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Blood flow measurements in the ascending aorta and pulmonary artery from phase-
contrast magnetic resonance images require accurate time-resolved vessel segmenta-
tion over the cardiac cycle. Current semi-automatic segmentation methods often
involve time-consuming manual correction, relying on user experience for accurate
results. The purpose of this study was to develop a semi-automatic vessel segmenta-
tion algorithm with shape constraints based on manual vessel delineations for robust
segmentation of the ascending aorta and pulmonary artery, to evaluate the proposed
method in healthy volunteers and patients with heart failure and congenital heart dis-
ease, to validate the method in a pulsatile flow phantom experiment, and to make the
method freely available for research purposes. Algorithm shape constraints were
extracted from manual reference delineations of the ascending aorta (n = 20) and
pulmonary artery (n = 20) and were included in a semi-automatic segmentation
method only requiring manual delineation in one image. Bias and variability
(bias � SD) for flow volume of the proposed algorithm versus manual reference
delineations were 0�0 � 1�9 ml in the ascending aorta (n = 151; seven healthy vol-
unteers; 144 heart failure patients) and �1�7 � 2�9 ml in the pulmonary artery
(n = 40; 25 healthy volunteers; 15 patients with atrial septal defect). Interobserver
bias and variability were lower (P = 0�008) for the proposed semi-automatic method
(�0�1 � 0�9 ml) compared to manual reference delineations (1�5 � 5�1 ml).
Phantom validation showed good agreement between the proposed method and
timer-and-beaker flow volumes (0�4 � 2�7 ml). In conclusion, the proposed semi-
automatic vessel segmentation algorithm can be used for efficient analysis of flow and
shunt volumes in the aorta and pulmonary artery.

Introduction

Phase-contrast magnetic resonance (PC-MR) enables non-inva-

sive quantification of blood flow (Nayler et al., 1986) and is

widely used to characterize cardiovascular disease. Phase-con-

trast magnetic resonance flow measurements in the ascending

aorta currently serve as a reference standard for non-invasive

quantification of cardiac output (CO). Pulmonary-to-systemic

cardiac output ratio (Qp/Qs) used to detect and quantify car-

diac shunt volumes can also be accurately calculated from

non-invasive PC-MR flow measurements in the ascending

aorta and main pulmonary artery (Arheden et al., 1999; Peter-

sen et al., 2002).

Phase-contrast magnetic resonance blood flow measure-

ments require delineation of the vessel of interest over the

cardiac cycle. Since both the ascending aorta and pulmonary

Clin Physiol Funct Imaging (2019) 39, pp327–338 doi: 10.1111/cpf.12582

327© 2019 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd on behalf of Scandinavian Society of Clinical
Physiology and Nuclear Medicine 39, 5, 327–338
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0001-8023-5026
https://orcid.org/0000-0001-8023-5026
https://orcid.org/0000-0001-8023-5026
https://orcid.org/0000-0003-0041-9357
https://orcid.org/0000-0003-0041-9357
https://orcid.org/0000-0003-0041-9357
https://orcid.org/0000-0002-9480-5250
https://orcid.org/0000-0002-9480-5250
https://orcid.org/0000-0002-9480-5250
mailto:
http://creativecommons.org/licenses/by/4.0/


artery move within the image plane over the cardiac cycle,

manual delineation in PC-MR images is time-consuming. This

leads to a need for robust automatic or semi-automatic seg-

mentation algorithms. Previous vessel segmentation algorithms

have effectively reduced required analysis time, and improve-

ments have been made in regard to edge detection perfor-

mance (Chwialkowski et al., 1996), pixelwise detection of the

vessel lumen (Alperin & Lee, 2003) and the amount of

required user input (Z€ollner et al., 2009). Further, active con-

tour tracking (Kozerke et al., 1999; Krug et al., 2003; Herment

et al., 2010) has been applied to improve segmentation

robustness. However, the need for manual correction remains.

Creating an accurate time-resolved automatic segmentation

method for PC-MR images is a challenging task, particularly

because image contrast often varies considerably over the car-

diac cycle. Time phases during ventricular systole which com-

monly contain high blood flow velocities tend to have greater

image contrast between arteries and surrounding tissue com-

pared to time phases during ventricular diastole. Therefore,

segmentation algorithms must rely on built-in vessel shape

constraints during diastolic time phases for accurate results.

Previous methods have used shape constraints based on either

fixed curvature or elasticity criteria within the segmentation

model (Krug et al., 2003; Herment et al., 2010) or shape tem-

plates from previously completed segmentations in adjacent

time phases (Kozerke et al., 1999).

We hypothesized that shape constraints based on a data set

of manually delineated PC-MR images can improve robustness

of semi-automatic vessel segmentation methods. Therefore,

the aims of this study were to (i) develop a semi-automatic

vessel segmentation algorithm freely available for research

with shape constraints based on manual vessel delineations,

(ii) validate the method in phantom experiments and (iii)

compare the method to an experienced observers reference

delineations in human 2D PC-MR images of the ascending

aorta and main pulmonary artery.

Methods

The Regional Ethics Review Board approved the study which

also complies with the Declaration of Helsinki. The study pop-

ulation consisted of 231 human subjects in total (69 females;

median age 53 years; age range 21–86 years). Two-dimen-

sional PC-MR data of the ascending aorta from 17 healthy vol-

unteers and 154 patients with heart failure (defined as left

ventricular ejection fraction below 40%) were retrospectively

included from a previous study of cardiac index (Carlsson

et al., 2012). Two-dimensional PC-MR data of the pulmonary

artery from 35 healthy volunteers and 25 patients with atrial

septal defects were also included from a previous study of

atrial septal shunt volumes (Stephensen et al., 2016). Vessel

shape constraints and optimized algorithm parameters were

extracted from 40 data sets, 20 from the ascending aorta

group (10 healthy volunteers) and 20 from the pulmonary

artery group (10 healthy volunteers). The remaining 191 data

sets were used for algorithm evaluation.

Image acquisition and analysis

The proposed segmentation algorithm was trained and evaluated

for use in two-dimensional PC-MR human data from three 1�5T
MR scanner models: Aera (Siemens, Erlangen, Germany), Mag-

netom Vision (Siemens, Erlangen, Germany) and Achieva (Phi-

lips, Best, the Netherlands). Validation of measured flow

volumes was performed in a pulsatile flow phantom (T€oger et al.,

2015) using two scanners: one 1�5T scanner (Aera, Siemens)

and one 3T scanner (Prisma, Siemens). Phase-contrast magnetic

resonance flow images of the ascending aorta were collected in a

transversal slice orientation (Fig. 1a) and images of the pul-

monary artery were collected in a double-oblique orientation,

both according to clinical routine. Typical sequence parameters

for 2D PC-MR pulse sequences are shown in Table S1. A temporal

resolution between 16 and 30 ms and velocity encoding

200 cm s�1 were typically used for PC-MR measurements. Flow

data were collected using both prospectively gated sequences

during free breathing (n = 17 subjects) and retrospectively gated

sequences during both free breathing (n = 195 subjects) and

breath-hold (n = 19 subjects). Different background phase cor-

rection techniques were applied for each vendor: (i) offline

Figure 1 Example of a 2D PC-MR flow volume measurement. Top
panel (a) shows reference delineations (dashed white lines) of the
ascending aorta in a magnitude image (left) and the corresponding
phase-contrast image (right) in early ventricular systole in a transversal
image plane. The lower panel (b) shows measured flow over time
after delineations in all time phases throughout the cardiac cycle. The
flow volume was calculated from the flow sum over time.
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linear background correction in the software Segment (Heiberg

et al., 2010; Medviso AB, Lund, Sweden) was applied for data

from Siemens scanners, and (ii) on-scanner automatic local

phase correction was automatically applied during image recon-

struction on the Philips scanner. Quantification of net blood flow

volume was performed by delineating the vessel of interest in all

cardiac time phases and calculating the blood flow sum over

time. An example flow curve over time from the ascending aorta

is shown in Fig. 1b. An experienced observer performed manual

reference vessel delineations in all data sets using Segment.

Algorithm development, numerical optimization and algo-

rithm evaluation were performed in MATLAB 2014a (Math-

works Inc, Natick, MA, USA) on a personal computer (CPU

clock: 2�7 GHz; RAM: 16 GB 2133 MHz DDR4).

Extracting vessel shape profiles

Shape profiles were extracted from the training set (n = 40

subjects) by parameterization of shape changes over the car-

diac cycle from manual vessel delineations of the ascending

aorta (n = 20 subjects) and pulmonary artery (n = 20 sub-

jects). In short, principal component analysis (PCA; Pearson,

1901) was applied to compress reference delineation data

such that typical shape profiles were found (implementation

details are shown in Appendix A).

Algorithm overview

The main motivation behind the proposed method for semi-

automatic vessel segmentation was to balance robustness and

flexibility so that erroneous expansion of segmentations into

adjacent anatomy and image artefacts was avoided while a

high degree of segmentation accuracy was obtained. The pro-

posed method was based on a modified active contour scheme

(Kass et al., 1988; Heiberg et al., 2005) which was further

constrained by the new vessel shape constraints described

above.

A flow chart of the method is shown in Figure S1. The

algorithm was initialized by selecting a vessel of interest from

a manual delineation in one time frame of the PC-MR image

series. The manual delineation was then automatically modi-

fied in the following steps:

1 Rigid motion tracking over the cardiac cycle

2 Active contour deformations using information from PC-MR

magnitude images

3 Shape-constrained reconstruction using the compressed

manual delineation data from the training set

4 Rescaling by an optimized, fixed scaling factor

Rigid motion tracking over the cardiac cycle (step 1) was

performed by cross-correlating magnitude images from adja-

cent cardiac time phases. The processing order of time phases

for active contour deformations and shape-constrained recon-

struction (steps 2–3) was determined from the spatial median

velocity inside the motion-tracked delineation in each PC-MR

image in the following manner: the cardiac time series was

divided into two classes by the K-means clustering algorithm

(MacQueen, 1967), one class with time phases containing

high velocities and one class with time phases containing low

velocities.

The time phases with high velocities were set as potential

candidates for initializing active contour deformations and

shape-constrained reconstructions (steps 2–3). The manually

delineated time phase was selected as the segmentation start-

ing point if this image was included in the high-velocity time

interval. If this was not the case, the time phase corresponding

to maximum median velocity was selected as starting point.

The algorithm started to process the time interval with high

velocity, continued with time phases after the high-velocity

interval and completed the segmentation by processing time

phases before the high-velocity interval. Processing of a time

phase/image consisted of edge guided active contour defor-

mations derived from the PC-MR magnitude image (step 2),

followed by shape-constrained reconstruction (step 3).

All images except the manually delineated time frame were

initialized as the segmentation result from its previously pro-

cessed neighbour, which was shifted according to the rigid

motion tracking result.

In order to reduce systematic errors from the edge detector,

the vessel segmentation diameter was rescaled with an opti-

mized, fixed scaling factor (step 4). The rescaled segmenta-

tions were presented as the final segmentation result. Further,

algorithm implementation details are shown in Appendix B.

Parameter optimization

Numerical optimization of the segmentation method was per-

formed to find a set of algorithm parameter values resulting

in high segmentation performance. Segmentation performance

was evaluated by calculating the Dice overlap coefficient

(Dice, 1945) between the proposed method and reference

delineations from an experienced observer, serving as the ref-

erence standard. A large Dice overlap average without an over-

expressed variability was considered an indicator of high

segmentation performance. All numerical optimizations were

performed in the training set (n = 40), and the evaluated

parameter combinations are summarized in Table S2. In order

to evaluate the advantage of the new shape constraints, the

proposed segmentation method was compared to methods uti-

lizing shape constraints which have been used successfully in

two studies for accurate aorta segmentation in MR images

(Krug et al., 2003; Herment et al., 2010). The previously pre-

sented shape constraints applied a curvature force to constrain

the shape of active contours, and the method was separately

optimized in this study according to Table S2.

Phantom measurements

In order to validate PC-MR flow measurements with a largely

user-independent reference standard, flow volume
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measurements were performed in a custom flow phantom

(T€oger et al., 2015) consisting of a pulsatile pump connected

to plastic tubing inside a water tank. Two-dimensional PC-MR

flow volume measurements were compared to timer-and-bea-

ker flow volumes obtained by measuring the total water vol-

ume output from the water tank during 2–4 min (depending

on pump setting). Phantom experiments were performed at

varying pump stroke volumes at 1�5T and 3T. The MR scan-

ners were connected to the phantom pump trigger signal in

order to enable gating of the MR acquisition. Two-dimen-

sional PC-MR images were acquired in a transversal imaging

plane through a plastic tube with 26 mm inner diameter

inside the water tank. Velocity encoding was set perpendicular

to the imaging plane. Regions of interest were drawn manu-

ally and by using the proposed semi-automatic segmentation

method. Sequence parameters for the phantom validation are

included in Table S1.

Statistical analysis

For human data, the proposed semi-automatic segmentation

method was compared to manual reference delineations in

the test set (n = 191) containing time-resolved delineations

of the ascending aorta in 151 human subjects and delin-

eations of the pulmonary artery in 40 human subjects. For

this comparison, the proposed segmentation algorithm was

initialized by one manually delineated time phase corre-

sponding to 20% of the RR interval. The Dice overlap coeffi-

cient was used to measure segmentation overlap with

reference delineations, and blood flow volumes were com-

pared using modified Bland–Altman analysis (Bland & Alt-

man, 1986) with manual reference delineations serving as

reference standard. Bias and variability between two methods

were defined as mean and one standard deviation (1 SD),

respectively. The 95% limits of agreement (LoA) were

defined as mean � 1�96 SD, and the Wilcoxon signed-rank

test was used to test statistical significance of differences

between paired observations. A significance level of P≤0�05
was considered statistically significant. The performance eval-

uation was repeated for two versions of the algorithm, one

version with the new shape constraints (the proposed

method) and one version with previously presented shape

constraints (a curvature force for active contours), as

described in more detail above. The performance impact of

initializing the proposed segmentation method at different

parts of the cardiac cycle was evaluated by repeating the

comparison between the proposed method and reference

delineations for algorithm initialization in 20 equidistant time

phases over the RR interval. Interobserver variability was

determined using Bland–Altman analysis (Bland & Altman,

1986) in a randomly selected subset of the test set including

15 aorta and 15 pulmonary artery data sets. For manual ref-

erence delineations, two experienced observers manually out-

lined all images, and for the proposed semi-automatic

method, the same two observers outlined the vessel in one

image. Quantification of cardiac shunts by measurement of

the Qp/Qs ratio (pulmonary-to-systemic cardiac output ratio)

was performed in a subset of the test set (n = 25 subjects)

using (i) the proposed semi-automatic method initialized at

20% of the RR interval and (ii) manual reference delin-

eations. Cardiac index (CI) was calculated as the aorta flow

volume multiplied by heart rate and divided by body surface

area (BSA).

Results

Parameter optimization

Optimal parameter values from numerical optimization in the

training set (n = 40 human subjects) are shown in Table S2

(right column). During numerical optimization, Dice coeffi-

cient variability (standard deviation) increased when the pro-

posed segmentation algorithm was tuned to reproduce

complex vessel shapes. Therefore, an algorithm configuration

with strict vessel shape constraints was used as optimal solu-

tion for the proposed method.

Flow volume measurements in humans: bias and

variability of the proposed method

Semi-automatic flow measurements in the ascending aorta

using the proposed segmentation method with algorithm ini-

tialization at 20% of the RR interval resulted in low bias and

variability for flow volume (mean � 1SD) of 0�0 � 1�9 ml

or 0�7 � 3�7% (Figure 2; top right panel). Corresponding

Dice coefficient median was 95�3% with range 68�4–97�6%.
Bias and variability for cardiac index were

0�0 � 0�06 l min�1 m�2. The processing time of the pro-

posed segmentation method ranged from 1�7 to 6�7 s.

Results for semi-automatic measurements in the pulmonary

artery with algorithm initialization at 20% of the RR interval

are shown in Figure 2 (middle panel). Low bias and variabil-

ity for flow volume were obtained (�1�7 � 2�9 ml or

�1�2 � 3�0%), and Dice coefficient median was 93�9% with

range 87�8–97�3%. The computation time for the pulmonary

artery ranged between 1�3 and 3�1 s.

Measurements of the Qp/Qs ratio (Figure 2; bottom panel)

from semi-automatic and reference delineations were in close

agreement (n = 25 subjects), with bias and variability

�0�01 � 0�04 (Figure 2; bottom right panel).

Flow volume measurements in humans: comparison

between the proposed method and a previously

presented semi-automatic segmentation method

Semi-automatic vessel segmentation with the new shape con-

straints (the proposed method) resulted in reduced absolute

flow volume error compared to semi-automatic segmentation

using previously presented shape constraints (1�5 � 1�7 ml

versus 2 � 5�4 ml; P = 0�007). The effect of the new shape
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Figure 2 The semi-automatic segmentation method agreed with reference delineations for flow volumes in the aorta (top panel; n = 151 sub-
jects), flow volumes in the pulmonary artery (middle panel; n = 40 subjects) and Qp/Qs ratio calculations (bottom panel; n = 25 subjects). Left
panels show correlation plots between semi-automatic and manual measurements. Dotted lines indicate lines of identity, and solid lines indicate
linear regressions. Right panels show modified Bland–Altman analysis for semi-automatic and manual measurements. Dotted lines indicate zero dif-
ference between compared methods, solid lines indicate bias, and dashed lines indicate 95% limits of agreement (LoA). Low bias and variability
were found for the proposed segmentation method compared to reference delineations for flow volume measurements in both aorta and pul-
monary artery and for Qp/Qs ratio. AO, ascending aorta; Pulm, pulmonary artery.
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constraints on segmentation quality is demonstrated in Fig-

ure 3.

Flow volume measurements in humans: stability of the

proposed method with respect to initialization time point

Figure 4 shows changes in flow volume bias and variability,

and average Dice coefficients and Dice variability when the

proposed semi-automatic method was initialized at different

parts of the cardiac cycle for the ascending aorta and the pul-

monary artery. For the ascending aorta, the proposed segmen-

tation algorithm was robust to different initialization time

points with worst-case flow volume bias and variability of

�0�6 and 2�8 ml, obtained with algorithm initialization at

40% of the RR interval. The 95% limits of agreement for flow

volume differences were within �6 ml for algorithm initial-

ization over the entire RR interval.

For the pulmonary artery, segmentation performance was

slightly sensitive to the selected RR interval initialization time

point (Figure 4), resulting in a worst-case flow volume bias of

�6�8 ml for initialization at 85% of the RR interval and worst-

case variability of 8�7 ml for initialization at 80% of the RR inter-

val. However, initializing segmentations at 10–55% of the RR

interval resulted in worst-case flow volume bias and variability

limited to �1�9 and 3�1 ml. In the majority of cases, 10–55% of

the RR interval corresponded to high image contrast between the

pulmonary artery and its surroundings. The 95% limits of agree-

ment for flow volume differences were within �8 ml for algo-

rithm initialization within 10–55% of the RR interval.

Flow volume measurements in humans: interobserver

variability of the proposed method

Figure 5 shows interobserver variability from 30 human sub-

jects for the proposed method and manual delineations. Inter-

observer variability was significantly lower (P = 0�008) for

the proposed semi-automatic method (�0�1 � 0�9 ml) com-

pared to manual delineations (1�5 � 5�1 ml).

Phantom measurements

Phantom timer-and-beaker measurements resulted in flow vol-

umes ranging between 11�8–89�3 ml (1�5T) and 24�4–
84�8 ml (3T). Agreement between 2D flow volume measure-

ments and timer-and-beaker was found for both manual

delineation (2�0 � 5�5 ml or 2�4 � 8�1%) and the proposed

semi-automatic segmentation method (0�4 � 2�7 ml or

�1�3 � 7�7%) for both field strength (Figure 6).

Discussion

This study presents an algorithm for semi-automatic segmen-

tation of the ascending aorta and the pulmonary artery in 2D

PC-MR images with new shape constraints based on reference

delineation training data. The algorithm is freely available for

research. The new algorithm resulted in improved vessel seg-

mentation performance compared to a previously presented

segmentation method. Good agreement was found between

the proposed method and reference delineations in the

ascending aorta and the pulmonary artery for both flow vol-

ume measurements and shunt volume quantification (Qp/Qs

ratio) in a large population of patients and healthy subjects,

demonstrating clinical applicability of the proposed method.

Bias and variability for cardiac index and Qp/Qs ratio were

0�0 � 0�06 l min�1 m�2 and �0�01 � 0�04, respectively.

These values suggest that the proposed segmentation method

can be used clinically, as bias and variability are low com-

pared with differences in cardiac index between healthy sub-

jects and patients with congestive heart failure

(3�2 � 0�5 l min�1 m�2 versus 2�3 � 0�6 l min�1 m�2;

Carlsson et al., 2012) and compared with differences in Qp/

Qs ratio at rest between healthy subjects and patients with an

Figure 3 Improvement in segmentation accuracy using the proposed shape constraints in two example cases. The left image shows a transversal
image slice used for flow measurement in the ascending aorta, and the right image shows a double-oblique image slice used for flow measure-
ments in the pulmonary artery, both in ventricular diastole. Semi-automatic inaccurate segmentations using an optimized active contour curvature
force for shape constraints are shown as solid white lines. Improved semi-automatic segmentations using the proposed method with shape-con-
strained reconstruction are shown as dashed white lines.
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Figure 4 The proposed segmentation method resulted in similar performance when initialized at different time points of the RR interval. Top panel
shows flow profiles over the RR interval averaged over all subjects for the ascending aorta (left) and the pulmonary artery (right). Middle panel shows
flow volume bias and 95% limits of agreement (LoA; filled circles and error bars) of the semi-automatic method versus reference delineations. Bottom
panel shows average Dice coefficients and 95% limits of agreement (LoA; filled squares and error bars). The proposed segmentation method resulted
in similar flow volume bias (filled circles; middle left panel), flow limits of agreement (error bars; middle left panel) and Dice coefficient performance
(bottom left panel) when initialized at different time points for the ascending aorta. For the pulmonary artery, however, flow volume bias and limits
of agreement were slightly sensitive to the time point of initialization (middle right panel). Pulmonary artery segmentations initialized within 10–55%
of the RR interval showed stable flow volume bias (filled circles; middle right panel), flow volume limits of agreement (error bars; middle right pan-
els) and Dice coefficient performance (bottom right panel). AO, ascending aorta; Pulm, pulmonary artery.
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atrial septal defect (1�02 � 0�02 versus 2�04 � 0�17;
Stephensen et al., 2016).

Automated vessel segmentation methods for PC-MR flow

have the potential of improving efficiency in the clinical set-

ting by reducing analysis time and inter- and intra-observer

variability. Previous semi-automatic algorithms have shown

clear improvements in processing speed (Chwialkowski et al.,

1996), low interobserver variability compared to reference

delineations (Herment et al., 2010) and high accuracy in

phantom validation (Kozerke et al., 1999).

Performance of the proposed method

Segmentation of the ascending aorta was robust independent

of RR time point of initialization while segmentation of the

pulmonary artery required an initialization time point at 10–
55% of the RR interval for accurate results. The variation in

vessel diameter of the pulmonary artery during the cardiac

cycle is generally larger compared to the ascending aorta. This

may in part explain the observed differences between the two

vessels. The variation in pulmonary artery vessel diameter is

related to the relatively short distance between the right ven-

tricular outflow tract and the pulmonary trunk bifurcation

combined with the curvature of the pulmonary artery, making

the positioning of pulmonary artery flow scan planes more

challenging. Further, considering the size and shape variation

of the pulmonary artery over the cardiac cycle, increased

acquired temporal resolution may improve segmentation accu-

racy regardless of time point of algorithm initialization. How-

ever, as the optimal initialization time points (10–55% of RR)

for pulmonary artery segmentation were associated with high

image contrast between the pulmonary artery and its sur-

roundings, the first step of manually delineating the

Figure 5 Interobserver variability of flow volumes for the proposed
semi-automatic method (top panel) and manual delineations between
two observers (bottom panel). Both panels show Bland–Altman analy-
sis. Dotted lines indicate zero flow volume difference, solid lines indi-
cate bias, and dashed lines indicate 95% limits of agreement (LoA). A
clear reduction in interobserver variability of measured flow volumes
was observed for the proposed semi-automatic method compared to
manual delineation. AO, ascending aorta (open circles); Pulm, pul-
monary artery (open squares). The required time of analysis for an
experienced observer was approximately 2 min for manual delineation
and approximately 10 s for semi-automatic delineation.

Figure 6 Validation of PC-MR flow measurements in a pulsatile
phantom experiment. The plots show modified Bland–Altman analyses
comparing timer-and-beaker flow measurements with flow from 2D
PC-MR using the proposed semi-automatic delineation method (top
panel) and by manual delineation (bottom panel). For both delin-
eation methods, PC-MR was in close agreement with timer-and-beaker
measurements at 1�5T (open triangles) and 3T (open squares).
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pulmonary artery in the proposed semi-automatic method

should be advocated to be performed in this time interval.

The proposed method resulted in good agreement with

timer-and-beaker flow volume measurements in a pulsatile

flow phantom experiment at two field strengths and a wide

range of flow volumes.

Comparison with earlier studies and future work

The obtained limits of agreement for flow measurements in

both the aorta and pulmonary artery were small in relation to

reported flow volume errors caused by potential background

velocity offset errors (Gatehouse et al., 2010).

Manual user input is required in one image for initialization

of the proposed segmentation method. A previous study has

demonstrated a method for automatic identification of the

ascending and descending aorta in 2D PC-MR images, assum-

ing a strictly circular vessel lumen (Goel et al., 2014), which

is not applicable on non-circular structures such as the pul-

monary artery. Bratt et al. (2019) recently provided proof of

concept for a promising deep learning algorithm for fully

automatic time-resolved segmentation of aortic blood flow

with similar bias and variability as the current study. Future

studies may investigate potential advantages of deep learning-

based segmentation algorithms for automatic segmentation of

PC-MR images in routine clinical work.

Further, future work may include extending the proposed

segmentation algorithm for use with 4D flow PC-MR data. An

atlas-based segmentation algorithm for 4D flow PC-MR which

used a priori data has shown good performance in the aorta

and pulmonary artery (Bustamante et al., 2015). Shape con-

straints similar to the ones used in the proposed method may

further benefit automatic segmentation algorithms for 4D flow

data.

Limitations of the proposed method

In cases with complex vessel shapes not included in the train-

ing data, or with substantial image artefacts due to respiratory

motion, the proposed algorithm may not be able to correctly

segment the vessel of interest. Figure S2 shows two examples

of such cases in the pulmonary artery and ascending aorta.

Improved ability to reproduce complex vessel shapes was

tested by tuning the shape constraints of the algorithm to pre-

serve more shape variation. However, such a tuning resulted

in reduced segmentation robustness during numerical opti-

mization of the algorithm and was therefore avoided in favour

of stricter shape constraint settings.

Impact of the composition of selected training data on seg-

mentation performance was not explored in this study. Selec-

tion of training data may alter segmentation performance and

may limit adequate segmentation for pathology types not

included in the training set, particularly when a training set of

modest size is used. The current training set is, however,

representative of a clinical cohort, and the method is shown

to be robust by the low number of outliers.

Conclusion

A new semi-automatic segmentation algorithm for MRI flow

measurements in the ascending aorta and the pulmonary

artery was developed and validated. Good agreement was

found with reference delineations by experienced observers,

and interobserver variability was reduced compared to refer-

ence delineations. In summary, the results demonstrate that

the algorithm can be used for efficient and robust flow and

shunt volume quantification in the clinical setting.
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Appendix A: Details on extracting typical
vessel shape profiles from the training set and
how shape constraints were implemented for
the proposed segmentation method

The proposed segmentation method utilizes shape constraints

to improve robustness of the method. The shape constraints

are constructed from a training data set of manually delineated

time-resolved vessel segmentations in 2D PC-MR images. In

this section, lower-case letters represent scalar numbers, bold

lower-case letters represent vectors, and bold upper-case let-

ters represent matrices.

In order to achieve coordinate correspondence, vessel

shape changes over the cardiac cycle were parameterized by

transforming the reference delineation coordinates into radial

distances, sampled at 80 equidistant angles and normalized

by the mean radial distance over time. The time resolution

was resampled to 40 linearly spaced time phases over a car-

diac cycle to ensure equidistant sampling of a cardiac cycle

for all data sets. Shape profiles were stored in a matrix R

with size 40 9 3200 (i.e. including 40 subjects and 80

delineation nodes in 40 time phases), and decomposition of

the data into linearly uncorrelated components was per-

formed using principal component analysis (PCA; Pearson,

1901) of R. This decomposition enabled lossless
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reconstruction of a resampled vessel segmentation data set

from the weighted sum of all principal components, accord-

ing to Eqs 1 and 2:

r ¼ mþ
Xn

i¼ 1

aivi; ð1Þ

ai ¼ vi � ðr � mÞT ¼
Xn

j¼ 1

rðjÞviðjÞ; ð2Þ

Here, m denotes the data set average-shape column vector, ai
indicates the weight for the ith principal component vi, r is

the fully reconstructed data set (column vector) and n is the

number of principal components. If a shape profile is recon-

structed from only a subset of principal components, the

result will approximate the original data set and will be con-

strained by shape profiles contained within the selected princi-

pal components. Finding the weights for a subset of principal

components from Eq. 2 can be rewritten as a solution to a

linear least-squares regression problem:

r̂ ¼ r � m; ð3Þ
Vk ¼ ½v1; v2; . . .:; vk�; ð4Þ

â ¼ a
argmin jj r̂� Vkajj22 ¼ ðVT

kVkÞ�1VT
k r̂ ¼ IVT

k r̂ ¼ VT
k r̂ ð5Þ

Here, upper-case letters represent matrices and lower-case let-

ters represent column vectors. Vk denotes the k selected princi-

pal components (column vectors) with 1�k:th largest variance

and I is the identity matrix. This method may be used to

apply shape constraints on time-resolved vessel segmentations.

The number of principal components in use (k) was deter-

mined from numerical optimization. An estimation of the seg-

mentation mask centre of mass was needed to convert

segmentation node coordinates into radial distances before

imposing shape constraints. In order to approximate the cen-

tre of mass of a segmentation result containing erroneous out-

lier nodes, all segmentation masks were eroded using a binary

two-dimensional disc with a 4-pixel radius before calculating

the centre of mass.BAppendix

Appendix B: Algorithm implementation details

In this section, lower-case letters represent scalar numbers,

bold lower-case letters represent vectors, and bold upper-case

letters represent matrices.

Rigid motion tracking in magnitude images

The user-defined delineation was tracked through the image

time series by a two-dimensional local cross-correlation algo-

rithm. An analysis window surrounding the reference delin-

eation was extracted in magnitude image data from two

adjacent time phases. The data were then resampled using

bilinear interpolation with a factor of 2 and cross-correlation

performed by conjugate multiplication in the Fourier domain.

The spatial shift resulting in maximum correlation was cho-

sen as the detected vessel translation between adjacent time

phases.

Active contour deformation model

The implemented active contour model is based on the origi-

nal formulation by Kass et al. (1988) and was implemented in

part in two previous studies (Heiberg et al., 2005; Tufvesson

et al., 2015). The active contour used the following energy

minimization problem for a given segmentation v(s):

v
arg min

e ¼
Z 1

0
eðvðsÞÞds ¼

Z 1

0
eintðvðsÞÞ þ eextðvðsÞÞds ð6Þ

Here, v(s) is represented by a set of equidistantly spaced dis-

crete node points along a closed contour. The internal energy

term, eint, imposes shape constraints on the segmentation

while the external energy term, eext, enables attraction and

repulsion from various image features. A local energy mini-

mum is found by solving the Euler–Lagrange differential

equation:

0 ¼ d

ds

d

dvs
eint

� �
þ d

dvs
eext ¼ Kuþ fðuÞ ð7Þ

The two derivative terms represent internal and external

forces that control the segmentation evolution over multiple

iterations. The equation is converted into a finite difference

scheme in the right-hand side of equation (7), where u

represents the node point coordinates, the stiffness matrix K

corresponds to internal forces, and f(u) represents forces

associated with external image features at node point coor-

dinates u. The external force was based on edge detection

in PC-MR magnitude images. The internal force of the pro-

posed method was set to zero and replaced by the a-priori

shape-constrained reconstruction, described in Appendix A,

which was performed once after active contour deforma-

tions.

Edge detection in magnitude images

The edge detection was implemented as four separate one-di-

mensional edge detectors with filter kernel [�1 2 �1] at dif-

ferent orientations rotated 45° from each other, creating one

horizontal, one vertical and two diagonal filter kernels. Convo-

lution with the filter kernels was preceded by horizontal and

vertical smoothing of the magnitude images using the filter

kernel [0�25 0�5 0�25]. For each node point, the active con-

tour model used a weighted combination of the two filter

directions resulting in the largest and second-largest scalar

product with the local delineation normal vector, as previ-

ously proposed (Heiberg et al., 2005). Using this method,

nodes on the closed curve were attracted to strong image gra-

dients along their local normal vectors.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Flow chart of the proposed semi-automatic seg-

mentation method. The method is initialized by a reference

delineation in one time point and continues with rigid motion

tracking and interleaved active contour deformations using

magnitude images and shape-constrained reconstruction. The

algorithm ends by enlarging the segmentation diameter using

a numerically optimized, fixed scaling factor.

Figure S2. Image artefact examples resulting in degraded

segmentation quality for the pulmonary artery (Pulm) and

ascending aorta (AO). Top panel shows magnitude images

from each data set with manual (red) and semi-automatic

(blue) segmentations at a time point that demonstrates seg-

mentation errors. Bottom panel shows corresponding phase-

contrast images at the same time point. The example for the

pulmonary artery (left) demonstrates underestimation of the

vessel lumen during ventricular diastole due to an imaging

plane which is not strictly orthogonal to the vessel cross sec-

tion. The example for the ascending aorta (right) demon-

strates diverging segmentation during ventricular diastole due

to respiratory motion artefacts.

Table S1. Typical 2D PC-MR sequence parameters for in vivo

and phantom data acquisitions.

Table S2. Optimized algorithm parameters for the proposed

segmentation method (rows 1–5). A near-identical segmenta-

tion method using previously presented shape constraints

(rows 6–10) was included for comparison to evaluate the

added benefits of using the new shape constraints of the pro-

posed method. Optimal vessel diameter scaling factors (rows

5 and 10) were individually determined for all combinations

of the three other algorithm parameters (rows 2–4 and rows

7–9).
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