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Cirrhosis is a chronic condition that can lead to liver failure. Currently, the viable option for decreasing mortality is liver 
transplantation. However, transplant surgery is highly invasive. Therefore, cell-based therapy has been developed as an 
alternative. Based on promising findings from preclinical research, some new trials have been registered. One of them 
was autologous bone marrow cell infusion therapy and found that ameliorating liver fibrosis activated liver regeneration. 
Now, majority of trials focus on low-immunogenicity mesenchymal stem cells (MSCs) appropriate for allogeneic 
administration. However, despite about 20 years of research, only a limited number of cell-based therapies have entered 
routine practice. Furthermore, potential shortcomings of cell-based therapy include a limit on the number of cells, which 
may be administered, as well as their failure to infiltrate target organs. On the other hand, these research show that MSCs 
act as “conducting cells” and regulate host cells including macrophages via extracellular vesicles (EVs) or exosome signals, 
leading to ameliorate liver fibrosis and promote regeneration. Therefore, the concept of cell-free therapy, which makes 
use of cell-derived EVs or exosomes, is attracting attention. Cell-free therapies may be safely administered in large doses 
and are able to infiltrate target organs. However, development of cell-free therapy exhibits its own set of challenges 
and such therapy may not be completely curative in the context of liver disease. This review describes the history of 
cell-based therapy research and recent advances in cell-free therapy, as well as discussing the need for more effective 
therapies. (Clin Mol Hepatol 2021;27:70-80)
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INTRODUCTION

Chronic liver disease and cirrhosis are life-threatening condi-

tions —causing approximately 1–1.2 million deaths per year— 

arising in response to several etiologic factors including hepatitis 

virus infection, alcohol, nonalcoholic steatohepatitis, autoimmuni-

ty, and primary biliary cholangitis.1-3 In recent years, medical ad-

vances have significantly improved the prognosis of liver disease.4 

Since the liver is highly regenerative, fibrosis can be at least par-

tially ameliorated and liver function improved by eliminating the 

causative factor underlying dysfunction. However, once cirrhosis 

advances beyond a certain point, elimination of the causative fac-

tor will no longer facilitate regression of fibrosis, and cirrhosis may 

progress to carcinogenesis and/or liver failure.5-7 Therefore, the 

number of deaths attributable to cirrhosis remains high.8 Although 

liver transplantation is currently the only curative treatment for 

decompensated cirrhosis,9,10 significant limitations include a short-

age of donors, high cost, highly invasive nature of the surgery, 

use of immunosuppressive agents to prevent graft rejection, and 

the potential for severe complications.11 Thus, cell-based therapy 

is of interest as an alternate and novel strategy to ameliorate liver 

fibrosis, reduce inflammation, and promote liver regeneration.

A good understanding of the mechanisms underlying liver fibro-

sis may contribute to therapeutically promoting its reversal. Dur-

ing liver injury, normally-quiescent hepatic stellate cells (HSCs) be-

come activated by several cytokines and trophic factors, including 

transforming growth factor-β and platelet-derived growth factor, 

leading to production of excessive extracellular matrix (ECM) con-

stituents by activated myofibroblasts. Once the hepatotoxic stimu-

lus is removed, the number of activated myofibroblasts regresses 

via apoptosis, senescence, and reversion to an inactive pheno-

type. Furthermore, matrix metalloproteinases (MMPs) are capable 

of ECM degradation. Thus, understanding the molecular mecha-

nisms involved in HSC activation, ECM degradation, and myofi-

broblast involution or deactivation could facilitate manipulation of 

these processes and may lead to rational development of novel 

therapies for cirrhosis.12 Current therapeutic approaches to liver fi-

brosis are divided into five categories: 1) controlling primary liver 

disease,13,14 2) targeting HSC receptor-ligand interactions and in-

tracellular signaling,15-18 3) inhibiting fibrogenesis or matrix degra-

dation,19,20 4) decreasing the number of activated HSCs,21,22 and  

5) cell-based therapy. Although cell-based therapy is mainly con-

cerned with ameliorating liver fibrosis, it is also capable of pro-

ducing other beneficial effects (including decreasing inflammation 

and promoting liver regeneration).

The ability of cell-based therapy to promote liver regeneration is 

also important, however. Regenerative factors including hepato-

cyte growth factor (HGF), oncostatin M (OSM), and Wnt3A —

which induce differentiation and influence phenotypic fate  

decisions of hepatic stem/progenitor cells— are secreted by mac-

rophages.23,24 Furthermore, regeneration automatically occurs 

secondary to the anti-inflammatory and anti-fibrotic effects of 

cell-based therapy. It has been demonstrated that cell-based ther-

apy, via dampening liver inflammation and ameliorating liver fi-

brosis, improves liver volume and function, including albumin syn-

thesis and prothrombin time.25

At the inception of cell-based therapy during the period from 

2003, first clinical study of autologous bone marrow cell infusion 

(ABMi) therapy was started in 2003, in which the patient’s own 

bone marrow cells are harvested and re-injected.26-28 In this thera-

py, ABMi ameliorates liver fibrosis and improves liver function in 

cirrhotic patients (as indicated by increased serum albumin levels, 

decreased ascites, and decreased Child-Pugh scores) without in-

ducing any major adverse events. ABMi also promotes a sequen-

tial activation of liver inherent regeneration in human livers.29-31 

However, it is invasive, requiring general anesthesia in order to 

harvest 400 mL of bone marrow. Eligibility for ABMi requires a to-

tal bilirubin level of ≤3.0 mg/dL and a platelet count ≥50,000 per 

µL, representing criteria not met by all cirrhotic patients. There-

fore, attention was shifted from bone marrow cells in general to 

specific stem cell subtypes. Research has focused largely on he-

matopoietic stem cells,32,33 mesenchymal stem cells (MSCs),34-36 

and bone marrow-derived macrophages.37,38 In particular, MSCs 

and macrophages have been the mainstays of cell-based therapy, 

and their characteristics as well as relevant clinical trials will be 

described in the first half of this review.

More recently, it was noted that stem cell-derived extracellular 

vesicles (EVs) or exosomes also exhibit a therapeutic effect and 

may thus have potential for clinical application.39,40 While the de-

velopment of cell-free therapy is still in its infancy, EV and exo-

some characteristics as well as relevant clinical trials will be de-

scribed in the latter part of this review. Advantages and limitations  

of cell-based and cell-free therapies are discussed and future 

prospects regarding cirrhosis therapy are presented (Fig. 1).

CELL-BASED THERAPY: CHARACTERISTICS OF 
MSCS AND MACROPHAGES

Research into MSC-mediated cell-based therapy is conducted 
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globally. These cells are relatively easy to obtain, maintain, ex-

pand, and cryopreserve, all while maintaining their viability. For 

example, MSCs can be obtained not only from bone marrow but 

also from medical wastes such as adipose tissue, umbilical cord 

tissue, and dental pulp.41-51 Expression of common pluripotency 

markers (e.g., CD73, CD90, and CD105) is noted on MSCs, and 

they are able to differentiate into adipocytes, osteoblasts, and 

chondroblasts under the appropriate conditions.34,35

It appears that the major therapeutic (anti-inflammatory, anti- 

fibrotic, anti-oxidant, and angiogenic) effects of MSCs are due  

to their soluble products, including chemokines, cytokines, trophic 

factors, EVs, and exosomes. The most popular application  

of MSCs is decreasing inflammation.52 Various MSC products —

such as interleukin (IL)-10, tumor necrosis factor-stimulated gen 

(TSG)-6, nitric oxide, indoleamine2,3-dioxygenase, and prosta-

glandin E2 (PGE2)— are able to inhibit T-cell activation and ex-

pansion, induce regulatory T lymphocyte, alter macrophage polar-

ity towards less inflammatory phenotypes, and modulate natural 

killer cell, dendritic cell, and B-cell functions.53-56 By such mecha-

nisms, MSCs are able to remotely influence the activities of many 

cellular effectors.57 Since recent studies suggest that MSC-condi-

tioned medium (or exosomes present therein) are as effective as 

MSCs themselves, soluble factors are currently of great interest 

regarding their regenerative potential in the therapy of cirrho-

sis.7,34-36,57-60

Via soluble factors, MSCs may have therapeutic effects in cir-

rhosis even if they do not infiltrate the injured liver. Our group 

was the first to demonstrate in real time (using two-photon exci-

tation microscopy) that peripheral intravenous administration of 

DsRed-labeled MSCs in a murine cirrhosis model resulted in the 

majority of MSCs being retained within the pulmonary vascula-

ture, while only a few reached the liver.61 However, MSC-derived 

soluble factors (including EVs and exosomes) nonetheless exert a 

therapeutic effect on target organs (including the liver in context 

of cirrhosis), supporting the possibility of cell-free therapy.

Another important MSC characteristic is generally low immuno-

genicity. Since they express relatively low levels of major histo-

compatibility complex class I molecules and lack expression of 

major histocompatibility complex class II and co-stimulatory mole-

cules (e.g., CD40, CD80, and CD86), they are not prone to trig-

gering recipient immune responses57 and are thus suitable for al-

logeneic (as well as autologous) injection. Clinical studies suggest 

their therapeutic potential across disorders affecting a wide range 

of organs, including the liver, nerves, lungs, heart, and intestines.

Macrophages exhibit diverse phenotypes and high plasticity,37 

including two major representative phenotypes: “classically acti-

vated” (M1) and “alternatively activated” (M2). During liver injury, 

pro-inflammatory M1 macrophages contribute to fibrosis via acti-

Figure 1. Perspective: the flow from Cell-based therapy (ABMi, MSCs, and macropahges) to cell-free therapy (exosomes or EVs) to develop more ef-
fective therapy. MSCs, mesenchymal stem cells; ABMi, autologous bone marrow cell infusion therapy; EVs, extracellular vesicles.
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vation of HSCs and myofibroblasts. In contrast, after stabilization 

of the liver injury process, M2 macrophages contribute to resolu-

tion of inflammation and reversal of fibrosis, the latter in part via 

MMPs.38 Furthermore, as mentioned, macrophages are able to in-

fluence differentiation and phenotypic fate decisions of hepatic 

stem/progenitor cells through production of HGF, OSM, and Wn-

t3A.23,24

Bone marrow-derived macrophages cultured in the presence of 

colony-stimulating factor (CSF)-1 induce regression of carbon tet-

rachloride-induced liver fibrosis in mice.62 We have previously re-

ported that a large number of peripherally-administered green 

fluorescent protein-labeled macrophages are able to infiltrate the 

liver, where they help promote liver regeneration by phagocytizing 

hepatocytic debris.61 Although such findings demonstrate the 

therapeutic potential of macrophages in the context of cirrhosis, 

higher immunogenicity limits allogeneic macrophage administra-

tion. Instead, autologous macrophage administration can (e.g., 

via TSG-6, PGE2, and IL-1363-65) help polarize host hepatic macro-

phages toward the less inflammatory/pro-resolving M2 pheno-

type, again supporting the potential of macrophages as novel cir-

rhotic therapeutic agents.

The same factors (TSG-6, PGE2, and IL-13) are also produced by 

MSCs, and contribute to host macrophages polarization in a simi-

lar manner.63-65 Furthermore, we have previously reported that 

MSCs promote liver infiltration by host neutrophils and mono-

cytes, which contribute to fibrosis amelioration via production of 

MMPs.61 These findings suggest that remote MSCs act as “con-

ducting cells” (Fig. 2), via soluble factors including EVs or exo-

somes modulating macrophage, neutrophil, and monocyte func-

tions in ways that ameliorate liver fibrosis and promote liver 

regeneration.53-57

CELL-BASED THERAPY: CLINICAL TRIALS  
INVOLVING MSCS AND MACROPHAGES FOR 
LIVER DISEASE-RELEVANT INDICATIONS 

Although both MSCs and macrophages represent promising 

candidates for use in cell-based therapy, a majority of current 

clinical trials focus on MSCs. According to ClinicalTrials.gov, over 

1,100 MSC-based clinical trials have been registered across a vari-

ety of disciplines, including 51 that began investigating cell-based 

therapy for liver disease after 2006. Thereafter, the number of 

cell-based therapy clinical trial registrations (incorporating cell 

sources including bone marrow, adipose tissue, umbilical cord tis-

sue, and dental pulp, and routes of administration including pe-

ripheral venous and arterial injection47-49,66-69) gradually increased 

to a peak as the approach gained recognition. In 2017, we our-

Figure 2. Overview of MSCs function as “conducting cells” to macrophages, neutrophils, monocytes, T-cells, B-cells, and DCs. MSCs, mesenchymal 
stem cells; EVs, extracellular vesicles; DCs, dendritic cells; MMP, matrix metalloproteinase.
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selves registered a phase I and II clinical trial (first clinical trial in-

volving MSCs in Japan) focused on adipose-derived MSC infusion 

in cirrhosis patients (NCT: 03254758). Our clinical trial involving 

allogeneic MSCs (without using immunosuppressive agents) are 

proceeding into phase II after finishing phase I. However, the 

number of clinical trials has been declining since 2017 (Fig. 3). 

This trend is likely due to a decline in novelty, slow progress in 

translating preclinical research to clinical interventions, and a ten-

dency of shift in focus toward cell-free therapy incorporating EVs 

or exosomes.

Furthermore, to describe recent trends in MSC-oriented clinical 

trials, we evaluated studies (12 studies) which began or will begin 

after January 2017 according to ClinicalTrials.gov (Table 1). The 

majority of these were registered in Asian countries. Studies vary 

in cell source, autologous versus allogeneic nature, and etiology 

of cirrhosis. However, in most studies (11 of 12) MSC administra-

tion is via peripheral injection of approximately 1×106 MSC/kg per 

dose. Studies focus not only on cirrhosis, but also on acute-on-

chronic liver failure (ACLF). Since MSCs exhibit a stronger thera-

peutic effect during inflammation, they may be particularly effec-

tive in the context of ACLF. Altogether, many MSC-oriented clinical 

trials have not yet progressed beyond phase I or II.

Regarding macrophage-oriented cell-based therapy, clinical tri-

als further elucidating macrophage characteristics have also been 

reported by Edinburgh University. The first-in-human phase  

1 dose-escalation trial of intravenous autologous macrophage 

therapy incorporated nine adults with cirrhosis and model for 

end-stage liver disease (MELD) scores of 10–16.70 In this trial, 

macrophages were produced from patient mononuclear cell leu-

kapheresis-derived monocytes cultured in the presence of CSF-1. 

Despite macrophage potential for immunogenicity, no transfusion 

reactions, dose-limiting toxicities, or macrophage activation syn-

dromes were reported, and all participants remained alive and 

transplant-free at 1 year. Furthermore, after 1 year, MELD scores 

Figure 3. Number of clinical trials involving mesenchymal stem cells. 
Black bars represent trials focused on cirrhosis in general, while stacked 
red bars represent trials focused specifically on acute-on-chronic liver 
failure (ACLF). 
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Table 1. Recent clinical trials involving MSCs 

No. Country Cell origin
Autologous/

allogeneic
Administration 

route
Number of cells infused Etiology

No. of 
patients

Trial 
(phase)

1 China N.A N.A. IV from peripheral 1.0×105–106 cells/kg, 3 times ACLF 200 N.A.

2 China Umbilical cord Allogeneic IV from peripheral 1.5×106 cells/kg, 4 times Cirrhosis 252 Phase 2

3 China N.A. N.A. IV from peripheral 1.0×106 cells/kg, 3 times Cirrhosis 200 N.A.

4 Japan Adipose tissue Allogeneic IV from peripheral N.A. Cirrhosis 15 Phase 1/2

5 China N.A. N.A. IV from peripheral N.A. Cirrhosis 30 Phase 1/2

6 China N.A. N.A. IV from peripheral 1.0×105–106 cells/kg, 4 times ACLF 45 Phase 1/2

7 Germany Skin-derived 
ABCD5 + cells

Allogeneic IV from peripheral 2.0×106 cells/kg, 3 times ACLF 18 Phase 1/2

8 China Umbilical cord N.A. IV from peripheral 1.0×106 cells/kg, 3 times Cirrhosis 200 Phase 2

9 Taiwan Adipose tissue Allogeneic IV from peripheral 0.5–2.0×106 cells/kg ACLF 20 Phase 1

10 Singapore Bone marrow Autologous IV from peripheral 0.5–1.0×106 cells/kg Cirrhosis 20 Phase 1/2

11 India N.A. Autologous IA from hepatic N.A. Cirrhosis 5 Phase 4

12 Indonesia Umbilical cord Allogeneic IV from peripheral 1.0×108 cells Cirrhosis 12 Phase 1/2

The trial of No. 4 is ours.
MSCs, mesenchymal stem cells; N.A., not applicable; IV, intravenously injection; ACLF, acute-on-chronic liver failure; IA, intra-arterial injection.
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had decreased in seven out of nine patients, and a liver fibrosis 

marker had decreased in five out of nine patients. Because mac-

rophages are also an essential component in liver regeneration, 

acceleration of research in this area is anticipated.

CELL-BASED THERAPY: ADVANTAGES AND 
LIMITATIONS

As alluded to, cell-based therapy has many advantages. Espe-

cially so for MSCs, cells are relatively easy to obtain, culture, ex-

pand, characterize for quality control, count, and assess for viabil-

ity.41-51 In addition, since MSC therapeutic effects are enhanced 

during inflammation, preconditioning can strengthen their thera-

peutic effects. Finally, numerous avenues of cell modification are 

possible. Despite administered cells becoming trapped in the pul-

monary vasculature,61 existing clinical trials report few major ad-

verse events, including pulmonary embolism.47 Although adminis-

tered macrophages are autologous due to immunogenicity-based 

constraints, they are now obtainable via less invasive methods.70 

Moreover, the ability to elicit and influence host macrophage de-

velopment locally within the liver (i.e., without the need for exog-

enous administration) would be an even more attractive possibility.

However, cell-based therapy also has certain limitations. For ex-

ample, concerns regarding the risk of pulmonary embolism con-

tinue to limit dosage, and administered cells do not access the 

target organ. Although cells do continue to exert a therapeutic ef-

fect remotely, a therapeutic agent acting directly within damaged 

sites would be preferable. Furthermore, given the propensity of 

stem cells to differentiate, it is difficult to maintain a stable phe-

notype during long-term culture. Therefore, commercialization 

would necessitate rigorous quality control. Such concerns have 

driven the search for alternate therapeutic strategies and cell-free 

therapy may overcome some of the limitations associated with 

cell-based therapy.

CELL-FREE THERAPY IN THE FUTURE: CHARAC-
TERISTICS OF EVS AND EXOSOMES

The generic term for membrane-bound particles naturally re-

leased by cells is EVs; exosomes are a subtype of these.71 Once 

believed to be “trash bags” for cellular debris, EVs and exosomes 

are now being explored for their potential as next-generation di-

agnostic and therapeutic tools.72 The heterogeneous group of EVs 

encompasses a variety of particles of different sizes with varying 

contents. Exosomes, specifically, are 40–100 nm in diameter —

corresponding to a density of 1.13–1.19 g/mL in sucrose solu-

tion— and can be sedimented by ultracentrifugation at 100,000 

×g.72 They contain a mixture of proteins, messenger RNA, transfer 

RNA, micro RNA, genomic DNA, and complementary DNA.73 

Like stem cells, exosomes exhibit many biological activities and 

have shown therapeutic potential in several organ system and 

disease contexts. For example, exosomes may: protect against 

cisplatin-induced renal oxidative stress and renal cell apoptosis,74 

enhance myocardial viability and prevent adverse remodeling af-

ter ischemic injury,75 promote angiogenesis in the setting of myo-

cardial infarction,76,77 protect the intestines from enterocolitis,78 

improve hypoxia-induced pulmonary hypertension,79-81 and pro-

mote functional recovery after stroke.82,83 At least in part, such 

therapeutic effects of exosomes are attributable to their ability to 

induce angiogenesis as well as regeneration and proliferation of 

epithelia.84-86 Furthermore, exosomes exhibit immunomodulatory 

(largely anti-inflammatory) effects, some of which —specifically 

down-regulation of interferon-γ secretion and T-cell polarity alter-

ation— are able to stabilize skin graft survival.87,88 Many studies 

have found that the efficacy of exosomes nearly matches that of 

cell-based therapy, indicating that exosomes have potential as 

next-generation (i.e., cell-free) therapy.76,89-91

Specifically regarding liver disease, we previously reported that 

MSCs exhibit remote therapeutic effects,61 a phenomenon attrib-

utable to EVs or exosomes. Furthermore, exosomes are reported 

to ameliorate liver fibrosis in cirrhotic mice,92-97 promote liver re-

generation and hepatocyte proliferation (via up-regulation of Bcl-

xl protein) in a murine liver injury model,92 alleviate acute liver 

failure by dampening macrophage NLRP3 inflammasome activity 

(additionally suggesting their potential utility during acute liver in-

Figure 4. Number of clinical trials involving extracellular vesicles or exo-
somes.
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jury),94 and improve survival after D-galactosamine- and tumor 

necrosis factor-α-induced hepatic failure in mice.95 The latter study 

also demonstrated that peripherally-administered fluorescently-la-

beled exosomes were preferentially detectable at high levels in 

damaged (relative to normal) liver at 6 hours post-administra-

tion.95 Relatedly, it has been shown that intravenously injected 

exosomes which infiltrate the liver are internalized by hepatic 

macrophages.98 Such results suggest that exosomes do not infil-

trate the lungs but accumulate in target organs (e.g., sites of liver 

damage).

CELL-FREE THERAPY IN THE FUTURE: CLINICAL 
TRIALS INVOLVING EVS AND EXOSOMES

In order to describe relevant recent clinical research trends, we 

identified EV- or exosome-oriented clinical trials registered on 

ClinicalTrials.gov. Results included trials focused on both thera-

peutic applications of exosomes and cancer diagnostic exosome 

analysis. Excluding observational studies, 26 exosome-oriented 

therapeutic clinical trials were registered. Of these, 10 focused on 

cancer diagnostics; three each focused on pulmonary disease, 

neurological disease, and dermatological disease; two each fo-

cused on heart disease, ophthalmological disease, and multiple 

organ failure, and one focused on metabolic disease (Fig. 4). To 

the best of our knowledge, no EV- or exosome-oriented clinical 

trial focused on liver disease was registered at this time. The small 

number of clinical studies (and the absence of any studies focused 

on liver disease) is likely attributable to the absence of a simple, 

standardized method for the production of large quantities of EVs 

or exosomes; an inadequate understanding of the mechanisms of 

action of cell-free therapy; and insufficient data regarding the be-

havior of administered EVs or exosomes in liver disease. However, 

given the therapeutic potential of EVs and exosomes in liver dis-

ease, the number of relevant clinical trials is expected to increase 

gradually.

CELL-FREE THERAPY IN THE FUTURE: ADVAN-
TAGES AND LIMITATIONS

Given the small diameter of EVs and exosomes, the associated 

risk of thrombosis after intravenous administration is considered 

much lower relative to that posed by stem cells (e.g., MSCs). If it 

is confirmed that cell-free therapeutic effects are dose-dependent, 

the ability to administer large quantities of EVs or exosomes will 

be a significant advantage. In addition, the ability of EVs or exo-

somes to infiltrate damaged target organs directly may result in 

greater efficacy relative to that of distant stem cells. Some studies 

have even examined the application of EVs or exosomes to tar-

geted drug delivery.99

However, even though cell-free therapy overcomes many of the 

limitations associated with cell-based therapy, the former, too, 

has its limitations. As mentioned, no standardized method yet ex-

ists for the production of large quantities of EVs or exosomes. 

Furthermore, it is unclear whether using isolated EVs or exosomes 

excludes an important factor underlying cell-based therapy asso-

ciated therapeutic effects. Finally, due to the rapid pace of cell-

free therapy development, relevant medico-legal norms surround-

ing cell-free therapy are not yet sufficiently established. Clearly, 

the field of cell-free therapy is still in its infancy, requiring signifi-

cant further research.

CONCLUSIONS AND FUTURE PROSPECTS

Cell-based therapy has been developed as an alternative to liver 

transplantation, but has not yet progressed beyond early-phase 

clinical trials. Nonetheless, cell-free therapy —which overcomes 

some of the limitations associated with cell-based therapy— is 

already under development as a next-generation therapeutic 

technology, and clinical trials relevant to liver disease are expect-

ed to begin in the near future. Cell-free therapy has its own limi-

tations, however. One promising strategy to identify novel and ef-

fective curative therapies may be elucidation the mechanisms 

underlying EV and exosome biological activities, in order to iso-

late the responsible molecules for direct administration to pa-

tients. In conclusion, many challenges remain in developing cura-

tive therapies for cirrhosis, but further research into cell-based 

and cell-free therapies will likely be of significant benefit.
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