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Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with

a worldwide prevalence of about 1%, characterized by impairments in social

interaction, communication, repetitive patterns of behaviors, and can be associated with

hyper- or hypo-reactivity of sensory stimulation and cognitive disability. ASD comorbid

features include internalizing and externalizing symptoms such as anxiety, depression,

hyperactivity, and attention problems. The precise etiology of ASD is still unknown and it

is undoubted that the disorder is linked to some extent to both genetic and environmental

factors. It is also well-documented and known that one of themost striking and consistent

finding in ASD is the higher prevalence in males compared to females, with around 70%

of ASD cases described being males. The present review looked into the most significant

studies that attempted to investigate differences in ASD males and females thus trying to

shade some light on the peculiar characteristics of this prevalence in terms of diagnosis,

imaging, major autistic-like behavior and sex-dependent uniqueness. The study also

discussed sex differences found in animal models of ASD, to provide a possible

explanation of the neurological mechanisms underpinning the different presentation of

autistic symptoms in males and females.

Keywords: ASD, gender, animal models, imaging, neurobiological mechanism

INTRODUCTION

One of the most consistent data in Autism Spectrum Disorder (ASD) is the higher prevalence in
males compared to females (1). According to the fifth edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5), the term “Autism Spectrum Disorder” refers to a
neurodevelopmental condition emerging early in life characterized by impairments in social
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interaction and communication, associated with differences in
sensory processing as well as restricted and repetitive behaviors,
interests and activity (2). The most recent estimates of ASD
prevalence in United States are 23.0 per 1,000 (one in 44) children
aged 8 years, and ASD was 4.2 times as prevalent among boys as
among girls (1). The combined male-to-female prevalence ratio
was 4.3:1; site-specific ratios ranged from 3.4:1 to 4.7:1, with
little evidence of heterogeneity by site (1). This finding is in
line with DSM-5 states that ASD is diagnosed four times more
often in males than in females and this is also confirmed by 2010
Global Burden of Disease study (3) that reported an estimate of
4:1. This review is principally focused on looking into the most
significant studies that investigated differences in ASD males
and females to shed some light on the peculiar characteristics
of this prevalence in terms of diagnosis, clinical manifestations,
psychiatric comorbidity, brain imaging and neurobiological
features. Moreover, the review discusses sex differences in animal
models of ASD, to explore the neurobiological mechanisms
underpinning the different presentation of autistic symptoms in
males and females and the sex-dependent uniqueness. The aims
of this review are to provide an update on sex difference in
ASD, by (1) analyzing sex ratio in epidemiological studies; (2)
comparing and analyzing the heterogeneity of manifestations of
core symptoms and psychopathological comorbidities between
males and females; (3) providing a possible explanation of
the neurobiological mechanisms underpinning the different
presentation of autistic symptoms in males and females, and (4)
summarizing sex differences found in animal models of ASD.

SEX DIFFERENCE IN EPIDEMIOLOGICAL

STUDIES

The four-to-one sexratio mentioned above is broadly cited and
comes from research studies that ascertained the mean male-
to-female ratio from population prevalence studies of ASD.
However, sex ratio in prevalence is still debated and recent
epidemiological administrative and community-based studies
have reported ratios ranging from 2:1 to 5:1 (4, 5). The
assumption that ASD ismore commonly diagnosed inmales than
in females hasmotivated significant theories about the nature and
etiology of ASD: the Extreme Male Brain (6), Female Protective
Effect (7–9), and Female Autism Phenotype theories (10–12).
The Extreme Male Brain Theory suggest that the two dimensions
for understanding human sex differences are “empathising” and
“systemising.” According to this, the male brain is defined as the
one in which systematization fits better than empathy. The female
brain, on the other hand, is defined with an opposite cognitive
profile. Using these definitions, ASD can be considered as an
extreme of the normalmale profile (6). Increasedmale prevalence
has been also repeatedly reported leading to the concept of
a “Female Protective Model/Effect.” This model assumes that
risk for ASD is quantitative, that it follows a distribution in
the general population, and that females are protected from
the impact of becoming autistic (9). Female protective effect
leads to a reduced prevalence of ASD compared with males
with male-to-female ratio of 7:1 for high-functioning ASD to

2:1 for individuals with moderate to severe Intellectual Disability
(7, 8, 13). Faced with risk factors, females seem to be protected
from becoming autistic and the risk burden threshold that
females must carry (e.g., genetic variants) or experience (e.g.,
environmental exposures), before their ASD became evident is
greater than for males (9). Moreover, Female Autism Phenotype
theories suggest the presence of a female-specific manifestation
of autistic strengths and difficulties, which fits imperfectly with
current, male-based conceptualisations of ASD (2, 14–16). There
is evidence to support the existence of the female ASD phenotype.
For example, there is empirical evidence that girls and women
with ASD show greater social motivation and a greater capacity
for friendships than males with ASD (10–12). However, the
higher prevalence in males has been questioned several times in
light of various factors and simple averages of sex ratios may not
capture a key feature of ASD; also epidemiological studies with
similar inclusion criteria and recruitment methods demonstrated
wide variability in ASD sex ratios ranging between eight-to-
one and two-to-one (17). Recent meta-analyses are useful as an
overview to the male-to-female ratio in ASD, although some
researches do not take into account the methodological quality
of the study, especially regarding case ascertainment methods
such as Active vs. Passive case-finding methods (4). Studies that
actively searched for cases of ASD, regardless of whether they
had already been identified by clinical or educational services,
tended to identify more females with ASD than passive studies,
which only detect cases if they have already been diagnosed
by clinical or educational services. The results of the meta-
analysis of Loomes et al., showed that only when considering
the studies with the highest methodological quality and those
using active case- ascertainment methods, the male-female odds
ratios were lower and there was consistency between the studies,
with no significant heterogeneity observed. In light of this, the
male-to-female ratio of 4 to 1 is likely inaccurate and more
accurate male-to-female ratio for ASD is <3.5 to 1 (4). Despite
this, the bias in favor of males is confirmed and underlines
the importance of investigating possible differences in terms of
clinical manifestations and etiology.

SEX DIFFERENCE IN CORE SYMPTOMS

The clinical presentation of ASD symptoms can be dissimilar
in males and females individuals (10, 14, 18, 19). Additionally,
despite the fact that the tools and techniques for assessment
have been refined over time, a portion of girls with higher
cognitive and language abilities are at risk of not being identified
until later in life (18, 20–22). A population-based study in
the UK showed that females with similar levels of symptom
expression to males were less likely to receive a diagnosis of
ASD from clinical services (23). Moreover, boys are usually
detected by ASD screeners at higher rates than girls, although sex
differences in screening scores are not as pronounced (24, 25).
Recent studies on sex differences in ASD symptomatology often
show contrasting results and appear to vary across age groups
and symptom domains. For example, diagnosing ASD during
adulthood may be difficult for clinicians, for several reasons.
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Possible challenges are related to the difficulties encountered
in gaining information about the developmental history and
the presence of coping and camouflaging strategies (26). Adults
with ASD may have never referred to child or adult psychiatric
services (i.e., missed diagnoses), they may have been incorrectly
diagnosed with other psychiatric disorders during life and/or the
co-occuring psychiatric disorder could have partially cover ASD
core symptoms. Adults females and males with ASD usually have
first access toMental Health Services for social problems, feelings
of anxiety and mood disturbances. The most common earlier
diagnoses were anxiety and mood disorders or psychosis-related
disorders. The risk of going undiagnosed is even more elevated
for women. Females are frequently diagnosed later than their
male peers and this is possibly related also to standardization
of diagnostic tools on male samples. Moreover, women usually
present more internalizing than externalizing symptoms, which
might be easily confused with anxiety or depression and may
not be noticed (26). Regarding difference in core symptoms
adult females with ASD also reported significantly higher scores
than men in the Hyper/Hyporeactivity to sensory input domain
specifically among subjects who were misdiagnosed (27). The
presence of sensory profile abnormalities among the most recent
diagnostic criteria may lead to an improved recognition rate
of females with ASD (28). During childhood and adolescence
some studies have shown that females with ASD are less likely to
show overt patterns of limited and restricted interests thanmales.
Furthermore, considering the age developmental trajectories,
males and females with ASD before age of 4 seem to show
no gender differences in core symptoms (29, 30); besides, sex
does not seem to relate to the possibility of receiving an earlier
diagnosis (31, 32). Moreover, the frequency of regression (i.e.,
loss of previously learned language, motor, or other skills,
occurring around the age of 12 months) appears to be the
same in boys and girls with ASD (33, 34). In general, the age
trajectory of core symptoms in children with ASD does not
appear to vary by sex (35, 36). The exceptions are repetitive
behaviors and limited and restricted interests, which are more
common in males over 6 years of age (37). Further, there
is some evidence that females display limited and repetitive
behaviors and interests that differ from males. Most males
are fascinated by toys on wheels or screen time (e.g., video
games), while girls mostly show obsessions with random objects
(e.g., stickers, stones, pens, animals) and play obsessive and
repetitive games with other toys (16, 38). Differences in core
ASD symptoms may become more pronounced as individuals
age and cultural influences play a larger role into gender
differences (23) leading to inconsistent and conflicting results.
In addition, the difference in core symptoms could be also
related to the change in intervention strategies that occur
between toddlerhood to preschool-school age period partly
due to transition from “early home based” intervention to
“school-based” (23). Also camouflaging is often discussed in
relation to sex difference and offers a partial explanation of
increased rates of missed or delayed diagnosis. Results from
a recent meta-analysis suggest that research studies that have
used qualitative methodologies were not suggestive of sex or
gender differences in camouflaging (39–41). However, results of

studies with psychometrically rigorous methods of quantification
(i.e., continuous rating scales) generally supported sex differences
(42). When examining sex differences in camouflaging frequency
and pervasiveness autistic females, compared to males, reported
camouflaging more frequently and across more situations (43).

It is important to consider that, studies investigating
differences between male and females with ASD had some
limitations included modest sizes of female, and some studies
do not considered cognitive and developmental abilities (IQ)
which are necessary to best compare the two groups (44). The
effects of IQ and gender/sex on measures of ASD symptoms
still have to be well-documented, and previous studies failed to
consider multiple developmental variables or have not accounted
for these factors simultaneously (45, 46). Another factor, which
may contribute to the heterogeneity of results, is linked to the
type of variables taken into account for core symptoms. In fact,
a large variability in the results of studies using broad construct
has been reported (47). Broad constructs such as DSM-5 criteria,
“deficits in social interaction and communication” and diagnostic
tools such as ADOS-2 (48) and ADI-R (49), can define ASD
in an abstract way and can provide some evidence that cut-offs
may not always be useful (22). Gender/sex differences may not
be detected using broad constructs and this could potentially
contribute to the under-recognition of ASD in females (50,
51). Differently, studies that use narrow constructs (e.g., peer
relationship; social attention; interpersonal motor synchrony;
peer engagement behaviors; play behaviors; difficulty engaging in
back and forth conversations, use of atypical gaze, and specific
types of anxiety symptoms) could be more useful to highlight
specific differences. Studies have found that females with ASD
display greater engagement with peers on the playground (52),
greater social motivation (11), greater social reciprocity (53), and
showed increased use of pragmatic social communication (54).
Friendships can also be experienced differently with ASD females
which are more likely to be neglected by peers than ASD males,
who are more likely to be rejected (55).

GENDER/SEX DIFFERENCE IN

PSYCHOPATHOLOGICAL COMORBIDITIES

The prevalence of psychiatric comorbidity in ASD was also
documented by different studies (14, 56) which detected that
about 70% of individuals with ASD have behavior problems
and psychiatric comorbidity. In addition, 41% of children
and adolescents with ASD had two or more co–occurring
disorders and more than a third had three or more disorders
in addition to ASD. Specifically, the most frequent psychiatric
disorders encountered are Social Anxiety Disorder (29%),
Attention–Deficit/Hyperactivity Disorder (28%), Oppositional
Defiant Disorder (28%), Major Depressive Disorder (0.9%),
Dysthymic Disorder (0.5%), and Conduct Disorder (3%) (56).
An Italian study (57) recruited a large number of children
and adolescents with ASD and assessed psychopathological
comorbidities using the Child Behavior Checklist—CBCL (58),
showing that ∼30% exhibited internalizing problems and 6%
manifested externalizing problems (57). Some studies described
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that children and adolescent with ASD have more access to
Emergency Departments (ED) than children and adolescent
without ASD (59–62). Anyway, both females andmales with ASD
are likely to receive a diagnosis of mood disorders, behavioral
disturbances, relationship problems, and abuse less frequently
than other children and adolescents (61). Sex differences in
psychopathological comorbidity in children with ASD is still
debated and studies are still inconsistent (10, 57, 63, 64).
Overall, compared to females, males with ASD demonstrated
more externalizing behavior than females, such as aggressiveness,
hyperactivity. Conversely, females with ASD were more likely
to experience internalizing problems, depression, higher risk
of suicide, anxiety and other emotional problems (52, 61, 65).
However, studies still have different and contrasting results and,
for example, Frazier et al. found more externalizing behavior
problems, irritability, lethargy and self-injurious behaviors in
females than in males (66) while, other studies found higher rate
of psychiatric comorbidities in males than in females (57, 67, 68).
Also some studies that have used the DSM oriented scale of
Children Behavioral Checklist—CBCL (58), found no significant
difference between males and females (69). When looking at
hyperactivity and inattention, May et al. found sex differences
in males and female with ASD: younger males with ASD were
more impaired than younger females with ASD, also compared
to TD male and females (70). Hull et al. detected that females
with ASD showed lower Attention Deficit and Hyperactivity
Disorder (ADHD) scores than males (71). Also Salazar et al.
pointed out that males exhibit higher rates of ADHD and
Oppositional Defiant Disorder (ODD) compared to females in
children with ASD aged from 4.5 to 9.8 years with and without
intellectual impairment yielded some authors to consider sex as a
probable protective factor for externalizing problems (72). Age
trajectory of psychopathological comorbidities can show some
differences in males and females: during early adolescence ASD
females demonstrating higher levels of depressive symptoms
than either ASD males or TD females through parent- and self-
report questionnaires. During late adolescence, ASD males and
females were found to have similar levels of depressive symptoms,
although males seem to have an increase in symptoms along
time. With respect to anxiety, ASD females had higher levels
of anxiety than ASD males in early adolescence. During late
adolescence, both ASD males and females reported higher levels
of anxiety compared to TD (73). Moreover, females often had
a previous clinical history of multiple diagnoses: depression,
anxiety, anorexia nervosa and emergence of personality disorder
(63, 74). During adulthood, individuals with ASD have increased
rates of major psychiatric disorders including depression,
anxiety, bipolar disorder, obsessive–compulsive disorder (OCD),
schizophrenia, and suicide attempts. Women with ASD were
diagnosed more often with respect to men with anxiety, bipolar
disorder, dementia, depression, schizophrenic disorders, and
suicide attempts. Men, on the other hand, are more likely to
suffer from OCD, ADHD, alcohol abuse, drug abuse, and drug
dependence (75).

In summary, the most recent epidemiological and clinical
studies have confirmed male predominance in ASD prevalence,
sex difference in clinical manifestations and the difficulties in

diagnosing females. Most of the clinical, neurobiological and
preclinical studies have been focused on males (19, 76). It is
our opinion that the studies should be conducted to both sexes
and using human and animal models in order to enhance
the validity of neurobiological hypothesis to contribute to sex-
oriented prevention, diagnosis and treatment (77).

GENDER DIFFERENCES AND BRAIN

IMAGING

Magnetic Resonance Imaging (MRI) is nowadays a very powerful
tool to study and understand complex conditions, such as
ASD, especially by the exploration of microscopic anatomical
features such as gray matter and white matter volumes, cortical
thickness and diffusion tensor imaging parameters. In line
with other investigation methods, MRI imaging itself has
been attempting to find an explanation about the differences
between genders in ASD (78). Given the relatively small
number of females developing ASD, there are still very
few studies focusing on the differences between males and
females in structural and functional brain characteristics as a
direct consequence or possible cause of ASD. Compared to
other methods, neuroimaging provides information about the
final effect that multiple etiological mechanisms contribute to
generate. However, these observations may provide a better
comprehension of the physiopathological basis underlying this
complex disorder. MRI studies and findings may be classified
in two main categories: structural and functional changes.
Generally, studies on structural changes attempt to investigate
both gray and white matter volume looking across the whole
brain and identifying areas statistically different between the
two groups. In addition, studies can be also focused on the
volume of brain structures regardless gray and white matter
content. Some evidence supports the hypothesis that the brain
in children with ASD undergoes an abnormal growth trajectory
with a period of early overgrowth and a first deep differentiation
between boys and girls occurs right in the age range of 2–5
years. A study on gray and white matter volumes of 9 girls and
27 boys with an age range of 2–5 years (79) demonstrated that
girls share almost the same areas of size-related abnormalities
observed in males compared to healthy controls. Furthermore,
additional sites of abnormality were exclusively observed in the
female population, including enlargement in temporal white and
gray matter volumes and reduction in cerebellar gray matter
volume. Similar findings with the same number of female
patients were observed in a longitudinal study (80) whereby
the analysis revealed that large regions (total cerebral gray and
white matter, frontal gray matter, temporal gray matter, cingulate
gray matter, and parietal gray) showed an abnormal growth
in ASD patients and that this abnormal growth profile was
more pronounced in females than in males. A more robust
evidence on the topic was given by the multicenter Autism Brain
Imaging Data Exchange (ABIDE, http://fcon_1000.projects.nitrc.
org/indi/abide/) initiative who recruited a large dataset of over
500 individuals with ASD. Two studies (81, 82) exploiting this
dataset and including 36 and 47 females with ASD, respectively,
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reported a specific gender difference only when considering age
into account. In particular, bilateral inferior and middle temporal
lobes showed an effect of diagnosis and gender mainly in the age
range of 12–14 years (81). Differently, the study of Zhang (82)
showed that gray and white matter, and hippocampus volumes
were larger in adult and adolescent males with ASD compared
to controls, but such a difference was absent in females. In
addition, female adolescents and adults with ASD had smaller
right putamen volume than female controls, while there were
no differences in men with ASD. The study of Schaer et al.
analyzed, from the ABIDE dataset, verbal performance and
IQ of 53 females with ASD within a wide age range (8–39
years) comparing them with a sample of controls matched for
age. Authors showed that in a factorial design with diagnosis,
gender and interaction between them, diagnosis did not have
a significant main effect on cortical volume, thickness, or local
gyrification. Furthermore, the gyrification of the ventromedial
and orbitofrontal prefrontal cortices was only decreased in males
with ASD compared to controls, whereas females seemed to have
rather an increase that did not reach statistical significance (83).
To date, very little is still known for females concerning the
effect of rebalance seen in males. The large cortical overgrowth
occurring in very early age in autistic males seems to be reduced
in the period of adolescence. In males, the phase of substantial
changes on cortical development in ASD is indeed moderated
during the following phases, reducing the thickening in early
adulthood. The same effect of age is not seen in females,
mostly due to insufficient dataset power to formally test for the
moderating role of age on sex/gender-differential neuroanatomy
in ASD. A further evidence of gender differences in ASD was
seen in a study of Nordahl et al. where an early overall brain
volume overgrowth was evident in some preschooler boys with
regressive ASD and absent in girls. However, the same group
interestingly showed also that corpus callosum differed in size
and structure in both boys and girls relative to age-sex matched
controls (84). Callosal organization was evaluated using both
diffusion tractography to define subregions based on cortical
projection zones and midsagittal area analysis. In a sex-specific
comparison with the control group, both males and females
with ASD had smaller regions dedicated to fibers projecting
to superior frontal cortex. However, differences between males
and females were found since the former had a smaller callosal
region dedicated to the orbitofrontal cortex and the latter had
smaller callosal region to the anterior frontal cortex. A recent
large multinational sample from the Enhancing Neuroimaging
Genetics throughMeta-Analysis (ENIGMA)ASDworking group
comprised 1,571 patients with ASD (224 females) and 1,651
healthy control subjects (age range, 2–64 years). The authors (85)
found no evidence of a sex-by-diagnosis interaction and conclude
that the increased volumes and thickness in both males and
females with ASD could be taken as evidence for the “extreme
male brain” hypothesis (6), where human maleness is strongly
related to ASD. This hypothesis has been supported by a study of
Ecker et al. that developed a predictive model of biological sex
based on cortical thickness (86). The study was performed on
98 individuals with ASD (49 females and mean age = 23 years)
and it examined the probability of the disease as a function of

normative sex-related phenotypic diversity in brain structure. In
particular, 68.1% (32 of 47) of all biological female individuals
were correctly allocated to the category of phenotypic female
individuals and 74.5% (38 of 51) of all biological male individuals
to the category of phenotypic male individuals. Conversely, 39 of
49 female individuals (79.6%) were allocated to the category of
phenotypic male individuals. No such differences were observed
in male individuals, who were correctly allocated to the male
category in 81.6% (40 of 49) of all cases. Based upon these
findings, the authors conclude that female individuals with a
more male-typical pattern of brain anatomy are significantly
more likely to have ASD compared to female individuals with a
characteristically female brain phenotype.

The idea that the overall female pattern of ASD-related brain
changes can be a resembling to neuronal masculinization seems
to have evidence not only in morphological patterns (87), but
also in brain functioning and connectivity. Considering the fact
that healthy males normally show higher functional connectivity
compared to healthy females, a study on resting state fMRI (88)
was able to prove how females with ASD tend to present a pattern
of hyperconnectivity when compared to the same gender control
group. The hypothesis of this female masculinization process
in ASD is more supported compared to a male feminization
one. Conversely, the mentioned above study by Di et al. with
resting-state functional MRI data (28 autistic females and 129
autistic males) looked at functional connectivity differences
between male and females with ASD showing different patterns
(81). Functional connectivity among 153 regions across whole
brain showed a diagnosis by sex interaction in the connectivity
between the precuneus and medial cerebellum as well as the
precunes and dorsal frontal cortex. While males with ASD
presented higher connectivity in these connections compared
with healthy males, females with ASD had lower connectivity.
A study on large-scale resting state fMRI samples, from the
open-access ABIDE database (760 healthy males and 471 and
360 males with ASD), partially tested the hypothesis of the
Gender Incoherence (GI) model (89). GI predicts a shift-
toward maleness in females, yet a shift-toward-femaleness in
males with ASD. Across all resting state fMRI metrics, results
revealed coexisting, but network-specific, shift-toward-maleness
and shift-toward-femaleness in males with ASD. A shift-
toward-maleness mostly involved the default network, while a
shift-toward-femaleness mostly occurred in the somatomotor
network. Similarly the fMRI from ABIDE dataset was used by
Tavares et al. by reporting as principal findings an ASD female-
specific altered connectivity involving visual, language and basal
ganglia networks, in line with ASD cognitive and neuroscientific
theories (90). Another recent study reported the use of fMRI from
the ABIDE in the implementation of a novel explainable artificial
intelligence (XAI)-based framework, using also deep neural
networks (DNN), to investigate neurological principles of ASD
(91, 92). In particular, authors developed a novel spatiotemporal
DNN model to learn functional brain organization patterns that
could distinguish between the two gender groups. Main findings
indeed reported the identification of functional brain features,
especially between the primary motor cortex and supplementary
motor area that clearly distinguished between males and females
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with ASD. Moreover, the analysis conducted by Supekar et al.
also identified bilateral middle and superior temporal gyri as
brain areas whose features clearly distinguished between the two
groups (92). As confirmation of this, aberrancies in the extended
motor network and impairments in areas of the temporal cortex
associated with language processing are prominent features of
ASD (93, 94).

NEUROBIOLOGICAL ASPECTS INVOLVED

IN SEX-SPECIFIC BEHAVIORAL

DIFFERENCES IN ASD

Brain Sex-Related Morphological and

Functional Difference in ASD Patients: The

Extreme Male Brain Theory
The way by which the sex difference-related male bias is
connected to the etiology of ASD has been addressed by
researchers (95–97). The extreme male brain (EMB) theory states
that specific cognitive and behavioral dimorphisms, linked to
the ASD susceptibility, are determined by morphological and
functional differences characterizing male and female brains.
These include: (i) the total size and volume of the brain (98, 99),
(ii) the white/gray matter ratio (100), (iii) the sexual dimorphism
of specific brain regions (101, 102), and (iv) the inter/intra-
hemispheric connectivity (6, 103, 104). Experimental procedures
performed both in humans (105) and in animalmodels (106, 107)
sustain the hypothesis by which, at behavioral level, male brain
is focused on “systemizing,” defined as “the ability of analyzing
a system and understanding the rules that govern it.” On the
contrary, female brain is inclined to excel in “empathizing,”
that is the ability to “identify mental states and to respond
with appropriate emotions” (108, 109). In sight of this notion,
individuals with ASD develop an extreme version of the male
brain, thus superior in systemizing performances but unable to
empathize (6). A number of studies support this hypothesis:
individuals with ASD score higher in systemizing quotient (SQ)
parameters (e.g., attention to details, analysis of systems) in
respect to neurotypical male individuals who, in turn, score
higher than females. In the same way, woman score the best when
performing in empathizing quotient (EQ) tests (e.g., Language
and empathy) in respect to men, while individuals with ASD
score the lowest (6, 110, 111). Morphological evidences seems
to support the EMB theory, as boys have larger brains than
girls (99) and this difference is more marked in children with
ASD (112). The same evidence is recognized in specific brain
regions such as the amygdala (113). Despite these evidences,
EMB theory loses consistency when specific brain regions from
ASD male and female subjects are compared. In particular,
a study by the Critchley’s laboratory attests that even if sex-
related differences can be assessed in total gray and white matter
volumes from male and female neurotypical individuals, these
differences weaken in individuals with ASD and completely
disappear when the investigation of specific brain areas is
performed (114). Another study by Lai et al. attests that, at
morphological level, a number of brain areas show differences in
gray/white matter volumes, when ASD-affected male and female

brain is compared with their matched controls. Nevertheless,
when the comparison between ASD male and female brains
is performed, the overlap between atypical regions is minimal,
underlining that distinct dimorphic neuroanatomical features
may characterize ASD (87). Although apparently, EMB theory,
by which ASD condition is the result of an amplification of the
typical sexual dimorphic differences, is fulfilled in ASD females,
where structures showing sexual dimorphism display alterations
in white/gray matter volumes, this is not true in male ASD.
This suggest that even adopting the same behavioral criteria
for ASD diagnosis, many neuroanatomical aspects can differ
(87). Brain overgrowth and macrocephaly are often observed
in ASD diagnosed children (115). Although not directly related
to sexual dimorphic differences in normal individuals, affecting
particularly frontal and anterior temporal brain regions. This
phenomenon is not present at birth (116), but it is observed in
20% of children with ASD at 2 years of age (117, 118). Both girls
and boys with ASD show an abnormal enlargement of whole
brain and of frontal, temporal and cerebellar white/gray matter
volumes, nevertheless girls with ASD display more severely
affected temporal white and temporal and cerebellar gray matter,
thus showing a significantly greater degree of impairments in
respect to boys (79). Despite this result, sample size limitations
in female group raise concerns and has to be taken in account.
A study by Nordahl et al., involving 180 children of 2–4 age
highlighted that macrocephaly was a distinctive sign only in
males and no distinguishable alterations were observed in 24
affected females (119).

Hormonal Differences in ASD Patients
The sexual dimorphism that characterizes the mammalian brain
may be explained, at least in part, by developmental differences,
by which the gonadal hormones influence is responsible for. In
particular, while the female brain develops in relative absence
of sexual hormones, starting from the 11 to 13th embryonic
day (E) of life in rodents (120) and between 8 and 24th
week in humans (121), the primordial testis synthesizes fetal
Testosterone (fT), determining the male brain masculinization
(122). This hormonal surge produces the structural, behavioral
and cognition sex differences characterizing male and female
brain (121, 123, 124) acting mainly through the aromatization
of Testosterone into 17β-Estradiol (125), although specific
androgen receptor-mediated activities are known (126, 127).
Consistently, an hypermasculinization effect, induced by
increased levels of fT could produce the extreme male brain
conditions that lead to the development of autistic traits (6).
Different evidences follow these principles: (i) an abnormal
increase of fT, determined by an inefficient synthesis of cortisol
in the adrenal glands, produces an increase of autistic traits
manifestation in females affected, in respect to their typically
developing sisters, leading to a genetic condition known as
congenital adrenal hyperplasia (CAH) (128). (ii) fT levels are
found to be inversely-correlated to the diagnostic behavioral ASD
evaluation (i.e., empathy, eye contact, vocabulary development)
(129, 130) and directly-correlated to autistic traits, including
systemizing quotient and narrow interests (131–134). (iii)
The permeability of the placental barrier to the diffusion of
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testosterone may expose females to ASD susceptibility, although
this is not observed in males, where the high embryonic testis-
mediated fT synthesis precludes maternal influences. In this
scenario, it is important to note that whether prenatal gonadal
hormones are the triggering cause of ASD, non-canonical
situation in the hormonal profile can persist in post-natal life.
Indeed, many medical conditions related to androgens (i.e.,
acne, hirsutism and Polycystic Ovary Syndrome) are frequently
present in women with ASD (135). Furthermore, both Androgen
Receptor (AR) and genes controlling Testosterone metabolism
are associated with ASD (136–138). Thus, in the search of specific
diagnostic biomarkers several studies analyzed hormones’ levels
in individuals with ASD, in respect to control subjects and
between males and females with ASD. However, it should be
considered that in addition to Testosterone and Estradiol, two
hormonal metabolic intermediates, the dehydroepiandrosterone
sulfate (DHEA-S) and the androstenedione, are produced
by gonads and adrenal glands, thus contributing to the total
systemic levels of active androgens (139). When the complete
asset of gonadal and adrenal sex hormones were analyzed
in individuals with ASD patients compared to their sex-
matched controls, increased levels of androstenedione have
been found (140). In line with the EMB theory, an increase of
this testosterone precursor could determine high levels of fT
during embryonic life, especially in females where the adrenal
gland secretion of androstenedione could provide to the lack
of the testis-mediated testosterone synthesis. It is worthy to
note that no differences in androstenedione levels between
male with ASD and female probands were found, although
slight fluctuations were observed in females during follicular,
ovulatory and luteal phases. Moreover, in support of the EMB
hypothesis we report data from a recent meta-analysis on the
2D:4D ratio in various psychiatric district, including ASD. The
second-to-fourth digit ratio (2D:4D) is an indirect, retrospective,
non-invasive measure that correlates negatively with intrauterine
exposure to testosterone. La meta-analysis di Fusar et al.
evaluated if 2D:4D differs between patients with psychiatric
disorders and controls. They included 43 case-control studies
which compared the 2D:4D ratio of patients with ASD spectrum
disorder (ASD) (n = 16), and other psychiatric disorders.
Meta-analyses founded that in the ASD 2D:4D ratio was
significantly lower than healthy controls (141). On the contrary,
a marked sex-related disparity was observed in testosterone
and DHEA-S levels, with increased concentrations in males
and higher estradiol expression in females (142). Although the
differential secretion of gonadal hormones may explain these
findings, the absence of a normal sexual dimorphism as observed
in androstenedione synthesis in individuals with ASD, could
play a role in ASD susceptibility. In particular, while in males
only a small fraction of testosterone derives from the synthesis
of the androstenedione, whose major source originates from the
testis, in females, 60% of the circulating testosterone comes from
the peripheral androstenedione conversion (143). Although is
no longer a diagnosis on its own, a marked sexual dimorphism
has been reported in individuals with Asperger’s syndrome (AS),
where differences in the expression of serum hormones and
cytokines have been demonstrated (142). In particular, a general

upregulation of cytokines and inflammatory molecules (e.g.,
IL-10, ICAM-1, TNFα, and others), with the only exception
of IL-7, was observed in males respect to female, whereas the
females with ASD displayed higher amounts of hormones and
growth factors (BDNF and Insulin), with the only exception of
the Growth Hormone (GH) concentration (142).

The Female Protective Effect
Although an environmental influence is hypothesized to take
place in ASD etiology (144, 145), a strong genetic component
may influence the onset of the disorder, as a 90% heritability has
been found in monozygotic twins (146), while only 0–10% was
observed in dizygotic twins (147). Single nucleotide mutations
and copy number variants (CNV) have been accounted for
ASD etiology, although most de novo CNV and genetic rare
mutations are related with <1% of cases (148). Therefore, rather
than a single causative gene, genetic heterogeneity, multiple
genes involvement and epigenetic influence (i.e., environmental
effects) may concur to the insurgence of ASD. The reduced
incidence of ASD in females could be due to specific genetic
differences connected to sexual dimorphism. Two models have
been proposed to explain this reduced incidence in females:
(i) multiple interacting genes, leading to define a threshold of
liability higher in females than in males (149). This “Female
Protective Effect” (FPE) could explain the more severe prognoses
in females with respect to males (13) and the observed reduction
of male to female ratio from 4:1 to 2:1 in subjects with severe
intellectual disability (8). (ii) an increased penetrance of genes
responsible for ASD in males (150, 151). A study from Levy
et al. demonstrates that de novo CNV affect more genes in
ASD females respect to males and suggests that the frequency
in autosomal de novo CNV is higher in the former (152). The
same trend, with more CNV scattered in the females genome,
was observed by analyzing the relationship between rare de
novo CNV and sex (153). Of both these studies suggest that an
increased mutational burden is needed in females to develop
neurodevelopmental disorders and in particular ASD. Similarly,
Eichler et al. demonstrated that, although small and rare CNV
(i.e., <400 kb and <1% frequency) equally occur in ASD males
and females, CNV larger than 400 kb were 2-fold increased in
ASD females, where also the CNV proportion is larger (154),
suggesting a greater genetic susceptibility of males than females
to develop ASD symptomatology (13).

MEASURING ASD-RELEVANT

BEHAVIORAL MALE AND FEMALE

PHENOTYPE IN THE LABORATORY

SETTING

Success in translational neuroscience will likely require
integration of information from diverse model systems along
with analysis of human biological samples, large multifaceted
human datasets, and human experimental biology. Research
performed in laboratory animals is essential to elucidate disease
mechanisms because it makes possible functional investigation
of disease-associated etiological factors in living brains (155).
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Because of their close evolutionary relationship, mice and
humans share preservation of genes, biological processes, brain
circuitries, and to some extent, behaviors (156). Although ASD
is a uniquely human disorder, many of its core deficits can be
modeled in rodents through fine behavioral testing (157). Our
ability to employ experimental manipulations through genetic
engineering and other cutting-edge technologies may not only
help us probe the underlying mechanism of the disorder, but
may also lead to the development of targeted and effective
therapeutic approaches that can later be translated to humans
(158). In this context, rodent models have been useful for
ASD research in several ways: (1) they present a controllable
intact biological system to understand the complex interaction
of mutated gene products with other proteins, helping to define
convergent molecular pathways that that can later be targeted
for treatment; (2) they can be used to define the anatomical
and physiological changes in precisely defined microcircuits that
may contribute to ASD, helping identify fundamental changes
in neural circuitry and biomarkers that may be translated to
use in humans, predicting outcome and assessing response to
treatment; (3) they would be useful for screening therapeutic
effects of behavioral and pharmacological treatments; (4) the
advent of models that allow temporally specific genetic deletion
and rescue of ASD-related genetic changes would let us to define
the critical developmental windows where interventions would
be effective; (5) they would be useful in the future for assessing
the interaction of specific environmental insults with autism
susceptibility genes (158). Besides that, rodent models are able
to reproduce sex differences associated to psychiatric disorders in
their prevalence, symptomatology and treatment response (76),
providing detailed mechanistic information about sex differences
in ASD in terms of manifestation, disease progression, and
development of therapeutic options (159).

Male Predominance in Rodent Models

of ASD
Animal models of ASD have been mainly developed and
validated in male subjects (76). The main reason for this is
the diffused assumption that the cyclic variation in female
sex hormones may confound the results (160, 161). As a
consequence, for years, findings on males were generalized to
females, with the ratio of male-only to female-only studies in
neuroscience research being around 5:1 (161). Nowadays, there
is increasing awareness that sex influences have a profound
impact on brain function and new emphasis has been given in
recognizing the need of considering gender and sex differences in
preclinical studies (162). Thus, despite the majority of preclinical
studies in ASD research were performed in males only, few
studies are emerging describing the differences in autistic-like
traits between male and female animal models.

Behavioral Sex–Differences in Rodent

Models of ASD
In line with the hypothesis that the pathogenesis of ASD is
related to environmental and genetic factors, or more likely to
a combination of both, the preclinical models of ASD currently

available are based on either genetic or environmental factors
known to be involved in the pathogenesis of ASD.

Genetic Rodent Models of ASD
Mutation in the Fragile X Mental Retardation 1

(FMR1) Gene
Fragile X Syndrome (FXS) is the most common monogenic form
of ASD. The prevalence of the FXS full mutation in the general
population is estimated as 1 in 5,000 in males and as 1 in 4,000
to 1 in 8,000 in females (163). The syndrome is associated with
an unstable expansion of a CGG trinucleotide repeat within
the 5

′

untranslated region (5
′

UTR) of the FMR1 gene causing
the loss of the Fragile X Mental Retardation Protein (FMRP),
a key RNA-binding protein involved in synaptic plasticity and
neuronal morphology (164). The prevalence of ASD in FXS
patients was reported to be ∼50–75% in males and 25% in
females (165). Since few years ago, the only animal model of
FXS was the Fmr1 knockout (KO) mouse, obtained by the
inactivation of the murine gene that causes the loss of FMRP
production. Fmr1 KO mice reproduce the major behavioral and
synaptic alterations found in FXS patients (166). More recently,
thanks to zinc-finger nuclease (ZFN) and CRISPR technologies,
Fmr1 KO rats have been generated (167–169). Mutant Fmr1
KO mice and rats display several behavioral alterations which
characterize FXS in humans, such as altered social interaction
and social play behavior, social anxiety, defects in visual attention
and auditory dysfunctions, cognitive deficits, repetitive behaviors
and hyperactivity (166, 168–170). To date, only few studies
have simultaneously analyzed male and female Fmr1 KO
animals. Some studies found no differences between male and
homozygous female Fmr1 KO mice at the behavioral level (171,
172). In particular, when tested in tasks exploring spatial learning
and memory, both male and homozygous female Fmr1 KO mice
exhibited very similar impairments (171). In line with these early
findings, both male and homozygous female Fmr1 KO mice
displayed impaired contextual and passive avoidance memory,
significant audio-genic seizures and hyperactivity in the open
field and light–dark tests (172). Conversely, a study performed
by Nolan et al. (173) revealed that the deletion of the Fmr1
gene produces sex-specific behavioral changes. In particular,
Fmr1 KOhomozygous femalemice displayed increased repetitive
behaviors when tested in the nose-poke test and enhanced motor
coordination on the accelerating rotarod compared to wildtype
females, whereas a similar effect lacked in Fmr1 KO males which
showed hyperactivity in the open field (173). Since the FMR1
gene is located on the X chromosome, when males inherit the X
chromosome with the FMR1 mutation from their mother, only
the X chromosome is affected (174). Females, instead, which
have two X chromosomes, could present a second, “unaffected”
X chromosome that allows the production of some FMRP, which
is however not sufficient to restore the full FMRP function
in most heterozygous females (175). Thus, when autistic-like
behaviors were analyzed in heterozygous Fmr1 KO female
mice, abnormalities in social interaction and communication
were detected at infancy and at the juvenile age (176, 177);
at adulthood, some of these alterations disappeared, while
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avoidance of social novelty appeared, together with hyperactivity
and reduced contextual fear response (177).

Mutation in the Phosphatase and Tensin Homolog on

Chromosome Ten (PTEN) Gene
The PTEN tumor suppressor gene, which encodes a widely
expressed phosphatase, was initially identified as a cancer
predisposition gene (178, 179). In the last decade, germline
mutations in PTEN were discovered as a cause of ASD
in children with macrocephaly (180). In particular, the
prevalence in PTEN mutation was found to be of 8.3%
in pediatric patients with ASD and 12.2% in subjects
with developmental delay/mental retardation (181). The
PTEN gene seems to have a critical role in the regulation
of the phosphoinositide 3-kinase/AKT/mammalian target
of rapamycin (PI3K/AKT/mTOR) intracellular pathway,
considered to be involved in the behavioral abnormalities that
characterize ASD (182). At the preclinical level, conditional
PTEN null mice have been generated, leading to a controlled
loss of PTEN causing different consequences depending on the
cell type or its state of differentiation. Conditional PTEN null
mice with loss of the mouse ortholog of the human PTEN gene
in neurons of the cortex and hippocampus display autistic-
like traits such as reduced reciprocal social interactions, low
sociability, impaired nest-building behavior, impaired social
recognition (183, 184). Only few studies have been performed
in conditional PTEN null female mice. Tilot et al. generated
a germline knock-in mouse model of cytoplasm-predominant
PTEN (the homozygous PTENm3m4 mice) that displayed sex-
specific behavioral deficits in sociability. In particular, PTEN
mutant males showed increased social motivation compared to
PTEN mutant females and wildtype animals (185). Conversely,
other studies found that female PTEN mice are impaired in both
the social approach and the social novelty phase of the three
chamber task (186, 187) and show altered emotional learning
(187). At infancy, sex- and age-specific differences in the acoustic
and temporal structures of USVs have been observed in a
neuron-subset (NS) specific PTEN KOmouse model (188).

Mutations in Neuroligin (NLGN)−3 and−4 Genes
Neuroligins (NLGNs) are essential postsynaptic neuronal cell
adhesion molecules contributing to the maturation and function
of both glutamatergic and GABAergic synapses. These molecules
act with their presynaptic and intracellular binding partners, β-
neurexins and SHANK3, respectively (189, 190). Mutations in
the Neuroligin (NLGN)-3 and−4 genes have been associated
with mental retardation and ASD (191–193) NLGN mutations
seem to alter proper synapse maturation during the development
of neural circuits shifting the balance between glutamatergic
and GABAergic synapses (194, 195). As other models of ASD,
differences between male and female NLGN-3 and−4 mutant
mice have been poorly investigated. However, evidence exists that
sex differences are displayed by this animal model of ASD. Ju
et al. reported that NlGN-4 mutant mice show communicative
deficits that are more prominent in females (196). A study
performed by Kalbassi et al. showed that NLGN-3 KO female
mice were insensible to the social environment, and thus to

their peers behavior, compared to NLGN-3 KOmale mice, which
displayed deficits in sociability and social submission together
with increased anxiety (197).

Mutations in the Tuberous Sclerosis Complex (TSC) 1

and 2 Genes
Mutations in the TSC1 or TSC2 genes cause an extensive
neuropathology, leading to ASD features in in 25–50% of
patients. TSC patients display the core symptoms of ASD,
sometimes associated with seizures, intellectual disability and
developmental delay (198). On this basis, mutant mice for the
TSC1 or TSC2 genes have been generated. TSC-associated ASD
seems to occur in a 1:1 ratio (199, 200) suggesting that similar
ASD-like phenotype should be present in males and females. In
line with this notion, social impairments seem to be similar in
manifestation and magnitude between male and female TSC1
and TSC2 heterozygous mice, reflecting the equal sex ratio in
human patients with TSC-associated ASD (201). However, in a
novel TSC mouse model based on the specific loss of TSC2 in
Purkinje cell, the TSC2f/–Cre mouse, a stronger impairment in
social novelty was found in male compared to female mice (202).

Heterozygous Mice for the Methylenetetrahydrofolate

Reductase (Mthfr)
Defects in Mthfr gene regulation and abnormal homocysteine-
folate metabolism have been associated to an increased risk
of birth defects such as neural tube defects, oral clefts, and
Down syndrome (203). Furthermore, an increased risk has
been reported for neuropsychiatric diseases such as depression,
obsessive-compulsive disorder, schizophrenia and ASD (204–
207). Thus, since Mthfr homozygous mutant mice are not
vital, Mthfr heterozygous mutant mice have been proposed as
preclinical model of ASD. No sex-differences were found in both
male and female Mthfr mutant mice displaying cognitive deficits,
hyperactivity, anxiety and low sociability (208, 209). However,
when measured in the open field and in social preference tasks,
anxiety level and social deficits were higher in females compared
to males (208).

The Black and Tan Brachyury (BTBR) Mouse Strain
The BTBRT+ tf/J mousemodel of ASD is an inbredmouse strain
presenting behavioral deficits that mimic the core symptoms
of ASD. For instance, BTBR mice show social impairment,
repetitive behaviors and an unusual pattern of USVs at infancy
and adulthood (210, 211). Few studies have analyzed the
behavioral differences between BTBR male and female mice.
Coretti et al. reported that female BTBR mice exhibit a specific
increase in self-grooming behavior compared to male BTBR
mice (212). Furthermore, male but not female BTBR mice
expressed higher rates of grooming behavior and locomotor
activity compared to control animals (213), revealing gender
differences in the expression of restricted, repetitive behaviors. As
for the social domain, when tested in three chamber task, male
BTBR mice showed social deficits that were not evident in female
BTBR mice (214). Conversely, when paired with novel partners
of different strains (215), and during female-female interactions
(211), BTBR female mice engaged in less social investigation
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than their male counterpart, indicating that sex-differences in
the social behavior displayed by BTBR mice may depend on
specific environmental conditions. As for the communicative
domain, both male and female BTBR mice showed an unusual
pattern of USVs when removed from the mother and siblings
(210), revealing an atypical communication that persists in
adulthood (211).

Environmental Models of ASD
According to the multifactorial theory of the etiology of ASD,
which postulates a crosstalk between genetic susceptibility and
exposure to environmental factors at the basis of the disease,
several environmental factors have been correlated with ASD
(216). In particular, maternal exposure to several teratogenic
agents (such as infections or teratogenic compounds as ethanol,
thalidomide, valproic acid, and misoprostol) has been long
investigated as a possible cause of ASD (217). The effects of
environmental factors on offspring development are strongly
related to the gestational time window in which the exposure
occurs, with the first trimester of pregnancy being the most
susceptible period in humans (218). Based on the clinical
findings, different preclinical models of ASD have been conceived
that use controlled exposure of laboratory animals to one of the
environmental factors involved in the human disease.

Prenatal Exposure to Valproic Acid
Valproic acid (VPA) is a widely prescribed medication used
for epilepsy and mood disorders. The use of VPA during
early pregnancy has been related to several minor and major
malformations in the offspring, such as neural tube defects,
developmental delay and ASD (219–222). Based on these clinical
observations, prenatal VPA exposure in rodents is a widely used
environmental preclinical model of ASD with face and construct
validity (223, 224). Indeed, studies in both rats and mice confirm
that prenatal VPA exposure leads to autistic-like behaviors in
the offspring, including social abnormalities, repetitive behaviors
and disrupted communication (223, 224). The prevalence of ASD
in children exposed to VPA during pregnancy is characterized
by a 1:1 male to female ratio (225). In rodents, prenatal
exposure to VPA induces autistic-like behaviors in both the male
and female offspring (166, 226, 227), although these deficits
appear more pronounced in males compared to females (166,
228). As an example, increased electric-shock induced seizure
susceptibility, reduced pain sensitivity and increased anxiety-
like behaviors were observed in VPA-exposed male rats but
not in their female littermates (228–230). However, increased
repetitive/stereotyped behaviors were observed in both male and
female VPA-exposed rats together with similar abnormalities
in the visuospatial attention and sensorimotor gating behaviors
(166, 228, 231). Concerning the social domain, controversial
results have been reported. Some authors reported aberrant social
behaviors only in male rats prenatally exposed to VPA (228,
229), while some others recognized milder (166, 230) or similar
(231, 232) social impairments in VPA-exposed female compared
to male animals. The differences described could be due to the
rat strain, the behavioral paradigms used and to the VPA dose
administered during pregnancy. It is possible that VPA exposure

may induce age-dependent social deficits in the female offspring,
as for example VPA-exposed females showed atypical patterns of
social play behavior at adolescence like their male counterpart,
although they showed normal sociability in the three-chamber
test at adulthood (166). Similar results were obtained in mice,
as for example both male and female VPA-exposed animals
exhibited anxiety-like behaviors and memory deficits, with social
interaction deficits limited only to male mice (227).

Rodent Models Based on Maternal Infection
Epidemiological studies in humans have provided substantial
evidence that prenatal infection is associated with an increased
risk for the development of several psychiatric disorders,
including ASD. The consequences of maternal infection on the
offspring are highly dependent on the stage of fetal development
at the time of the infection: the fetus seems to be more
susceptible to viral infections in the first trimester of pregnancy,
while bacterial infections seem to be more problematic in the
second trimester (233). Rather than the involvement of direct
central nervous system infection, it is more likely that an
alteration of the immune system of the mother or offspring act
as a trigger event capable to induce ASD (234). Indeed, the
activation of the maternal immune system after exposure to
viruses and bacteria during pregnancy induces cytokine release
able to cross the placenta and alter fetal brain development
(235). In line with epidemiological data, preclinical studies
performed in rodents have shown thatmaternal infection induces
autistic-like symptoms in the offspring. To date, the most used
rodent models of ASD based on maternal immune activation
(MIA) employ immunogens such as lipopolysaccharide (LPS)
and polycytidylic acid (poly I:C) to mimic bacterial and viral
infections, respectively (236). Injection of poly I:C on GD
9.5 or 12.5 causes impairments in social interaction, anxiety
and repetitive behaviors in the offspring (237). Similarly, LPS
exposure on GD 9.5 resulted in social deficits, communication
abnormalities and cognitive inflexibility (238). Few studies
analyzed sex-differences in theMIAmodels of ASD. For example,
prenatal exposure to LPS was found to produce pronounced
hyper-sensitivity to acoustic startle stimuli in male, but not in
female rats (239). In mice, both male and female MIA-exposed
animals were found to display sex-specific behavioral ASD-
like impairments (240–242). Interestingly, in the three-chamber
test, female mice prenatally exposed to both poly (I:C) and
LPS showed a reduction in social preference and displayed no
stereotypies, while males had social dysfunctions when exposed
to prenatal poly (I:C) but not to LPS, and they displayed
stereotypies (240). On the contrary, in another study, maternal
poly (I:C) exposure reduced social interaction and increase
grooming behavior in male but not in female exposed mice (241).
Nevertheless, another study revealed that prenatal exposure to
poly (I:C) impaired social interaction and increased marble
burying in both the male and female offspring, whereas increased
anxiety and decreased pre-pulse inhibition were observed only
in males (242). Furthermore, Schwartzer et al. failed to detect
pronounced sex-specific effects ofMIA exposure in ASD-relevant
behaviors (243). Again, these controversial findings could be
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explained by the variability in dosage and timing of immunogen
injection during pregnancy.

CONCLUDING REMARKS

Although the most recent epidemiological studies have revised
downwards the higher prevalence of ASD in males compared
to females from 4:1 to 3:1, the data of the highest prevalence in
male compared to females is well-documented (4). In addition,
several studies are increasingly confirming the specificity of
sex differences in clinical phenotype (47). This justifies the
need to better understand the causes of this difference and
to experimentally test theoretical models such as Extreme
Male Brain (244), Female Protective Effect (7–9), and Female
Autism Phenotype (10–12). The differences in phenotypic
manifestations suggest the need to deepen the sex variability at
neurobiological, brain imaging and laboratory level. This may
allow an adaptation of tools and methods for identification,
evaluation and intervention based on sex differences. In the
specific, the imaging remains a powerful tool to see subtle
differences in brain structure. In particular, MRI techniques are
among the most promising non-invasive tools for investigating
the neurological underpinnings of ASD, which are essential for
developing discriminative neuroimaging biomarkers for clinical
diagnosis with the potential to inform precision psychiatry.
Despite the difficulty of having a large number of girls in the
ASD group, the study of Supekar et al. suggested to integrate
three publicly available data-sets to address this problem (92).
While, it is also important that preclinical studies with animal
models take serious account of the sex/ difference in ASD.
Being a neurodevelopmental disorder, ASD is notoriously
difficult to model in laboratory animals. Indeed, since the exact
etiology of ASD is unknown and given the variability in the
phenotypic presentation of its core and comorbid symptoms,
generating an animal model able to capture at once all the
facets of ASD is far from simple. In the last decade, a
number of rodent models of ASD have been generated, able
to reproduce at least the core features of the pathology with
a certain reproducibility in male animals (157, 177, 245). On
the other hand, although it is now accepted that preclinical

studies should include female as well as male subjects, the
behavioral characterization of female rodent models of ASD
is still at the beginning. Some studies that included female
subjects reported controversial results and sex differences were
not always evident [i.e., (171, 172, 201, 209)], thus failing in
reporting the established sex dimorphism displayed by ASD
patients (65, 246). This may be due to different reasons, such
as the rodent model used (i.e., the specific mutation or the
environmental factor used to mimic the disease), the different
ASD male to female ratio caused by the chosen mutation
or environmental factor (i.e., VPA-associated ASD seems to
occur in a 1:1 ratio (225) compared to the 3:1 ratio of ASD
in the general population (4) or the behavioral tasks used to
assess ASD-like features. Thus, there is the possibility that, in
addition to the canonical behavioral paradigms used to detect
the core symptoms of ASD, other tasks should be used to
assess the female autistic phenotype in laboratory animals, in
order to detect subtler symptoms often reported by female ASD
patients such as depression, anxiety and emotional changes
(15, 73, 74, 247). However, other studies including female
rodents revealed a substantial amount of sex-related differences
in several behavioral tasks commonly used to assess core and
comorbid autistic-like features (166, 180, 212, 213, 228). Taken
together, these considerations underscore the need to include
female subjects in clinical and preclinical studies with specifically
targeted assessment tools. Moreover, studying sex-dependent
behaviors such as sociability or emotional reactivity could be a
novel approach to reveal ASD sex-dimorphic behavioral features
that will help to shed light on the underlying mechanisms at
the bases of the disorder and even to further improve the
identification, evaluation and intervention in ASD based on
sex differences.
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