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Abstract 

Optical chemical structure recognition from scientific publications is essential for rediscovering a chemical structure. 
It is an extremely challenging problem, and current rule-based and deep-learning methods cannot achieve satisfac-
tory recognition rates. Herein, we propose SwinOCSR, an end-to-end model based on a Swin Transformer. This model 
uses the Swin Transformer as the backbone to extract image features and introduces Transformer models to convert 
chemical information from publications into DeepSMILES. A novel chemical structure dataset was constructed to train 
and verify our method. Our proposed Swin Transformer-based model was extensively tested against the backbone of 
existing publicly available deep learning methods. The experimental results show that our model significantly outper-
forms the compared methods, demonstrating the model’s effectiveness. Moreover, we used a focal loss to address the 
token imbalance problem in the text representation of the chemical structure diagram, and our model achieved an 
accuracy of 98.58%.

Keywords:  Chemical Structure Recognition, Deep Learning, Swin Transfromer, End-to-End Model

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Optical chemical structure recognition (OCSR) is the 
conversion of the chemical structure information of 
chemical compounds from scientific publications into 
machine-readable formats. Chemical structures printed 
in scientific publications are usually in image formats 
such as JPEG, PNG, and GIF. They cannot be directly 
utilized because they are not a machine-readable repre-
sentation of molecules. The purpose of OCSR is to cor-
rectly translate this chemical structure information into 
a machine-readable representation and store them in a 
chemical information database. OCSR is time-consum-
ing and error-prone, and requires domain knowledge to 
eliminate ambiguities in structures. As chemical struc-
ture scientific publications continue to increase exponen-
tially, OCSR plays a vital role in many chemical subfields, 

such as synthetic science, natural product research, 
drug discovery and etc. Therefore, OCSR is still in high 
demand.

Existing automatic OCSR software systems include 
Kekule [1], OROCS [2], CLIDE [3], MLOCSR [4], Chem-
Reader [5] and OSRA [6]. Most of these systems usu-
ally use rule-based approaches to recognize molecular 
diagrams.

With the rapid development of deep learning, both 
computer vision and natural language processing have 
become popular research topics in recent years. As a 
specific subdomain of computer vision, image caption-
ing is used to identify the objects of an image firstly 
and then expresses the relationship among them in 
the form of accurate syntactically generated sentences. 
Image captioning often adopts a special framework, 
i.e., an encoder-decoder, of which the encoder usually 
uses a convolutional neural network (CNN), and the 
decoder usually use a Recurrent Neural Network (RNN). 
For example, in a neural image capture generator [7], a 
CNN-based InceptionNet [8] is used to extract image 
features, and an RNN is used to decode image features 
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for text generation. The RNN can also be replaced with 
Long Short-Term Memory (LSTM) [9] or Gated Recur-
rent Unit (GRU) [10]. To improve the interpretability of 
neural networks, an attention mechanism is applied to 
the image captioning task [11]. The basic idea is to use 
convolutional layers to acquire image features and then 
weight them with attentions before sending them to an 
RNN for decoding. Using a self-attention mechanism, the 
Transformer [12] model proposed by Google has recently 
achieved an excellent performance in various translation-
related tasks and has been widely applied.

Similar to image captioning, the OCSR task can be 
abstracted as the process of translating a chemical struc-
ture diagram into a computer-readable textual repre-
sentation. Compared with image captioning, two major 
challenges of an OCSR task are complex chemical pat-
terns in chemical structures and long corresponding 
chemical representation. The existing methods based 
on deep learning [13–16] use CNNs as their backbones 
to extract image features of molecules. However, CNN 
only learns local representation and cannot effectively 
use global information. To learn the global representa-
tion and obtain more comprehensive chemical structure 
information, we use Swin Transformer [17] as a back-
bone to extract image features of molecules. Moreover, 
one noticeable phenomenon is the frequency imbal-
ance of elements in molecules. For example, C, H, and 
O appear more frequently, and Br, Cl, and Ar appear less 
frequently. This results in an imbalance of tokens in the 
text representation. We use a focal loss [18] to solve the 
imbalance problem. The contribution of this work can be 
summarized in three parts:

1.	 We present a new deep-learning OCSR (SwinOCSR) 
approach using a Swin Transformer as a backbone 
to extract image features and Transformer [12] to 
generate DeepSMILES [19] that are more syntacti-
cally valid than SMILES [20] in an end-to-end man-
ner. Our method learns the global representation and 
obtain more abundant image features compared with 
other methods. It provides strong support for the 
subsequent Transformer part.

2.	 Based on the analysis of molecules, we use a focal 
loss to address the token imbalance problem in the 
text representation of molecular diagrams. This is the 
first attempt at explicitly optimizing such a problem 
in OCSR tasks, to the best of our knowledge.

3.	 We construct a novel chemical structure molecule 
dataset containing four categories (Kekule, Aromatic, 
substituent and Kekule, substituent and Aromatic), 
and our approach is robust against different molecule 
categories in constructed dataset. And, it is excel-
lent in recognizing long-character chemical struc-

tures. The model trained on the constructed dataset 
achieved an accuracy of 98.58%.

Related work
Rule‑based OCSR approaches
Early OCSR tasks used a rule-based approach. They 
used image processing techniques and optical character 
recognition for atomic labeling and charge recognition, 
encoded various rules for bond detection, and compiled 
connection tables. Kekule [1] was the first complete 
OCSR tool for scanning, vectorization, dashed and wedge 
line searches, optical character recognition, graphical 
editing, and post-processing. In addition, OSRA [6] is 
an open-source chemical structure extraction tool devel-
oped by the NCI. The extracted chemical structure can 
be directly converted into the SMILES or SDF format. 
Although OSRA can recognize some common group 
abbreviations, dashed lines, and wedge bonds, it can-
not recognize charges or isotopes. CLIDE, ChemReader, 
CLiDE Pro [21], ChemInfty [22], and the approach by 
Sadawi et al. [23] made further improvements. However, 
these approaches have certain drawbacks. For example, 
the rule-based system will become difficult to interpret 
when molecular diagrams contain ambiguous or uncom-
mon representations. As one of the current challenges, 
the various recognition components of a rule-based sys-
tem are interdependent, making further improvements 
extremely difficult to achieve.

Deep‑learning‑based OCSR approaches
Unlike rule-based approaches, deep learning-based 
methods identify chemical structures without hardcoded 
rules. For this reason, several deep learning-based OCSR 
methods have been proposed. In 2019, Staker et al. [13] 
presented the first deep learning-based OCSR approach, 
with a SMILES file as the output. Its accuracies on the 
validation sets ranged from 41% to 83%. However, this 
approach is closed-source and unavailable for re-testing, 
and it is only used to recognize  low-resolution images. 
Img2Mol [24] is another deep learning-based OCSR 
approach, whose performance was verified by compar-
ing it with the rule-based approaches. However, there 
is no comparison with  exsiting deep learning-based 
methods, and it is preliminary. DECIMER [14] and sub-
sequent DECIMER 1.0 [15] are two other deep-learning-
based approaches. Based on existing show-and-tell deep 
neural networks, DECIMER uses Inception V3 [25] as a 
backbone to extract image features and GRU to predict 
SMILES. However, its performance does not yet rival 
the performance of existing traditional approaches. The 
updated version of DECIMER, DECIMER 1.0 [15], sub-
stitutes Inception V3 with EfficientNet-B3 [26] and GRU 
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with Transformer. DECIMER 1.0 achieved a Tanimoto 
level of about 96% in a dataset of 30–35 million mol-
ecules. The latest deep-learning-based OCSR approach, 
Image2SMILES [16], uses ResNet-50 [27] as a backbone 
to extract image features and Transformer as a decoder 
part to predict FG-SMILES in the dataset of 10 million 
molecules. Image2SMILES achieved an accuracy of about 
90.7%, but it still needs further improvement.

Among these approaches, many CNNs and their vari-
ants are used as backbones to extract image features in 
OCSR tasks. Therefore, a robust backbone is important 
for the OCSR task. The Swin Transformer model, a state-
of-the-art backbone, surpasses the previous models in 
image classification, object detection and semantic seg-
mentation. Hence, the Swin Transformer is chosen as our 
model backbone for OCSR.

SwinOCSR: Deep‑learning‑based chemical structure 
diagram recognition approach
The framework of our SwinOCSR approach for chemi-
cal structure diagram recognition is shown in Fig.  1. 
It consists of a backbone, Transformer encoder, and 
Transformer decoder. First, the backbone extracts image 
features from an input molecule image to obtain a high-
dimensional patch sequence. Next, the patch sequence 

and positional embedding are fed into the Transformer 
encoder to output a representation sequence. Finally, the 
Transformer decoder uses the representation sequence 
to decode the corresponding DeepSMILES.

Backbone
The backbone is built based on the Swin Transformer, 
shown in Fig. 2. First, the molecule image is partitioned 
into non-overlapping patches, and the size of a patch is 
4 × 4. Each patch is treated as a “token” and its feature is 
set as a concatenation of the raw pixel RGB value. After 
partitioning, a linear embedding layer is used to project 
this raw-valued feature to a certain dimension (192 for 
SwinOCSR), and several Swin Transformer blocks are 
used to extract feature information. As shown in Fig. 3, 
each Swin Transformer block contains two important 
modules, window multi-head self attention (W-MSA) 
and shift window multi-head self attention (SW-MSA) 
modules. W-MSA is used to extract local feature infor-
mation in a window. SW-MSA is used to extract global 
feature information between windows. This means that 
Swin Transformer uses both local and global informa-
tion, which greatly enhances Swin Transformer’s fea-
ture extraction capabilities. This process is called “Stage 
1.” In the following three stages, to generate hierarchical 

Fig. 1  SwinOCSR framework for chemical structure recognition

Fig. 2  Swin Transformer-based backbone module
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representation, Swin Transfromer does not use pool-
ing which is usually used in CNN and may introduces 
information loss. Instead, it adopts merging neighbor-
ing patches to reduce the size of feature maps to avoid 
information loss. Finally,  to construct a sequence as the 
encoder input, the feature in spatial dimensions is flat-
tened, resulting in a sequence Sb that represents chemical 
structure information.

Encoder
The encoding module consists of a positional encoding 
operation and six standard Transformer encoder layers. 
The six standard layers are linked sequentially, each of 
which contains two specific sublayers. The first sublayer 
is a multi-head attention layer, and the second is an MLP 
layer. Each sublayer is followed by a residual connection 
operation and a normalized operation, as shown in Fig. 4. 
The output Sb of the backbone flows into the first Trans-
former encoder sublayer. The Q, K, and V of the attention 
layer are obtained by multiplying the respective weight 
matrices of the three with Sb. The attention function is 
then used to map the Q and a set of K-V pairs to an out-
put. After obtaining the calculation results, the data are 
transferred to the MLP layer. The output sequence Se of 
the encoder is obtained once all six standard layers are 
finished.

Decoder
The decoding module consists of a positional encoding 
operation, a stack of six standard Transformer decoder 
layers, a linear layer and a softmax layer. A standard 

transformer decoder layer contains three specific sublay-
ers. The first sublayer is a multi-head attention layer con-
taining a mask. This mask ensures that the prediction of 
the position i depends only on the known outputs before 
the position i. The second sublayer is a multi-head atten-
tion layer, and the third is an MLP layer. Similar to the 
encoding module, residual connections and layer nor-
malization follow each sublayer, as shown in Fig. 5. Each 
time step in the decoding phase outputs a new token of 
the output sequence. At each time step, the previously 
generated output sequence (token sequence) flows into 
the first sublayer of Transformer decoder to learn inter-
nal relationships. The output of the first sublayer and the 
Se sequence from the encoder are fed into the second 
sublayer of Transformer decoder to capture their rela-
tionships. Then, the result is transferred to the MLP layer. 
The output of Transformer decoder is obtained once all 
six standard layers are finished. And the output is fed into 
a linear layer and a softmax layer to obtain a token as the 
final output for this time step.

Dataset
As described in the literature, the manual labeling of 
data is tedious, and it is difficult to obtain large numbers 
of data. Therefore, we did not directly extract molecular 
diagrams from studies on patents and other chemical 
publications to generate training data, but instead used 

Fig. 3  A Swin Transformer Block

Fig. 4  Transformer-based chemical structure encoder module
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cheminformatics toolkit CDK [28] to generate molecular 
diagrams.

An ideal generated dataset be as diverse as possible 
and should be similar to real molecular representation in 
publications. So, we used millions of molecules and both 
two different ring structures (Aromatic and Kekule) to 
make molecular diagrams diverse, and introduced sub-
stituents, which are widely used in patents, to generate 
molecular diagrams similar to those in patents. We have 
downloaded the first 8.5 million PubChem [29] structures 
(1–8,500,000 PubChem Indices) and gained 6,987,630 
unique SMILES strings. Based on these SMILES files, we 
constructed a dataset of 5 million molecules and it con-
sists of four categories of molecule data, each containing 
1.25 million molecules. Table 1 shows the four categories 
of molecule data distinguished according to two criteria. 
One is whether most molecules include substituent; the 
other is that the ring structure is Aromatic or Kekule. 
Figure 6 shows an example of each category of molecule 
data.

The dataset was generated as follows: first, molecule 
SMILES files were downloaded from PubChem [29]. 
This kind of SMILES only contains Kekule ring and does 

not contain substituents, belonging to Category 1. Then, 
half of the downloaded SMILES files are canonically 
converted into SMILES strings including aromatic ring 
by RDKit, and these molecules in this kind of SMILES 
belong to Category 2. Next, some SMILES strings in Cat-
egory 1 were broken, and some of both 224 substituents 
in the patent literature and common atom(s) with brack-
ets ([Pb], [NH], [Ru], [Li], [K], [Si], [S +], [O], [O-], [N +], 
[N], [P], [C], [H], [2H], [3H], [B]) were randomly added to 
the broken SMILES strings, forming new SMILES strings 
which belong to Category 3. Category 4 is generated 
from Category 2 in the same way. Finally, for each cate-
gory, molecules were converted into a canonical SMILES 
string, and 1,250,000 molecules with unique canonical 
SMILES were randomly chosen. The molecular canoni-
cal SMILES were then converted into DeepSMILES and 
used to render images using CDK.

During image generation, some parameters (such as 
substituent fonts, subscripts, corner spacing, and size) 
of CDK image generation are set to make the molecule 
images closer to the images in the literature. In addition, 
specific rules for the condensed formula of the molecu-
lar structure are added to generate the chemical structure 
images. The generated chemical diagram is a four-chan-
nel diagram by default. Because the molecule diagram 
is black and white like a binary diagram, recognition of 
molecular diagram only requires its contour, without 
additional color channels. According to a threshold, all 
diagrams are changed into a binary diagram. To meet 
the input requirements of the model with three channels, 
we copied the one-channel binary diagram to pad each 
channel of three-channel diagram. Figure  7 shows an 
example of a generation molecular diagram. The length 
distribution of the DeepSMILES string and resolution of 
the molecular diagram in our dataset are shown in Fig. 8.

To evaluate our model, each category of the processed 
dataset is randomly spilt   in a ratio of 18:1:1 for train-
ing, validation and test, respectively, as shown in Table 2. 
The total size of the training set is 4500000, while both 
the size of the validation set and that of the test set are 
250000. We selected four metrics per image for quanti-
tative performance evaluation on accuracy, Tanimoto, 
BLEU [30], and ROUGE [31]. The first two metrics are 

Fig. 5  Transformer-based chemical structure decoder module

Table 1  Description of each category of molecule data

Category 
Index

Substituent Aromatic/Kekule Size

1  ×  Kekule 1,250,000

2  ×  Aromatic 1,250,000

3 √ Kekule 1,250,000

4 √ Aromatic 1,250,000
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two frequently used metrics for OCSR, and the last two 
are two standard metrics in image captioning. Here, 

Tanimoto was calculated using PubChem fingerprints of 
CDK after decoding DeepSMILES back to SMILES.

Tokenization
We counted all the characters of the DeepSMILES strings 
in our dataset. There were 76 unique characters. We 
treated each unique character as a token.

Tokens in our dataset: c, 6,), C, = , O, N, S, l, s, 5, B, r, n, 
[, H, + ,], %, 1, 0, /, \, R, F, #, 4, (, 9, -, @, L, 3, 8, 2, ’, G, a, 7, 
Z,., P, t, Y, o, A, X, i, J, q, x, Q, m, b, d, E, w, I, V, z, e, M,,, 
D, K, p, v, h, y, u, g, k, T, W, U, f.

Training
We used the same setting for each experiment to make a 
fair comparison. We employed a batch size of 256 images 
(224 × 224 pixels). An Adam [32] optimizer of an initial 
learning rate 5e−4 and token embedding dimension of 
256 were used. The backbone and Transformer networks 
used cosine and step decays, respectively, regarding the 
learning rate scheduler. The loss function used the stand-
ard cross entropy (CE) loss. To prevent model overfitting 

Fig. 6  An example of each category of molecule data

Fig. 7  An example of generating a molecule diagram from 
CCC)NCCC = CC = CC = C6)OCC = CC = CC = C6)))))))))
OCC = CC = CC = C6))))))))))[N +] = O)[O-]))))OC = O)OCC)C)C)))))))
C = O)OCC)C)C

Fig. 8  The distribution of the lengths of the DeepSMILES strings and resolution of molecular diagram
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during training, the dropout rate was set to 0.1. The 
model trained for 30 epochs on a server configured with 
NVIDIA Tesla V100-PCIE graphic cards.

Experiments and results
We conducted experiments on our dataset for perfor-
mance and analysis. Firstly, we evaluated the backbone 
performance of Swin Transformer, ResNet-50 and Effi-
cientNet-B3. Then, we evaluate the CE loss and focal loss. 

Finally, we analyzed the influence of molecule category 
and DeepSMILES strings length.

In addition, because our model is trained on the 
generated training set, it may not achieve satisfactory 
results on real-world test sets which are derived from 
the literature. Therefore, we also performed experi-
ments on a small real-world test set.

Backbone comparison experiment
To evaluate the Swin Tranformer performance as our 
model’s backbone, we compared the Swin Transformer 
with two CNNs, ResNet-50 of Image2SMILES [16] and 
EfficientNet-B3 of DECIMER 1.0 [15]. CE loss curve 
of training are shown in Fig.  9. The loss value of our 
model (using Swin Transformer as the backbone) is 
smaller than those of ResNet-50 and EfficientNet-B3 in 
all cases, indicating that our model has a faster conver-
gence. Validation curves (BLEU, accuracy) are shown 
in Fig. 10. Our model is still superior to the other two 
models in term of accuracy and BLEU score in all cases. 
The results demonstrate that our model has better data 
fitting ability. Finally, we made a comparison on the 
test set. As shown in Table 3, our model demonstrated 
the best performance based on all four metrics with a 

Table 2  Description of the training, validation, test set

Set Category 
1

Category 
2

Category 
3

Category 
4

Total

Training 1,125,000 1,125,000 1,125,000 1,125,000 4,500,000

Validation 62,500 62,500 62,500 62,500 250,000

Test 62,500 62,500 62,500 62,500 250,000

Fig. 9  CE loss curve of training

Fig. 10  Validation curves (left: BLEU, right: Accuracy)

Table 3  Backbone performance comparisons in the test set

Backbone Accuracy Tanimoto BLEU ROUGE

Swin Transformer(our) 0.9736 0.9965 0.9946 0.9964
ResNet-50 0.8917 0.9879 0.9862 0.9887

EfficientNet-B3 0.8670 0.9846 0.9837 0.9866
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BLEU score of 99.46%, Tanimoto of 99.65%, ROUGE 
score of 99.64%, and accuracy of 97.36%. For accu-
racy, our model reached 97.36% and 8.19% and 10.66% 
higher than ResNet-50 and EfficientNet-B3, respec-
tively. The accuracy metric requires that the predicted 
and actual DeepSMILES strings have the same charac-
ter in each position. Hence, the metric is an essential 
requirement and can better reflect the performance of a 
model compared with the other three metrics.

Loss function comparison experiment
The frequency distribution of tokens affects the model’s 
performance when CE loss is used as the model’s loss 
function. On this basis, we counted the distribution 
of tokens in our dataset. The result is shown in Fig.  11, 
where the total number of tokens is 234706822. We 
found that the frequency distribution of tokens shows a 
long-tail distribution. A few tokens on the left, such as 
“),” “C,” “c,” and “ = ” formed the frequency header. Most 
tokens on the right formed the frequency tail. This indi-
cates a significant imbalance of token classes in our data-
set. Therefore, the model tends to predict a small number 
of token classes with high frequency during training. As 
a few token classes with high frequency contribute to the 

majority of the loss, even if the model ignores other token 
classes, the CE loss was not greatly affected.

To solve this problem, we used the focal loss [18], a com-
mon solution in object detection. Because focal loss is usu-
ally used for binary tasks, we converted our single-label 
classification task to multi-label classification task and 
rewrote the focal loss as multi-label focal loss (MFL). Given 
n classes, the model outputs one logit per class, oi. Each 
logit is independently activated by a sigmoid function σ(oi). 
The probability of each label, pi, is given by:

where yi is the ground-truth label for class i. The average 
loss of binary loss per label, MFL, is obtained by:

(1)pi =

{

σ(oi) if yi = 1
1− σ(oi) otherwise,

Fig. 11  Frequency distribution histogram of tokens in our dataset

Table 4  Loss function performance comparisons

Loss Accuracy Tanimoto BLEU ROUGE

MFL 0.9858 0.9977 0.9959 0.9978
CE 0.9736 0.9965 0.9946 0.9964
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where αi is the weighting factor for class i and γ is a 
focusing parameter. In Table 4, we compare performance 
of MFL with CE on the   test set. It is evident that loss 
function using MFL outperforms CE on all four met-
rics. Because the model that uses MFL is our best model, 
we utilized SwinOCSR that uses MFL in the following 
experiments.

Influence of molecule category
To analyze the prediction performance of SwinOCSR on 
different molecule categories, the four data categories in 
the test set were evaluated separately based on accuracy. 
The result is shown in Table 5. Category 1 and 2 are lower 
than 3 and 4. demonstrating that SwinOCSR performs 
a little better on the data with substituents. We believe 
that the reason for this is that substituents will be explic-
itly reflected in the molecular diagram. Hence, the Swin-
OCSR is easier to extract information about substituents 
and identify them. Table 5 also shows that category 1 is 
lower than 2 and 3 is lower than 4, demonstrating that 
SwinOCSR performs a little better on the data with Aro-
matic rings. The explanation is that in molecular dia-
gram, the Aromatic ring is presented as a circle distinct 
from other molecular diagram elements. In contrast, 
the Kekule ring is represented as  lines similar to other 
elements of the molecule diagram. Therefore, the  Aro-
matic  rings that are distinct from other elements are 
easier to identify. There is not much difference in accu-
racy among four categories of data. This shows that Swin-
OCSR has good robustness with different categories of 
data.

Influence of DeepSMILES string length
To analyze the prediction performance of SwinOCSR on 
the DeepSMILES strings of different lengths, we divided 
the DeepSMILES strings of the test set into the follow-
ing length ranges: [1, 25], [26, 50], [51, 75], [76, 100], 
and reported the accuracy within the ranges as the per-
formance metric. A phenomenon to be expected is that 

(2)MFL =

1

n

n
∑

i

−αi(1− pi)
γ log (pi),

the model performance declines as the DeepSMILES 
strings length increases, because the longer the Deep-
SMILES strings, the more times the model has to decode 
and the more likely errors will occur. The result is shown 
in Fig. 12. Moreover, SwinOCSR remains steady with [1, 
75] and decreases slightly with [76, 100]. This indicates 
that SwinOCSR can adapt to changes in the length of the 
DeepSMILES strings. Even in the lowest range [76–100], 
SwinOCSR can still achieve an accuracy of 94.76%, indi-
cating that it has a strong ability to recognize large mol-
ecules with long DeepSMILES strings. This shows that 
the backbone of SwinOCSR can extract richer chemi-
cal structure information from molecular graphs. Thus, 
more characters can be predicted during decoding.

Performance on real data
To evaluate the prediction performance of SwinOCSR 
on real-world test sets, we have constructed a small real-
world test set and conducted experiments on the test set. 
The small real-world test includes 100 images derived 
from the literature and their corresponding canonical 
SMILES strings which are manually labeled. The results 
are shown in Table 6. Our model achieved an accuracy of 
25%, and the performance of our model on the real-world 
test set is unsatisfactory.

Table 5  Performance of SwinOCSR on different categories of 
data

Category Accuracy

1 0.9820

2 0.9846

3 0.9876

4 0.9889

Fig. 12  Performance of SwinOCSR with different DeepSMELES string 
lengths

Table 6  Performance on the test set derived from the literature

Metric Literature

Accuracy 0.2500

Tanimoto 0.5975

BLEU 0.7261

ROUGE 0.8058

Valid DeepSMILES 0.9800

Valid SMILES 0.9700
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We also used CDK to generate images from the man-
ual-labeled canonical SMILES strings of the small real-
world test set, and constructed a new generated test set. 
We also conducted experiments on the generated test set, 
and the results are shown in Table 7. Our model achieved 
an accuracy of 94%, and the performance is good in term 
of all metrics.

We analyzed several molecule examples in the 
above experiments. Table  8 shows two examples that 
are correctly extracted in both the real-world test set 

Table 7  Performance on the test set generated by CDK

Metric CDK

Accuracy 0.9400

Tanimoto 0.9906

BLEU 0.9905

ROUGE 0.9954

Valid DeepSMILES 1.0000

Valid SMILES 1.0000

Table 8  Two examples that are correctly extracted in both the test set from the literature and the test set generated by CDK

Items Molecule 1 Molecule 2

The real-world image derived from the literature

  

Manual-labeled SMILES CNC1 = CC(= NC(= N1)C2 = CC = CC = C2)N3CCC(CC3)
C(= O)NCC4 = CC = CC = C4C(F)(F)F

C2 = CC1 = CC(= CC = C1N = C2)
CN4C3 = NC(= NC = C3N = N4)C5 = CN(CCO)N = C5

Predicted SMILES from the real-world image CNC1 = CC(= NC(= N1)C2 = CC = CC = C2)N3CCC(CC3)
C(= O)NCC4 = CC = CC = C4C(F)(F)F

C2 = CC1 = CC(= CC = C1N = C2)
CN4C3 = NC(= NC = C3N = N4)C5 = CN(CCO)N = C5

Generated image from manual-labeled SMILES by CDK

 

 

Predicted SMILES from the generated image CNC1 = CC(= NC(= N1)C2 = CC = CC = C2)N3CCC(CC3)
C(= O)NCC4 = CC = CC = C4C(F)(F)F

C2 = CC1 = CC(= CC = C1N = C2)
CN4C3 = NC(= NC = C3N = N4)C5 = CN(CCO)N = C5

Table 9  Two examples that are incorrectly extracted in the test set from the literature and are correctly extracted in the test set 
generated by CDK

Items Molecule 1 Molecule 2

The real-world image derived from the literature

 

 

Manual-labeled SMILES CC1 = CC = CC(= C1)N C1 = C(N(C(= O)C(= C1[R3])[R4])[R8])[R]

Predicted SMILES from the real-world image [CH3-]C1 = CC = CC(= C1)N.[I-] CC(C)(C)C1 = CC(= CC(= O)N1[Rx])[R3]

Generated image from the above-mentioned predicted SMILES

  

Generated image from manual-labeled SMILES by CDK

 
 

Predicted SMILES from the generated image CC1 = CC = CC(= C1)N C1 = C(N(C(= O)C(= C1[R3])[R4])[R8])[R]
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from the literature and the test set generated by CDK, 
Table 9 demonstrates two examples that are incorrectly 
extracted in the real-world test set and are correctly 
extracted in the generated test set, and Table 10 shows 
one example that is incorrectly extracted in both the 
real-world test set and the generated test set.

After analyzing, the unsatisfactory performance of 
our model on the real-world test set may be caused by 
the following three factors:

(1)	 The images derived from the literature are vague, 
while the CDK-generated images are clearer.

(2)	 The image derived from the literature is more com-
plex while CDK-generated images are more regular.

(3)	 Although a canonical SMILES string of a molecule 
ensures the unique SMILES representation of the 
molecule, there is no unique chemical structure 
representation for one specific molecule. There 
are a lot of image styles in generating images by 
different chemical programs. For example, some 
condensed structural formulas, such as NH, are 
expanded in CDK-generated images by default, and 
other condensed structural formulas, such as NO, 

NO2, CF3, CH3, etc., are unexpanded by default, 
so if the corresponding styles is changed, the image 
will be changed.

Of the above three factors, no unique chemical struc-
ture representation for one specific molecule is the most 
significant and more real-world chemical structures can 
alleviate the problem.

Conclusion
In this study, we propose an end-to-end chemical struc-
ture image recognition approach, SwinOCSR, which can 
directly recognize the original chemical structure map 
without formulating manual features. Compared with 
existing approaches that use CNNs as the backbones, 
it achieved a high accuracy of 98.58%, superior perfor-
mance, and fast convergence. It also performs well in 
recognizing long sequences, particularly in recognizing 
chemical structures containing substituents. Experimen-
tal results show that SwinOCSR can effectively extract 
the key features of chemical structures and capture the 
correspondence between chemical structure graphs and 
DeepSMILES.

Table 10  One example that is incorrectly extracted in both the test set from the literature and the test set generated by CDK

Items Molecule 1

The real-world image derived from the literature

 

Manual-labeled SMILES c1c(cc(c(c1[Y1])[X0])[Y2])c2c(cc([H][H][R0])cc2[Y4])[Y3]

Predicted SMILES from the real-world image C1CC(CCC1C2CCC(CC2)[Y])c4cc(c(-c3cc(c(c(c3)[Y1])[Y1])[Y])c(c4)[Y])[Y]

Generated image from the above-mentioned predicted SMILES

 

Generated image from manual-labeled SMILES by CDK

 

Predicted SMILES from the generated image c1c(cc(c(c1[Y1])[X0])[Y2])-c2c(cc(cc2[Y4])N[R0])[Y4]

Generated image from the above-mentioned predicted SMILES
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However, despite the superior performance of our 
method on the generated data, the recognition perfor-
mance in the literature is unsatisfactory. This can be attrib-
uted to some discrepancies existing between the chemical 
structures rendered by chemical software and those in the 
literature. For example, the real-world chemical structures 
in the literature have lower resolutions, various noises, and 
numerous complex patterns such as wavy lines, abbrevia-
tions, and superatoms. In fact, the performance of deep 
learning-based OCSRs depends on the model and the 
dataset. When our model achieved better performance on 
a generated dataset and demonstrated the model’s effec-
tiveness, we believe that if there are enough real-world 
chemical structures to form a real-world training set and 
our model is trained on the training set, our model will 
also achieve better performance. Our model is a significant 
step toward the automatic extraction of real-world chemi-
cal structures. In the future, we will expand the data set 
to include as many low-resolution and complex chemical 
structure styles as possible. In addition, we hope to provide 
a software program that automates the extraction of chem-
ical structures available in the literature. Finally, we hope 
that our work will open new possibilities for exploring 
end-to-end chemical structure recognition approaches.

Appendix: 224 substituents
’[R]’, ’[R0]’, ’[R1]’, ’[R2]’, ’[R3]’, ’[R4]’, ’[R5]’, ’[R6]’, ’[R7]’, 
’[R9]’, ’[R10]’, ’[R11]’, ’[R12]’, ’[R13]’, ’[R14]’, ’[R15]’, ’[R16]’, 
’[R17]’, ’[R18]’, ’[R19]’, ’[R20]’, ’[R21]’, ’[R22]’, ’[R23]’, 
’[R24]’, ’[R25]’, ’[R26]’, ’[R30]’, ’[R31]’, ’[R50]’, ’[R51]’, 
’[R52]’, ’[R53]’, ’[R54]’, "[R’]", "[R2’]", "[R4’]", "[R7’]", 
"[R8’]", "[R9’]", "[R10’]", ’[Ra]’, ’[Rb]’, ’[Rc]’, ’[Rd]’, ’[Rm]’, 
’[Rn]’, ’[Rx]’, ’[R1a]’, ’[R1b]’, ’[R1c]’, ’[R1d]’, ’[(R1)s]’, ’[(R1)
m]’, ’[R2a]’, ’[R2b]’, ’[R3a]’, ’[R3b]’, ’[R4b]’, ’[R4c]’, ’[R5a]’, 
’[R8a]’, ’[R14a]’, ’[R4()x]’, ’[R()p]’, ’[Rc3]’, ’[Rc4]’, ’[Rc6]’, 
’[Rc7]’, ’[Rc8]’, ’[(R1)a]’, ’[(R1)n]’, ’[(R2)b]’, ’[(R2)m]’, ’[(R2)
n]’, ’[(R2)k]’, ’[(R3)c]’, ’[(R3)m]’, ’[(R3)n]’, ’[(R3)p]’, ’[(R3)
q]’, ’[(R4)m]’, ’[(R4)q]’, ’[(R5)a]’, ’[(R5)n]’, ’[(R5)o]’, ’[(R5)
p]’, ’[(R6)q]’, ’[(R5)s]’, ’[(R6)n]’, ’[(R7)d]’, ’[(R7)n]’, ’[(R11)
r]’, ’[(R11)u]’, ’[(R12)r]’, ’[(R19)w]’, ’[(Rc)p]’, ’[(R21)
p]’, ’[(R9)0–3]’, ’[(Ra)m]’, ’[(Ra)n]’, ’[(Rb)n]’, ’[(R2a)p]’, 
’[(R2b)r]’, ’[(R4a)d]’, ’[(R4c)g]’, ’[(R4d)i]’, ’[(R)p]’, ’[(RD4)
mD]’, "[OR’]", ’[ORc]’, ’[(CR2)n]’, ’[CR1]’, ’[Z][R8]’, ’[Z1]’, 
’[Z2]’, ’[Z3]’, ’[Z4]’, ’[Z5]’, ’[Z6]’, ’[Z7]’, ’[Z8]’, ’[Z9]’, ’[Z10]’, 
’[(Z1)a]’, ’[(Z3)e]’, ’[(Z)n]’, ’[D1]’, ’[D2]’, ’[D3]’, ’[D4]’, 
’[D5]’, ’[D6]’, ’[Y]’, ’[Y1]’, ’[Y2]’, ’[Y3]’, ’[Y4]’, ’[(Y)n]’, ’[Ar]’, 
’[Ar1]’, ’[Ar2]’, ’[Ar3]’, ’[G]’, ’[G1]’, ’[G2]’, ’[G3]’, ’[G4]’, 
’[(G)n]’, ’[X0]’, ’[X1]’, ’[X2]’, ’[X3]’, ’[X4]’, ’[X5]’, ’[X6]’, ’[Q]’, 
’[Q1]’, ’[Q2]’, ’[L]’, ’[L1]’, ’[L2]’, ’[L3]’, ’[L4]’, ’[E]’, ’[E1]’, 
’[E2]’, ’[A1]’, ’[A2]’, ’[A3]’, ’[A4]’, ’[A5]’, ’[A6]’, ’[A7]’, ’[A8]’, 
’[(CH2)r]’, ’[(CH2)p]’, ’[(CH2)q]’, ’[(CH2)m]’, ’[(CH2)
n]’, ’[(CH2)s]’, ’[(CH2)v]’, ’[(CH2)b]’, ’[(CH2)c]’, ’[(CH2)

z]’, ’[(CH)n]’, ’[(C)t]’, ’[(C)m]’, ’[(C)n]’, ’[Hal]’, ’[M]’, ’[(L2)
n]’, ’[J]’, ’[J1]’, ’[V]’, ’[()x]’, ’[B1]’, ’[B2]’, ’[B3]’, ’[U]’, ’[Het]’, 
’[La]’, ’[Ea]’, ’[Eb]’, ’[Ec]’, ’[Lb2]’, ’[M1]’, ’[M2]’, ’[M3]’, 
’[Xa]’, ’[Xb]’, ’[*]’, ’[**]’, ’[#]’, ’[XH]’, ’[(X)n]’, ’[(A1)e]’, ’[(A2)
h]’, ’[Et]’, ’[Cy2]’, ’[a]’, ’[P1]’, ’[SOm]’, ’[F,Cl,Br,I]’.
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