respectively, was used
from each sample. qRT-PCR and data analysis were performed
as described previously. qPCR was performed with two repli-
cates per sample, and statistical analyses were evaluated by
one-way ANOVA.

RNA sequencing

About 500 to 1000 ng total RNA was used to generate RNA-
Seq libraries using the Illumina TruSeq Stranded total RNA
sample preparation kit according to the manufacturer’s in-
structions. Illumina sequencing data were mapped to the
GRCm38/mm10 genome. Data were analyzed using DESeq2
(60) to determine differentially regulated genes between un-
injured and injured nerves in wildtype and double cKO mice
(p value < 0.05).

ChIP sequencing

Sham and injured sciatic nerves of two adult male Sprague–
Dawley rats were used in ChIP-seq analysis after micrococcal
nuclease digestion of peripheral nerve chromatin as described
(13) using an antibody for H2AK119ub1. Library preparation
and sequencingwasperformedby theUWBiotechnologyCenter
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as described (11). Basecalling was performed using the standard
Illumina Pipeline. Reads were mapped to the Rattus norvegicus
genome rn5 using Bowtie (RRID:SCR_005476) to produce SAM
files for further analysis. Hypergeometric optimization of motif
enrichment (HOMER, RRID:SCR_010881) (61) was used to
determine enriched binding regions for H2AK119ub1 relative to
sequencing of an input chromatin sample.

Data availability

The raw data files for ChIP-seq are deposited in National
Center for Biotechnology Information as part of BioProject
PRJNA260442. Data for H3K4me3, H3K27me3, and
H2AK119ub1 ChIP analysis were from NCBI Gene Expression
Omnibus: GSE84272, GSE84265, and GSE159265. RNA-Seq
data are deposited in NCBI GEO under accession number
GSE178872.

Supporting information—This article contains supporting
information.
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